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Supplemental Methods and Results

Analysis of 7 non-overlapped human-rodent UCEs

For the remaining 7 human-rodent UCEs that did not overlap with our candidate mUCEs, we
examined and visualized them in the Genome Browser (Gonzalez et al. 2021) to identify the
possible reasons. We found that the exclusion of these seven UCEs from our candidate mUCE
set can be summarized in three reasons: (1) a lack of orthologous sequences (uc.64, uc.125,
uc.453, and uc.454) in the reconstructed ancestral genome due to the relatively low quality of
the reference genome (armadillo), (2) imperfect ultra-conservation (uc.415 and uc.476) in
most lineages, and (3) a one-to-many orthology relationship (uc.471) in the human/mouse/rat
genome.
3 out of 4 missing orthologous sequences can be found in the recently released high-quality
armadillo assembly (GCF_030445035.1) using BLAST v2.11.0 (Camacho et al. 2009) with
the parameter settings: “-task blastn, -outfmt 6, -max_target_seqs 1, -max_hsps 1”, except for
uc.454, which has excessive substitutions in the armadillo genome. Although it is expected
that using more complete genome assemblies would identify more UCEs in both taxa, our
final mUCEs and aUCEs are accurate and thus would not affect our analyses.

Investigation of gene completeness of ZNF536

Using pairwise alignments of ZNF536 coding sequence (conserved canonical transcript,
ENST00000355537) generated by TOGA
(https://genome.senckenberg.de/download/TOGA/human_hg38_reference/) (Kirilenko et al.
2023), we confirmed that ZNF536 were complete in both Yingochiroptera and
Yangochiroptera without any inactivating mutations at least at the family level. Notably, the
ZNF536 coding sequence in the same assemblies that we used in our analyses were classified
as “missing”, “partial intact” or “uncertain loss” by TOGA, where <50% central part of their
ZNF536 coding region is completely present in the assembly. This is potentially attributed to
assembly gaps or fragmentation of the low-quality (low Contig N50) assemblies (Kirilenko et
al. 2023). All mentioned data can be found and visualized at:
https://genome.senckenberg.de/TOGA.mammals.html.

Validation of one-to-one orthologous UCEs

Focusing on one-to-one orthologous UCEs is important because fast divergence is one of key
characters to paralogous genes and the corresponding regulatory elements. To accurately
identify and analyze the target UCEs (mUCE.1304, mUCE.1639, mUCE.2036), our
investigations were first based on synteny filter to ensure a conserved genomic context of
target genes. Additionally, we manually checked the UCE-adjacent genes in Genome browser
(Gonzalez et al. 2021) to confirm the presence of only one ortholog in query genomes.
To further exclude any possible paralogs of the three target UCEs presented in Figure 4-6
within each of the analyzed species, we conducted additional analyses using BLAT (Kent
2002) as follows:
1. For the case of mUCE.2036 in Chiroptera (Fig. 4), we obtained the corresponding UCE

sequence in the hg38 assembly from our alignment. We then used BLAT (Kent 2002) to

http://asia.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000198597;r=19:30224891-30713586;t=ENST00000355537
https://genome.senckenberg.de/download/TOGA/human_hg38_reference/
https://genome.senckenberg.de/TOGA.mammals.html


search for all possible paralogos that mimic the real gBGC-induced fast-evolving UCEs
in the query genomes (five bat genomes).

2. For the case of mUCE.1639 in Cervidae (Fig. 5), we obtained the corresponding UCE
sequence in the hg38 assembly from our alignment. We then used BLAT (Kent 2002) to
search for all possible paralogos that mimic the real gBGC-induced fast-evolving UCEs
in the query genomes (three cervid genomes).

3. For the case of mUCE.1304 in placental mammals (Fig. 6), we obtained sequences of the
corresponding avian UCE (aUCE.2913) from galGal6a assembly. We then used BLAT
(Kent 2002) to identify all possible paralogos in human (hg38), rat (mm10),
dog(canFam3), cattle (bosTau9) and platypus (ornAna2) assemblies.

The results showed that no paralogous sequences were identified by in all three cases.
Furthermore, despite the significant lineage-specific acceleration observed in these UCEs
(FDR < 0.05), they still exhibited high conservation and maintained their conserved genomic
position.

Purifying selection analysis of cervid uc.359

To further test whether the high conservation of uc.359 within cervids is a sign of purifying
selection, we used 11-way ruminant alignment covering all six ruminant family (including six
cervid species as same as shown in Supplemental Fig. S15) and estimated the neutral
evolutionary rate using 4-fold degenerate sites. The 4-fold degenerate sites of all species were
extracted from multiple sequence alignments according to the gene annotations of the
reference genome.
The alignment was extracted from the original alignment in our lab’s website
(http://animal.omics.pro/genomebrowser/cgi-bin/hgTablesCattle?clade=ruminantia&org=ARS
_UCD_addY) (Fu et al. 2022). Detailed genome information can be found at:
http://animal.omics.pro/code/index.php/RGD/loadByGet?address[]=RGD/Download/GenoDo
wnload.php (Fu et al. 2022).

http://animal.omics.pro/genomebrowser/cgi-bin/hgTablesCattle?clade=ruminantia&org=ARS_UCD_addY
http://animal.omics.pro/genomebrowser/cgi-bin/hgTablesCattle?clade=ruminantia&org=ARS_UCD_addY
http://animal.omics.pro/code/index.php/RGD/loadByGet?address%5b%5d=RGD/Download/GenoDownload.php
http://animal.omics.pro/code/index.php/RGD/loadByGet?address%5b%5d=RGD/Download/GenoDownload.php


Supplemental Fig. S1 Phylogenetic tree construction. Phylogenomic constructions of (A)

95 mammals and (B) 94 birds inferred by GTR+F+I+G4 model in IQ-TREE (Nguyen et al.

2015) using 4-fold degenerate sites generated from whole genome alignment and the

maximum likelihood method. Branch length presents the number of substitutions per site.
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Supplemental Fig. S2 Comparison of mUCEs in this study with 481 human-rodent

UCEs. There are 474 human-rodent UCEs still exist in the 64,678 candidate mUCEs in this

study. 194 human-rodent UCEs are shared with the final 2,191 mUCEs we identified.
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Supplemental Fig. S3 Example of a human-rodents UCE excluded from our mammalian

UCE set. uc.1 is an example of human-rodents UCEs that was included in our candidate

mUCEs but was subsequently filtered out due to excessive mutations. The 470-way alignment

of uc.1 in the UCSC genome browser shows that uc.1 exhibits imperfect ultra-conservation

across mammals and does not meet our two criteria.
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Supplemental Fig. S4 Example of a new identified mammalian UCE with

species-specific mutations. (A) mUCE.1968 is located in the 3′UTR region of KLHL14. (B)

Sequence alignment of 218-bp mUCE.1968 from UCSC genome browser. (C) Alignment of

115-bp sub-region shows that most sites are identical across mammals but also reveals a few

pangolin-specific GC-biased substitutions. Dots in the sequence alignment refer to bases that

are identical to those in the human genome. Substitutions are shown in red.
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Supplemental Fig. S5 Characteristics of Avian UCEs. (A) Numbers of homologous

sequences of avian UCEs (aUCEs) present in different vertebrate taxa. (B) Enrichment of

chicken SNPs and counts of divergent sites between chickens and turkeys in aUCEs and

RAND (randomly selected genomic regions). (C) Tissue-specific expression index (τ) of

UCE-adjacent genes and RAND-adjacent genes (adjacent genes of randomly selected

genomic regions). (D) Gene expression diversity value (CV) of UCE-adjacent genes and

RAND-adjacent genes.
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Supplemental Fig. S6 Distribution signatures of SNPs in UCEs. Enrichment of (A) human

SNPs and (B) chicken SNPs in UCEs and RAND under different SNP frequency criteria is

shown. Derived allele frequency (DAF) spectra representing (C) 3202 human individuals and

(D) 928 chicken individuals for segregating sites within UCEs and RAND.
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Supplemental Fig. S7 Representative enriched Gene Ontology terms of mammalian and

avian UCEs. Representative GO enrichment results of adjacent genes of mUCEs (left),

aUCEs (right) and they shared (below). GO terms related to regulation of DNA/RNA/cell,

neural system and development are showed in gray, red and blue colors, respectively. The

Venn chart indicates the number of mUCEs and aUCEs of which their adjacent genes were

used to perform GO enrichment analysis.

-log10(FDR)
10

Transcription, DNA-templated
Negative regulation of transcription from RNA polymerase II promoter
Positive regulation of transcription from RNA polymerase II promoter

Regulation of transcription, DNA-templated
Negative regulation of transcription, DNA-templated
Positive regulation of transcription, DNA-templated

Regulation of transcription from RNA polymerase II promoter
Transcription from RNA polymerase II promoter

mRNA processing
RNA splicing

Axon guidance
RNA processing

Anterior/posterior pattern specification
Neuron differentiation

Regulation of RNA splicing
Nervous system development

Negative regulation of neuron differentiation

0 20 30

-log10(FDR)

0 4 8 12 16
Transcription, DNA-templated

Negative regulation of transcription from RNA polymerase II promoter
Positive regulation of transcription from RNA polymerase II promoter

Regulation of transcription, DNA-templated
Positive regulation of transcription, DNA-templated

Multicellular organism development
Palate development

Anterior/posterior pattern specification
Embryonic hindlimb morphogenesis

Negative regulation of transcription, DNA-templated
Axon guidance

Regulation of transcription from RNA polymerase II promoter
Cell fate commitment

Transcription from RNA polymerase II promoter
Negative regulation of cell proliferation

Embryonic digit morphogenesis
Embryonic forelimb morphogenesis

Embryonic skeletal system development
Neuron migration

Hippocampus development

-log10(FDR)

Transcription, DNA-templated
Positive regulation of transcription from RNA polymerase II promoter

Negative regulation of transcription from RNA polymerase II promoter
Negative regulation of transcription, DNA-templated

Transcription from RNA polymerase II promoter
Positive regulation of transcription, DNA-templated

Embryonic forelimb morphogenesis

4 8 120

DNA/RNA/cell
Neural 
Development

1,607

Mammal

5,359
584

Aves

579



Supplemental Fig. S8 gBGC trend among UCEs in specific mammalian lineages.

Distribution of substitution numbers in UCEs and fast-evolving UCEs of all species in 9

mammalian lineages. The substitution numbers of each fast-evolving UCE and

gBGC-induced fast-evolving UCE were counted according to the mutation direction,

including S→W type and W→S type. The X axis indicates the number of W→S substitutions

[n(W→S)]. S→W substitutions were scored as negative values.
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Supplemental Fig. S9 Accelerated evolution and gBGC of UCEs in birds. (A) Number of

fast-evolving UCEs (red) and gBGC-induced fast-evolving UCEs (green) in specific avian

lineages (red dots) based on our constructed phylogeny (left) and a reference phylogeny

(right). (B) Proportion of fast-evolving UCEs in ten test avian lineages calculated based on

two phylogeny. (C) Proportion of gBGC-induced fast-evolving UCEs in ten test avian

lineages calculated based on two phylogeny. (D) Number of gBGC-induced fast-evolving

UCEs in each avian species calculated based on two phylogeny. (E) Distribution of
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substitution numbers in fast-evolving UCEs of all species. (F) Distribution of substitution

numbers in gBGC-induced fast-evolving UCEs of all species. The substitution numbers of

each fast-evolving UCE and gBGC-induced fast-evolving UCE were counted according to the

mutation direction, including S→W type and W→S type. The X axis indicates the number of

W→S substitutions [n(W→S)]. S→W substitutions were scored as negative values.



Supplemental Fig. S10 Negative associations between fast-evolving UCEs and two

life-history traits. (A) Negative correlations between the number of fast-evolving mUCEs

and body mass (left) and generation time (right) in mammals. (B) Negative correlations

between the number of fast-evolving aUCEs and body mass (left) and generation time (right)

in birds.
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Supplemental Fig. S11 Associations between other confounding factors and the number

of fast-evolving UCEs. (A) Positive correlation between the number of fast-evolving UCEs

and genome-wide neutral substitution rate in mammals (left) and birds (right).(B) Correlation

between the number of fast-evolving UCEs and assembly size of mammalian (left) and avian

(right) species. (C) Correlation between the number of lineage-specific fast-evolving UCEs

and the number of species included in mammalian (left) and avian (right) lineages.
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Supplemental Fig. S12 Negative associations between gBGC-induced fast-evolving UCEs

and two life-history traits. (A) Negative correlations between the number of gBGC-induced

fast-evolving mUCEs and body mass (left) and generation time (right) in mammals. (B)

Negative correlations between gBGC-induced fast-evolving aUCEs and body mass (left) and

generation time (right) in birds.
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Supplemental Fig. S13 Non-synonymous substitution rate (dN) of ZNF536 in 69

mammalian species. The dN shows that ZNF536 gene in bat species has accumulated many

mutations. The branch lengths represent dN values, while the different dN/dS ratios are shown

in different colors.
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Supplemental Fig. S14 Positively selected sites induced by gBGC in chiropteran ZNF536.

(A) Four lineages tested for positively selected sites within the ZNF536 gene. Branch lengths

represent dN/dS ratios of the ZNF536 gene. Test nodes are indicated by triangles in different 

colors (node2, 4, 6, 7), while the compared ancestral nodes are shown in gray triangles (node1, 

3, 5). (B) Comparison of the proportion of W/S→S substitutions in the flanking 100 sites 

(300-bp) of six positively selected sites inferred by PAML and that in the entire ZNF536 gene. 

Triangles present the corresponding reconstructed ancestral nodes of each lineage in (A). * P < 

0.1; ** P < 0.01.
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Supplemental Fig. S15 Cervid-specific substitutions in uc.359. (A) Alignment of uc.359.

Cervid-specific mutations are show in bold and the W→S mutations are further highlighted in

red. (B) Validation of gene-edited heterozygous rats. Sanger sequencing confirmed the correct

replacement of the cervid allele. Cervid-specific mutations are indicated by the corresponding

number in (A). All W→S mutations are highlighted in red, while other cervid-specific

mutations are highlighted in gray.
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Supplemental Fig. S16 Purifying selection analysis of cervid uc.359. (A) Estimated neutral

evolutionary rate of 11 ruminant species based on 4-fold degenerate sites. Branch length presents

the number of substitutions per site. (B) Comparison of substitution counts between 324bp region

under neutral evolution and uc.359 in six cervid species.
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Supplemental Fig. S17 Allele counts in Knock-in heterozygous rats. Counts of rat-allele

and cervid-allele on 12 fixed divergent sites (on Chr6, rn6) in heterozygous rats.
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Supplemental Tables

Supplemental Table S1 Eutherian species and the correspomding data analyzed in this study.

Supplemental Table S2Avian species and the correspomding data analyzed in this study.

Supplemental Table S3 Genomic coordinates of mammalian UCEs.

Supplemental Table S4 Genomic coordinates of avian UCEs.

Supplemental Table S5Additional assemblies analyzed in this study.

Supplemental Table S6 Human and chicken transcriptomes used in gene expression
analyses.
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Supplemental Table S8 GO enrichment of avian UCEs.
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fast-evolving UCEs in each lineage.

Supplemental Table S10 Predicted gBGC prevalence in UCEs by phastBias.

Supplemental Table S11 58 fast-evolving UCEs around ZNF536 after interspecific synteny
filtering.

Supplemental Table S12 19 assemblies used in ZNF536 analysis.

Supplemental Table S13 Positively selected sites inferred by CODEML in PAML.
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Supplemental Table S15 811 bp target sequence in rats and the corresponding 813 bp
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Supplemental Table S16 Genes with significantly altered expression in gene-edited rats.
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expression in editing rats.
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Supplemental Table S19 Predicted transcription factor binding motifs within the
mUCE.1304 othologous sequences in humans and chikcens.

Supplemental Table S20 The oligonucleotides used for sgRNA expression vectors.

Supplemental Table S21 Primers used for amplifying and sequencing CRISPR/Cas9-induced
knock-in segment in rats.

Supplemental Data

Supplemental Data S1 19-way ZNF536 coding sequence alignment.
The canonical conserved transcript of human ZNF536 (ENST00000355537.4) were used as
the reference to obtain alignment.

Supplemental Data S2 Human and chicken orthologous sequences of mUCE.1304.

Supplemental Data S3 dN/dS value of ZNF536 in 69 mammals.
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