Using the MaSuRCA software for genome assembly
masurca -g config.txt # Modifying the default parameters in the config.txt configuration file:
USE_LINKING_MATES =1, JF_SIZE = 60000000000

Using QUAST to align the reference genome and obtain non-ref sequences.
quast -t 16 --split-scaffolds --min-alignment 500 --min-identity 90 --unaligned-part-size 500
--min-contig 500 -r Sus_scrofa.Sscrofall.1l.dna.toplevel.fa assembly.fa

Align non-ref sequences to the NT database for contamination removal.
blastn -db nt -query unalign.fasta -out blast.out -evalue 1le-5 -outfmt 7 -max_target_seqs 1
-num_threads 12

Using CD-HIT to cluster and remove redundancy from non-ref sequences.
cd-hit-est -i nonref.fa -o cdhit-c0.9-T80-n8-d0-M 0

Annotation of repetitive elements in non-ref sequences.

BuildDatabase -name genome genome.fa

RepeatModeler -database genome -pa 96 -LTRStruct >& run.out

RepeatMasker -pa 120 -species pig -poly -html -gff -dir step1 panseq.fa 1>logl.o.txt 2>logl.e.txt
RepeatMasker -pa 120 -lib repeatmodeler/genome-families.fa -poly -html -gff -dir step2
stepl/panseq.fa.masked 1>log2.0.txt 2>log2.e.txt

Annotation of protein-coding genes.

braker.pl --species=pigpan --genome=cat.sm.fa --bam=transcripts.bam --softmasking --cores=40
--gff3 --workingdir=run --addUTR=on --prot_seq=proteins.fa --etpmode

mpiexec -n 120 maker -fix_nucleotides -base roundl.out maker_opts.rndl.ctl maker_bopts.ctl
maker_exe.ctl

Functional annotation of genes.

diamond blastp --db uniprot_sprot -q pan.aa --more-sensitive -p 32 -e 1le-6 --max-hsps 1 -k 1 -f 6
-0 swissprot.blastp > swissprot.blastp.log 2>&1

diamond blastp --db nr -q pan.aa --more-sensitive -p 64 -e 1le-6 --max-hsps 1 -k 1 -f 6 -0
nr.blastp > nr.blastp.log 2>&1

interproscan.sh -b pan -cpu 72 -dp -goterms -i pan.aa -iprlookup -pa

emapper.py --cpu 60 --override -i pan.aa --itype proteins -m diamond --output pan --output_dir ./
--temp_dir ./temp --tax_scope auto --go_evidence non-electronic --target_orthologs all
--seed_ortholog_evalue 0.001 --seed_ortholog_score 60 --query_cover 20 --subject_cover 0
--index_chunks 1 --dbmem

Using OrthoFinder for gene family analysis. The "primary_transcripts" folder contains all gene
protein sequences.
orthofinder -t 80 -a 8 -f primary_transcripts/

SNP imputation and phasing
java -XX:ParallelGCThreads=4 -Xmx50g -jar beagle.18May20.d20.jar gt=chr.vcf.gz out=impute.chr
nthreads=12

calculate chromosome recombination rate

pyrho make_table -n 100 -N 150 --mu 2.5e-8 --logfile make_table.log --outfile lookuptable.hdf
--approx --smcpp_file smc.pop_sizes.csv --decimate_rel_tol 0.1 --numthreads 80

pyrho hyperparam -n 100 --mu 2.5e-8 --blockpenalty 100,200,300 --windowsize 50,100,200,400
--logfile hyperparam.log --tablefile lookuptable.hdf --num_sims 10 --smcpp_file
smc.pop_sizes.csv --outfile hyperparam_results.txt --numthreads 16

pyrho optimize --tablefile lookuptable.hdf --vcffile chr.vcf.gz --outfile chr.rmap --blockpenalty 100
--windowsize 200 --logfile optimize.log --numthreads 16

Detecting TE insertion polymorphisms (TIPs) using PoPoolationTE2.

generate a ppileup (physical pileup) file

java -jar -Xmx800G popte2.jar ppileup --bam inputl.bam [--bam input2.bam ...] --map-qual 15
--hier te-hierachy.txt --output all.ppileup.gz

identify signatures of TE insertions from the ppileup-file

java -jar -Xmx800G popte2.jar identifySignatures --ppileup all.ppileup.gz --mode joint ---output
all.signatures --min-count 3 --signature-window fix100 --min-valley fix100

estimate the population frequency of TE insertions and rearrangements

java -jar -Xmx800G popte2.jar frequency --ppileup all.ppileup.gz --signature all.signatures
--output all.fregsignatures

filter signatures

java -jar -Xmx800G popte2.jar filterSignatures --input all.signatures --output filtered.signatures
--max-otherte-count 2 --max-structvar-count 2 --min-count 0.2

pairs matching signatures of TE insertions

java -jar -Xmx800G popte2.jar pairupSignatures --signature filtered.signatures --ref-genome
temerged-reference.fa --hier te-hierachy.txt --output teinsertions.txt

Performing selective sweep analysis using nSL.
selscan --nsl --vcf subpop.vcf --out subpop
norm --nsl --files nsl.out --bp-win --winsize 100000

Performing selective sweep analysis using iHS
selscan --ihs --vcf subpop.vcf --pmap --out subpop --threads 8
norm --ihs --files ihs.out --bp-win --winsize 100000

Performing selective sweep analysis using XPEHH
selscan --xpehh --vcf subpopl.vcf --vcf-ref subpop2.vcf --pmap --out subpoplvs2 --threads 8

norm --xpehh --files xpehh.out --bp-win --winsize 100000

Python script for distance matrix:

#!/usr/bin/env python
import re

import sys

def ibsMartrix(infile, outfile):

dicl ={}
lis1 =]
vis =]

outfile = open(outfile, 'w')
for line in open(infile):
if re.search(r'*\s*FID', line):
pass
else:
info = re.split("\s+', line.strip())
if info[1] not in lis1:
lisl.append(info[1])
if info[3] not in lis1:
lisl.append(info[3])
dicl[info[1] +'_' + info[3]] = info[-3]
dicl[info[3] +'_' + info[1]] = info[-3]
vls.append(float(info[-3]))

rg = max(vls) - min(vls)

maxv = max(vls)

outfile.write('Sample\t' + "\t'.join(lis1) + "\n')

foriin lis1:
outline = [i]
forjin lis1:
ifi==j:
outline.append('0')
else:
#tv=1-float(dicl[i+'_"+j])
tv = (maxv - float(dicl[i+'_'+j])) /rg
outline.append(str(tv))

outfile.write('\t'.join(outline) + \n')

infile = sys.argv[1] # pair-wise IBS similarity scores produced by PLINK
outfile = sys.argv[2] # output file name for distance martrix

ibsMartrix(infile, outfile)

