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1. Supplementary Methods

Single-cell suspension preparation

After preservation in the MAC tissue storage solution (Miltenyi Biotec, Bergisch
Gladbach, Germany) for up to 24 h, each biopsy sample was minced into small pieces
with Iris scissors and digested in 0.25% trypsin with RPMI-1640 solution [Gibco™,
Thermo Fisher Scientific (China) Co., Ltd, Shanghai, China] for 10 min—30 min at
37°C. After centrifugation (300 rpm) for 5 min, the first precipitates were collected
and washed with PBS containing 10% BSA. After centrifugation (300 rpm) for 5 min,
secondary precipitates were digested in mixed solution with 2 mg/ml collagenase I
and II (Sigma, St Louis, MO, USA) containing RPMI-1640 (Gibco™) for 30 min—1.5
h at 37°C. The duration of the two digestion steps should be adjusted according to the
digestion state of the rumen samples at different timepoints. The cell suspension was
then passed through a 70 um nylon cell strainer (BD Falcon, BD Biosciences, San
Jose, CA, USA) to remove tissue debris and cell aggregates. After centrifugation (200
rpm) for 3 min and then centrifuging (300 rpm) the supernatant for 5 min, the final
precipitates were resuspended in PBS, and a cell suspension with viability > 80% was
used. Dead cells were eliminated to increase the efficiency of sorting robust and live
cells for single-cell experiments using the MACS® Dead Cell Removal Kit (Miltenyi

Biotec, Germany). Details were in Supplemental Table S1.

Single-cell RNA-seq library construction and sequencing

RNA barcoding from thousands of individual cells with a set of uniquely barcoded
primers was performed using the 10x Genomics single-cell RNA sequencing system
(10x Genomics, Pleasanton, CA, USA). First, cells in the sorted single-cell

suspension were counted and diluted to the final concentration in DMEM or
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DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS) (Gibco, UK)
prior to analysis. Single-cell suspensions were then normalized and loaded onto a
Chromium Controller instrument (10x Genomics, USA) to generate single-cell
gel-bead-in-emulsions (GEMs), targeting 8,000-10,000 cells at different
developmental stages. Thus, individual cells were isolated into droplets with gel beads
coated with unique primers bearing 10x cell barcodes, unique molecular identifiers
(UMIs) and polyA sequences. Reverse transcription reactions for barcoded full-length
cDNA amplification were performed followed by emulsion breaking using the
recovery agent and cDNA clean up with DynaBeads MyOne Silane Beads (Thermo

Fisher Scientific, China).

Bulk cDNA was amplified on a Biometra TProfessional Thermocycler Basic Gradient
with 96-well Sample Block (Montreal Biotech Inc. Germany) using the following
cycling conditions: initial denaturation at 98 °C for 3 min, followed by 11 cycles of
15s at 98 °C, 20s at 63 °C, and 1 min at 72 °C and a final 1 min at 72 °C. cDNA
libraries were prepared using the Chromium Single Cell 3' Reagent v2 Chemistry Kit.
The detailed protocol consisted of the following sequential steps: (1) fragmentation,
end repair and A-tailing; (2) post fragmentation, end repair, A-tailing and
double-sided size selection with SPRIselect; (3) adaptor ligation; (4) post ligation
cleanup with SPRIselect; (5) sample index PCR; (6) post sample index PCR and
double-sided size selection with SPRIselect; (7) post library construction quality
control with the Agilent Bioanalyzer High Sensitivity chip; and (8) post library

construction quantification by qPCR (Tombor et al. 2021).

Histological analysis
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Frozen or normal rumen tissues for histological examination were fixed in 4%
paraformaldehyde (Beijing Solarbio Science & Technology Co., Ltd. Beijing, China)
at 4°C for 24 h, dehydrated in 70% ethanol for 5-10 min, and incubated in pure fresh
xylene solution for 30 min. Afterward, the samples were embedded in paraffin blocks
and cut into 5-7 pm thin sections using a rotary Leica RM2255 microtome (Leica,
Nussloch, Germany). To prevent tissue detachment from the slides during the staining
process, the samples were then transferred to 3-amino-propyltriethoxysilane (APES;

ZSGB-BIO, Beijing, China)-coated slides.

Hematoxylin and eosin (H&E) staining was implemented following the routine
procedures described previously (Garcia et al. 2012). In summary, the slides were
deparaffinized in 100% xylene solutions for 30 min, followed by rehydration in an
ethanol/dH,O series (90%, 70% and 50%, 5 min each). Then, the slides were stained
with hematoxylin solution for 7 min and rinsed twice with distilled water for 5 min.
To remove excess stain, the stained tissues were rinsed with 1% (v/v) HCl-ethanol
solution for 3-5 sec, followed immediately by washing with 45°C water for 5 min.
After dehydration, the slides were stained with 1% eosin ethanol solution and rinsed
with 100% ethanol solution for 10 min. Finally, the slides were mounted with neutral
resin as the mounting medium, and brightfield photographs were taken using an

optical microscope (McAudi Industrial Group Co., Ltd., China).

scRNA-Seq data preprocessing
The sequencing raw base call (BCL) files generated by Illumina sequencers were
demultiplexed into FASTQ format using the “cellranger mkfastq” function. The

generated FASTQ files were then aligned to the sheep reference genome
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Oar_rambouillet v1.0 (RefSeq assembly accession GCF 002742125.1) or the goat
reference genome ARSI (RefSeq assembly accession: GCF_001704415.1) to rebuild
an index for read alignment using the ‘mkref’ function. After alignment, the
“cellranger count” subcommand with the setting ‘--expect-cells 8000’ was used to
count the gene expression reads and the feature barcoding reads from a sample per
GEM well. Finally, the rates of bases with a Phred score of >30 (Q30) in UMIs
(unique molecular identifiers), the cell barcodes and the RNA reads were over 90%
(Supplemental Table S2). We implemented the filtering of low-quality cells meeting
the following filtering metrics: > 200 expressed genes, > 3 UMI counts, and
transcripts in less than three cells (Ge et al. 2020; Ma et al. 2020). The number of

fractions of mitochondrial genes per cell is listed in Supplemental Table S2.

Detect and filter potential doublets

The above data were processed by the following he steps: (1) ‘paramSweep v3’ was
used to implement PCA, and the resulting PC distance matrix was used to calculate
the proportion of artificial nearest neighbors (pANN); (2) ‘summarizeSweep’ was
used to compute the bimodality coefficient across the pN-pK (pN, the number of
artificial doublets; pK, the neighborhood size) parameter space; (3) ‘find.pK’ was
used to compute and visualize the mean-variance normalized bimodality coefficient
(BCmvn) score for each pK value tested in the parameter sweep, and the optimal pK
values were determined for each sample based on the BCmvn score; and (4)
‘doubletFinder v3’ was used to generate artificial doublets from an existing
sc-RNA-seq dataset, and the number of doublets for each sample is shown in

Supplemental Table S2.
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Cell clustering analysis of merged data by using Seurat

The workflow was as follows: (1) the gene expression data were In-transformed and
normalized to scale the sequencing depth to 10,000 molecules per cell using the
‘NormalizeData’ function; (2) the top highly variable genes (n = 3,000) from the
datasets were selected using the default 'vst' selection method in the
‘FindVariableFeatures’ function; (3) feature scaling and centering were performed by
the ‘ScaleData’ function; (4) PCA was applied to the set of top highly variable genes
using the ‘RunPCA’ function; (5) the ‘dimensionality’ of the dataset was determined
via the ‘ElbowPlot’ function; (6) the ‘FindNeighbors’ function was used to calculate
the Jaccard index; (7) the ‘FindClusters’ function with ‘resolution’ = 0.6 was used to
cluster the cells; and (8) visualization methods such as T-distributed stochastic
neighbor embedding (t-SNE) and UMAP were performed by running the ‘RunUMAP’

and ‘RunTSNE’ functions using the same PCs as input features.

Analysis of differentially expressed genes

The ‘FindMarkers’ function with the settings “test.use="wilcox” || logfc.threshold = 0
|| min.pct=0.1" was used to find up-regulated genes (logFC > 0.25 and Pag; < 0.05) and
down-regulated genes (logFC < -0.25 and Pag; < 0.05) between the timepoints or
stages. Additionally, we implemented the ‘FindAllMarkers’ function with settings
“test.use="“wilcox” || logfc.threshold = 0 || min.pct=0.1" to find up-regulated genes
(LogFC > 0.25 and Pagj < 0.05) and down-regulated genes (LogFC < -0.25 and Pagj <

0.05) between the cell types at each timepoint or stage.

Single-cell trajectory and RNA velocity analysis

The workflow was as follows: (1) the ‘newCellDataSet’ function was used to upload
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the processed data into Monocle's main class; (2) the functions ‘estimateSizeFactors’
and ‘estimateDispersions’ were used to estimate the “size factors” to normalize for
differences in mRNA recovered across cells, and the "dispersion" values were used
for differential expression analysis; (3) the ‘detectGenes’ function, with the setting
“min_expr = 0.1”, was used to determined how many copies were expressed for a
particular gene and how many genes were expressed in a given cell; (4) the
‘reduceDimension’ function was used for dimensionality reduction with the settings
“max_components = 2 || norm_method = 'log' || num_dim = 20 || reduction_method =
*SNE"; and (5) the ‘setOrderingFilter’ function was used to mark genes that were
used for clustering in subsequent calls to clusterCells; (6) The ‘clusterCells’ function
was used to cluster cells into a specified number of groups with an unsupervised
algorithm (by default, density peak clustering); (7) The ‘orderCells’ function was used
to learn a "trajectory" describing the biological process and calculate where each cell
fell within that trajectory. We took a "root" state from the e45 counts to specify the
start of the trajectory; and (8) to find genes whose expression patterns varied
according to pseudotime, we used the ‘differentialGeneTest’ function with the setting

299

“fullModelFormulaStr = ‘~sm.ns (Pseudotime)’”’.

The loompy.connect function was implemented to connect a .loom file.
Loom-annotated matrices of the 10x dataset was then loaded and analyzed in R using
the velocyto.R. Next, we normalized and clustered cells using pagoda2, estimated
RNA velocity using gene-relative model with k = 20 cell kNN pooling, and
top/bottom 2% expression quantiles for gamma fit, Finally, we visualized the velocity

vectors in the UMAP embedding with differentiable velocity vector fields.
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Transcription factor (TF)-target gene regulatory network analysis

The workflow was as follows: (1) the ‘geneFiltering’ function with the settings
“minCountsPerGene = 3 * 0.0025 * ncol(exprMat) ||
minSamples=ncol(exprMat)*.0025” was used to filter genes; (2) The ‘runCorrelation’
function was used on the input expression matrix to calculate the Spearman
correlation; (3) The ‘runGenie3’ function was used to identify potential TF targets
based on coexpression; (4) The ‘runSCENIC 1 coexNetwork2modules’ function was
used to convert the output from GENIE3 to coexpression modules; (5) The
‘runSCENIC 2 createRegulons’ function with the settings “coexMethod=c("w001",
"w005", "top50", "topSperTarget", "top10perTarget", "topSOperTarget")” was used to
perform TF-motif enrichment analysis and identify the direct targets (regulons); (6)
The ‘runSCENIC 3 scoreCells’ function was used to score regulons on the individual
cells (AUCell); and (7) The ‘runSCENIC 4 aucell binarize’ function was used to

binarize AUCell.

Immunofluorescence staining

For immunofluorescence staining, rumen tissues were perfused with PBS and fixed in
4% paraformaldehyde (PFA) (~pH 7.4) for 48 h. Subsequently, the tissues were
processed for paraffin embedding with an automatic tissue processor and embedded in
paraffin wax blocks. After washing with polylysine three times and dehydrating
following established protocols in a cold graded ethanol series (70%, 80%, 90% and
100%), the paraffin-embedded rumen tissue sections at a 3.5 um thickness were
deparaffinized in dewaxing medium (Baso Biotechnology, China). The tissue sections
were then exposed to 1x citrate-based antigen retrieval solution (Sangon Biotech,

China), microwaved until boiling at 100°C for 5 min, allowed to stand still for 5 min,
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and then boiled for 5 min. Ruminal tissue sections were blocked with Immunostaining
Blocking Dilution Buffer (Sangon Biotech, China) for 1 h. After incubation using
immunostaining blocking buffer for 1 h, the sections were incubated overnight at 4°C
in primary antibodies diluted using the Bond primary antibody diluent (Abcam, UK).
The specimen tissues were then washed twice in PBS and incubated in the secondary
antibody dilution (Abcam, UK) for 1 h at 37°C. After washing off the excess primary
and secondary antibodies, the sections were stained with

4’ ,6-diamidino-2-phenylindole (DAPI, Beijing Solarbio Science & Technology AB).

DNA extraction, assessment of DNA integrity, concentration, and quality

DNA was extracted following well-established protocols involving repeated
bead-beating plus column filtration (Yu and Morrison 2004). DNA integrity and
concentration were assessed by electrophoresis on 1% agarose gels, and DNA quality
was determined using a Qubit® 2.0 Fluorometer (ThermoFisher Scientific, MA,

USA).

Rumen cells with Prevotella copri RNA sequencing

Total RNA was extracted from cultured cells using TRIzol (Invitrogen, Carlsbad, CA,
USA) following the manual instruction. RNA quality and integrity were examined and
evaluated by 1% agarose gels, NanoPhotometer® spectrophotometer (IMPLEN, CA,
USA), and RNA Nano 6000 Assay Kit in Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). Then, 1 ug RNA was used for library preparation using the
NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) as
recommended by the manufacturer, with the index codes added to adaptors for

multiplexing samples. Libraries were sequenced on an Illumina NovaSeq platform
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2. Supplementary Figures
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Fig. S1 (A) Schematic diagram of rumen structure. The red boxes indicate the
sampling sites of the rumen tissue. (B) Histomorphometric measurements of rumen
tissues of sheep and goats (embryonic days 45—-135 and 0-90 postpartum);
hematoxylin-eosin (HE) staining; bar: 50 um, 100 pm and 200 um. E: epithelium; Rp:
rumen papillae; Rpi, ruminal pillars; Lp+Sb: lamina propria and submucosal tissue;
Tm: tunica muscularis; S: serosa. (C) Morphometric analysis of rumen tissues in
sheep and goats during embryonic and postnatal development (um). The box plots
show the five-number summary of a set of data, including the minimum value, 25%
quantile (lower), median, 75% quantile (upper), and maximum value. Black dots
represent the mean values of each variable and are connected by the polylines. Two
hundred measurements have been taken for each variable such as epithelial thickness,
length of rumen papillae, width of rumen papillale, lamina propria and submucosa
thickness, and tunica muscularis thickness. n.s., not significant; *, P <0.05; **, P <
0.01, ¥** P <0.001; **** P <0.0001.
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Fig. S2 (A) Flowchart of the scRNA-seq data analysis. (B) Cell number, mean reads
per cell, transcriptome mapping rate, sequencing saturation, gene number and unique
molecular identifier (UMI) number per cell for the scRNA-seq data at the seventeen
timepoints of sheep and goat rumen. (C, D) UMAP plots, showing the cell clusters at
the seventeen timepoints or six stages in sheep (C) and goats (D), were performed
after batch correction by the merging with scaling, CCA integration in Seurat and
harmony, respectively. The right panels shown the number of cells in each stage. (E)
Immunohistochemical localization of selected key marker proteins encoded by
KRT15 in the epithelial cells of rumen at different developmental stages. Experiments
were repeated for 2—3 rumen slices per timepoint. Scale bars: 20 mm. (F) Box plots of
relative immunofluorescence intensity of KRT15 gene. Ten fields were randomly
selected from each section at each developmental stage to measure the fluorescence
intensity. The data are shown as means + SEM (the standard error of the mean). *, P <
0.05; **, P <0.01, *** P <0.001. n.s., not significant.
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260  Fig. S3 (A, B) UMAP plots showing the cell types and the cell number of the types at
261  the seventeen timepoints in sheep (A) and goats (B). (C, D) UMAP plots of individual
262  stages in sheep (C) and goats (D), the cells marked red color points represent the
263  stromal cells identified by the method of merging with scaling.
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Fig. S4 Pseudotime analyses of cell subtypes in the rumen tissues of sheep.

Pie chart showing the relative percentages of cell subtypes in basel cells, spinous cells
and fibroblasts, and pseudotime trajectory analysis of the differentiation of cell
subtype cells and the expressions of marker genes in basel cells, spinous cells and
fibroblasts, respectively. Cells are colored based on pseudotime, cell subtypes and

developmental stages.
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Fig. S5 Pseudotime analyses of cell subtypes in the rumen tissues of goats.

Pie chart showing the relative percentages of cell subtypes in basel cells, spinous cells
and fibroblasts, and pseudotime trajectory analysis of the differentiation of cell
subtype cells and the expressions of marker genes in basel cells, spinous cells and
fibroblasts, respectively. Cells are colored based on pseudotime, cell subtypes and
developmental stages.



282

283
284

Supplemental Flgure S6
A , B

S
S,
i
e

R R B
3
g
g
K

1

3 lalo smoryon
Preuminston

ly o
£3 e momc stage.

stage
B3 Fansion soge
P3; rumination stage

1600 - " . - " -
1500
1200 4y - - s
800 1000
00 % w 500 o -
o s oS U s 108,
@ o Goats - o
Shoop 1 Upreguisted
B s RS o Eoeie ™
Down-reguiated o, a
»
I'T]
"
L
Il
. Downrequiated
;.; ene on

et e g B Sy T ool e S apraen
E Y | JERS— e L .‘{
e al !
SR S | S |
e o o e ”
o oot o b e P TIS h
EREE 1t T SR
R H S | I l
ot li ot e
SRR . E
eSS - W
SRR wlin Shedia i
-FRERER o "
S o
._m,..m..,.,‘m...::.-m? AT "
- S
mm.mmuwwmm‘ I l”'
SRR R
iR
sees
o<1
O h
el !
g oS
TwmmmmEs || ||| I
Epao] '
rr = i = | |
. Pl = [ (T ot gt vt o
: = I =] t wsigaa
i A oo e | [ epintont et A
oo gores e T i T
- e | i | St S
Ees | e [N | R
) s ety ' ' P
on o] s SRR | P
& ——ZEE ||Hh- e e
g, gm0 e | | b
£ me enbnorcrage e ot II o N R S R TR
e I o | w0 P
73 namnaion sage e “" ! snREEEE ) |, __W..m“;mm".
[r—e % ety
ci i . -0
R _mmmggm = TN CCT T
TR m |" '|u|| = I mmEe |
e wPEERES i R ey
e i .! e jEE.: e el
"g”u.-.ﬁ.%m B " " | e
B PR | s g R T
e == || " - "mmﬁ' | I R
el e i i o TSI
F PSR ",
Up-regulated GO terms Down-regulated GO terms
Sheep Goats Sheep Goats
Epithelium Epnh.hum Epithelium Epithelium
regulation of cellular amino acid metabolic process. ininsic poptotc signaing patra * 4mp  cotranslational proten targeting to mern! response to CAMP .
proton transmembrane transport  « « protc membrane transy | nam\aﬂomlinmaﬂon response to transforming growth beta
nu:\acmn biosynthetic process .. tive phosphorylation DY € to oxic oxmhvepnu;phory\smon -
intrinsic apoptotic signaling pathway « antimicrobial humoral respor mlnnsbcipoplebcs&gnil g pathway cotranslational protein targeting b
‘epidermis development « ‘epidermis development ¢ process splicing
Felet Py S L
Endothelial cells Endothel Endothelial cells.

Etonasa cals
“log,p

ndothelial cel migration rosponee to.katone translational initiation endothelium development
endothelial cell proliferation oxidative phoepharyiation : RNA splic Wt signaling pathway, plinar cel polarty paway
nsport pﬂnse un pv tein . multicellular organism growth wephusvhﬂry\ahun
oxidative phosphorylation o dclh S a by "“’““'{ g ) ATP metabol . RN lic proces
'ATP metabolic process “enioenum dovsepmen e ribonucleoprotein complex biogenesis  + rancintona) bitston
&
Kiaiive phosphorylaion 2" s s
oxdaie phosphoryiation "+
oxidative phosphorylation 'ATP metabolc process o RNA catabolic process oo e L ogyar response f ransforming rowth factor bta simus
A e rogenoraton rogitor el s et transatona o B e oo g
" ! i ‘extracellular structure organization - « o . indi c
positve regulation of cell adhesion + extraceliular malrix organization + + o oxidative phosphorylation * Nephusphwy\ahun . i3
‘extracellular matrix organization it RNA spicing * © ® * reguition of ellar aming acd metaborc process 33
FLE 5, SR
Immune cells Immune cells |mmﬁne Cells
T —— neutrophl mediated immuniy £ 55 neutrophil activtion involved in mmune respanse o o g MRNA catabolic process
oxidative phosphorylation e o H rophi degranistion I T translational initation
metabolic process e Bt ey hil activation immune response-activating signal ransduction g
interleukin-6 production "F‘g“' sign: ° |3 signaling receptor civator activity - Counts cellular response to biotic stimulus %
RNA catabol L receptor ligand acnvm/ - i% T cell receptor signaling pathway  +  +
¥ s
Ll & L




285
286
287
288
289
290
291
292
293
294
295
296
297
298

Fig. S6 Differentially expressed genes (DEGs) at the 17 developmental timepoints
in sheep and goat rumen tissue. (A) Spearman correlation of gene expressions in the
rumen cell types between sheep and goats. (B) Heatmaps showing the number of
DEGs among the 17 time-points in sheep and goats. The upper rows denote the DEGs
shared by at least two time-points and the lower rows are DEGs specific for individual
time-points. (C) Rose diagrams showing the numbers of DEGs at each time-point in
sheep and goat. (D) Heatmap plots showing the up- and down-regulated of top 50
DEGs in sheep and goat rumen tissues at the seventeen timepoints. (E) Representative
and important gene ontology (GO) terms based on the up- and down-regulated DEGs
in the sheep and goat rumen tissues at the seventeen timepoints the (P < 0.05). (F)
Diagram showing the significantly enriched Gene Ontology (GO) terms for the up-
and down-regulated genes (Pagj < 0.05, |[logFC| > 0.25) as revealed by the pairwise
comparisons of different cell types between different stages in sheep and goat rumen.
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Fig. S8 Up-regulated and down-regulated differentially expressed genes (DEGs)
indifferent developmental stages and different cell types of sheep and goats. (A)
Network plots showing the number of DEGs (Pagj < 0.05, |logFC| > 0.25) in each cell
type at the six major developmental stages. The internal nodes denote cell types. The
gray circular edge denotes the collections of DEGs. Each cell type is connected with
its DEGs by the internal lines of the network. (B) Bar plots showing the numbers of
DEGs, and the ratio of DEGs between sheep and goats for each cell type. (C) Bar
plots showing frequencies of the top three common up- and down-regulated DEGs in
the six developmental stages.
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Fig. S9 Changes in core regulatory transcription factors (TFs) during the rumen
development. (A) Venn diagrams showing the common and species-specific up- and
down-regulated DEGs for the TFs in sheep and goat. The up- or down-regulated
DEGs was defined by comparing the expressions of a gene at one stage with its
expressions of all the other stages. (B) Network visualization of potential up-regulated
and down-regulated TFs. The colored node sizes are proportional to the number of
associated DEGs for the significant TFs. The connecting line in the middle denotes
common TFs between sheep and goat. The circles of grey dots showed the relevant
up-regulated and down-regulated DEGs for the TFs in the six major developmental
stages. (C) Rose diagrams showing the numbers of TFs in the six major
developmental stages. (D) TF target gene enrichment analysis at the six
developmental stages between sheep and goats.



331  Supplemental Figure S10

Cell-cell communication networks Interaction events
Sheep Goats ——— Increased
——— Decreased
C1_KRTDAP
cez st00a8r - 3 Unchanged

 SC3_IGFBP2+
» SC2_IGFBP6+

KRT4+
;SC4_DAPL1+
SC3_CA3+

P IGFBP6+ SC2_KRT4+

b S
W st 1_FABP4+ g
»
" £
N
L 4

Fib1 Fib3_CO

Fib2_PL Fib4_AS

T Fib7_TNFAIPG+

SC4_ALDH1A1+ GC1_KRT4+

GC2 %?Ja}fé*f DAP+ "SC3 IGFBP2+ GC2_RBP2+ @ SC4 _DAPL1+
< = IGFBP6+ ~= W+ SC3 CA3+

: E SC2_KRT4+

LEC NS C1_KRT8+
FBPS*  Ecc ‘ u"r;*;{‘g | BC2_CA3+w-

[
KRT8+Q

E3 vs. E2

Fib7_TNFAIP6+

SCSKRT15+ GC1_KRT4+
SCE_FABPA SC4_ALDH1AT+ GC2 RBP2+

SC6_FABP4+ 60! Kk
sc7 kRmaze AR GC2.RBP2: . @SC4 DAPL1+
B~ BG4_SELENBP1+ MC .SC2_KRT4+

GC2_S100A8+ - SC1_KRT8+
VY

BC3_CA1+ ( AREG+
& Z r Stroma1/F -
e ( 7 1CA3H
4 BC1_FABP4+ = .g ,615
g., Fib3_Cf > 398
PN Z 59
&8 Fib4
Fib5_PEN
‘B Fib6_MFAP5+e

Fib7_TNFAIP

Fib8_MGP+

332
333



334
335
336
337
338

Fig. S10 Network plots showing the changes in LR interaction events. The thickness
of the lines is proportional to the number of LR interaction events. Red lines represent
an increase in the number of LR events relative to the previous stage, and blue lines
represent a decrease. The abbreviation of the cell names is shown in Fig. 1.
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Fig. S11 Cross specles rumen and stomach smgle cell transcrlptome atlases.

(A-E) UMAP plot showing the single-cell atlas of stomach or rumen in human, mouse,
monkey, cattle, and sheep. Dots with colors represent different cell types. Bar plots
show the number of cells profiled for each type after quality control. (F) Heatmap
showing the cross-species comparisons of the top 50 marker genes for all the cell
types in the human, mouse, monkey and cattle.
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Fig. S12 Taxonomic and functional annotation of ruminal microbiota and
associations among the bacterial composition and differentially expressed genes
between adjacent stages in sheep and goats. (A) Relative abundances of the ruminal
microbial phyla across the rumen developmental stages in sheep and goat. (B)
Dynamics of microbial composition during the rumen developmental stages in sheep
and goats. Pie charts show the proportions of the most abundant microbial genera,
which collected the top three abundant microbial genera at each time point of the
rumen development. The lines represent the alpha-diversity by Simpson index at the
species level. (C) Comparison of the functional items (KOs in the left, CAZymes in
the middle and COGs in the right) among the rumen developmental stages in the
microbiome of sheep and goat. The left panel shows sets included in the intersection
and independent sites, and the right bar or pie charts show the categories of the
functional items in these sets. The COGs categories are following: C, Energy
production and conversion; F, Nucleotide transport and metabolism; H, Coenzyme
transport and metabolism; I, Lipid transport and metabolism; J, Translation, ribosomal
structure and biogenesis; K, Transcription; L, Replication, recombination and repair;
M, Cell wall/membrane/envelope biogenesis; O, Posttranslational modification,
protein turnover, chaperones; P, Inorganic ion transport and metabolism; Q,
Secondary metabolites biosynthesis, transport and catabolism; R, General function
prediction only; S, Function unknown; T, Signal transduction mechanisms; U,
Intracellular trafficking, secretion, and vesicular transport; V, Defense mechanisms; X,
Mobilome: prophages, transposons. (D) Heatmap of correlation between the
expressions of host differential expressed genes (DEGs) between adjacent stages and
the relative abundances of major rumen bacterial genera in sheep and goat. Based on
the dominance of bacterial genera in one specific stage, five clusters were generated
for 25 and 24 bacterial genera for sheep and goat respectively. A cluster, which was
dominant in e45-e¢75, consisted of Sphingomonas, Cutibacterium, Phyllobacterium,
Agrobacterium, Rhizobium, and Pseudomonas, and was positively correlates with the
expression of the development- and immune-related genes (S_e45-e75 for sheep and
G_e45-e75 for goat). In S e45-e75 and G_e45-e75, 117 genes and 169 genes were
assigned with related GO terms, separately. We overlayed the genes of S_e45-e¢75 and
G_e45-e75, and got 67 overlapped genes. Another cluster, which was dominant in
d21-d90, consisted of Prevotella, Butyrivibrio, Clostridium, Succiniclasticum, and
Alloprevotella, and was correlated with the expression of the energy metabolism-, cell
migration-, immune- and fatty acid metabolic process-related genes (S_d21-d90 for
sheep and G_d21-d90 for goat). In S d21-d90 and G_d21-d90, 100 genes and 120
genes were assigned with these related GO terms, separately. We got 36 overlapped
genes between S _d21-d90 and G_d21-d90.
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Fig. S13 Transcriptomic analysis of co-cultured rumen cells with Prevotella copri. (A)
Overview of experiment of co-culture microbial with cells in vitro. (B, C) Cells
viability of primary rumen epithelial cells (B) and primary rumen fibroblasts (C) in
different concentration and duration for co-culture of cells with P. copri were
evaluated by CCK-8 assay. P value were determined by t-test. ****: P < (0.0001, ***:
P <0.001, **: P<0.01, *: P<0.05. (D) Plot of t-SNE of all samples based on gene
expression. (E) Plot of t-SNE of primary rumen epithelial cells and primary rumen
fibroblasts based on gene expression. (F, G) In in rumen epithelial cells (F) or
fibroblasts (G), the partial common GO terms in up-regulated DEGs (treatment vs.
control) and some up-regulated DEGs (P2 vs. P1; significantly correlated with
Prevotella copri). Only GO terms with “pvalueCutoff = 0.05” and “minGSSize = 3”
were considered. (H, I) Venn diagram of overlap between up-regulated DEGs in
primary rumen epithelial cells (H) or primary rumen fibroblasts (I) with up-regulated
DEGs (P2 vs. P1) which significantly (P < 0.05) correlated with Prevotella copri. And
comparison between the overlap and the overlap expected by chance.
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Fig. S14 The expression level of ATP6 in all types of cells in sheep and goats.
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Fig. S15 The expression level of CYTB in all types of cells in sheep and goats.
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3. Supplemental Notes

Supplemental Note S1 Prior to embryonic day 45 (e45), the rumen typically
consisted of three layers: the epithelium (E), pluripotential blastemic tissue (PBT) and
serosa (S). Ruminal pillars (Rpi) became visible at approximately e45 and later
(Supplemental Fig. S1B), which falls within the time range (e39-e46) reported
previously (Ortega 1973; Franco et al. 1992; Garcia et al. 2012). Ruminal papillae (Rp)
started to appear at €90 (Supplemental Fig. S1B), slightly later than previously
reported (e76; Garcia et al. 2012). The mature rumen walls developed into four layers,
including an internal epithelium (E), a middle layer of lamina propria and submucosal
tissue (Lp+Sb), a tunica muscularis (Tm) and an external layer or serosa (S;

Supplemental Fig. S1B).

Supplemental Note S2 The histological changes in rumen tissues could result from
the keratinization of the epithelium after birth and the development of smooth muscle
contraction for rumination (Luginbuhl 1983). In the late embryonic and
pre-rumination stages, the rumens of sheep and goats were underdeveloped with
poorly developed papillae but without a high degree of keratinization, a characteristic
of the mature organ (Supplemental Fig. S1B; Gilliland et al. 1962). After 21 days
postpartum, the length and width of the Rp increased significantly (Supplemental Fig.
S1C). Meanwhile, the epithelium became stratified and keratinized, and could be
divided into four different layers (i.e., the keratin, granular, spinous and basal layers;
Supplemental Fig. S1B). The Sb was composed of loose connective tissue without
glands, and the Tm consisted of two layers, namely, an internal circular bundle (i) and
an external longitudinal bundle (e; Supplemental Fig. S1B). At most of the timepoints,

the Rp of goats were taller and wider than those of sheep (Supplemental Fig. S1C). In
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general, the dimensions (Rp, Lp+Sp and Tm) increased as the rumen matured, which
helped increase rumination (Supplemental Fig. S1C). The epithelium became
substantially thinner after birth until the transition stage but became slightly thicker

after d56 of the rumination stage (Supplemental Fig. S1C).

Supplemental Note S3 We aimed to combine the single cells of rumen tissues of
sheep and goats, and obtain a unified dataset that faithfully retained all sources of
variability such as developmental stages and cell composition heterogeneity, while
accounting for technical biases. We tested three different sScRNA-seq data integration
methods [e.g., the merging with scaling, cca integration in Seurat, and harmony]. We
found that the method used here, i.e., the merging with scaling, is the best, which can
detect all the different cell types while retain the variability in both species
(Supplemental Fig. S2C,D). We projected the major cell types identified by “merging
with scaling” to the post-batch correction graphs (Supplemental Fig. S2C,D). We
found that major cell types and cell type composition comparison were mostly
identified, indicating accuracy of the “merging with scaling” method applied in the
analysis. However, the CCA integration in Seurat and the Harmony, two methods for
post-batch correction, were unable to clearly identify cell subtypes. Thus, we retained

the UMAP graphs by the merging with scaling in the main text.

Supplemental Note S4 In addition to cell types, we detected the cell subtypes
specific at particular stages by manual annotation. We conducted the dimensionality
reduction analysis at each time point, and annotated the cell subtypes. For the cell
subtypes and proportions, we observed consistency with the integrated dataset

(Supplemental Fig. S3; Fig. 2C,D). In the merged data of sheep, the stromall was
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found at embryonic stage e45 (cell number, 5148), 60 (7540), €75 (149), €90 (59)
and e105 (78); stromal2 was found at seven timepoints of embryonic stage e45 (cell
number, 892), 60 (213), 75 (467), €90 (492), €105 (175), e120(21) and e135 (97),
and after birth d14 (14), d35 (4). In the merged data of goats, the stromall was found
at embryonic stage e45 (cell number, 3726), 60 (55), €75 (34), €90 (12), 105 (6),
€120 (8) and e135 (4); stromal2 was found at embryonic stage e45 (1810) and e60 (13)
(Supplemental Tables S5, S6). However, in the annotation of individual stages,
stromal cells were only identified at e45 to el05 in sheep, and at e45 in goats. In
sheep and goats, we selected two timepoints in each species (sheep, €120 and e135;
goats, e60 and e75). Stromal cells were not identified at individual timepoint
(Supplemental Fig. S3), but identified in the merged data (Fig. 2 C,D). We projected
the stromal cells identified by “merging with scaling” to the individual graphs at the
same timepoints (Supplemental Fig. S3). The "stromal cells" with a very small
number of cells (less than 100) were not annotated because of mixing with fibroblasts

with similar gene expressions.
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