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Supplemental Methods and Results

Analysis of 7 non-overlapped human-rodent UCEs

For the remaining 7 human-rodent UCEs that did not overlap with our candidate mUCEs, we
examined and visualized them in the Genome Browser (Gonzalez et al. 2021) to identify the
possible reasons. We found that the exclusion of these seven UCEs from our candidate mUCE
set can be summarized in three reasons: (1) a lack of orthologous sequences (uc.64, uc.125,
uc.453, and uc.454) in the reconstructed ancestral genome due to the relatively low quality of
the reference genome (armadillo), (2) imperfect ultra-conservation (uc.415 and uc.476) in
most lineages, and (3) a one-to-many orthology relationship (uc.471) in the human/mouse/rat
genome.

3 out of 4 missing orthologous sequences can be found in the recently released high-quality
armadillo assembly (GCF_030445035.1) using BLAST v2.11.0 (Camacho et al. 2009) with
the parameter settings: “-task blastn, -outfmt 6, -max_target seqs 1, -max_hsps 17, except for
uc.454, which has excessive substitutions in the armadillo genome. Although it is expected
that using more complete genome assemblies would identify more UCEs in both taxa, our
final mUCEs and aUCEs are accurate and thus would not affect our analyses.

Investigation of gene completeness of ZNF536

Using pairwise alignments of ZNF536 coding sequence (conserved canonical transcript,
ENSTO00000355537) generated by TOGA
(https://genome.senckenberg.de/download/TOGA/human_hg38 reference/) (Kirilenko et al.
2023), we confirmed that ZNF'536 were complete in both Yingochiroptera and

Yangochiroptera without any inactivating mutations at least at the family level. Notably, the
ZNF536 coding sequence in the same assemblies that we used in our analyses were classified
as “missing”, “partial intact” or “uncertain loss” by TOGA, where <50% central part of their
ZNF536 coding region is completely present in the assembly. This is potentially attributed to
assembly gaps or fragmentation of the low-quality (low Contig N50) assemblies (Kirilenko et

al. 2023). All mentioned data can be found and visualized at:
https://genome.senckenberg.de/TOGA.mammals.html.

Validation of one-to-one orthologous UCEs

Focusing on one-to-one orthologous UCEs is important because fast divergence is one of key
characters to paralogous genes and the corresponding regulatory elements. To accurately
identify and analyze the target UCEs (mUCE.1304, mUCE.1639, mUCE.2036), our
investigations were first based on synteny filter to ensure a conserved genomic context of
target genes. Additionally, we manually checked the UCE-adjacent genes in Genome browser
(Gonzalez et al. 2021) to confirm the presence of only one ortholog in query genomes.
To further exclude any possible paralogs of the three target UCEs presented in Figure 4-6
within each of the analyzed species, we conducted additional analyses using BLAT (Kent
2002) as follows:
1. For the case of mUCE.2036 in Chiroptera (Fig. 4), we obtained the corresponding UCE
sequence in the hg38 assembly from our alignment. We then used BLAT (Kent 2002) to


http://asia.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000198597;r=19:30224891-30713586;t=ENST00000355537
https://genome.senckenberg.de/download/TOGA/human_hg38_reference/
https://genome.senckenberg.de/TOGA.mammals.html

search for all possible paralogos that mimic the real gBGC-induced fast-evolving UCEs
in the query genomes (five bat genomes).

2. For the case of mUCE.1639 in Cervidae (Fig. 5), we obtained the corresponding UCE
sequence in the hg38 assembly from our alignment. We then used BLAT (Kent 2002) to
search for all possible paralogos that mimic the real gBGC-induced fast-evolving UCEs
in the query genomes (three cervid genomes).

3. For the case of mUCE.1304 in placental mammals (Fig. 6), we obtained sequences of the
corresponding avian UCE (aUCE.2913) from galGal6a assembly. We then used BLAT
(Kent 2002) to identify all possible paralogos in human (hg38), rat (mm10),
dog(canFam3), cattle (bosTau9) and platypus (ornAna2) assemblies.

The results showed that no paralogous sequences were identified by in all three cases.

Furthermore, despite the significant lineage-specific acceleration observed in these UCEs

(FDR < 0.05), they still exhibited high conservation and maintained their conserved genomic

position.

Purifying selection analysis of cervid uc.359

To further test whether the high conservation of uc.359 within cervids is a sign of purifying
selection, we used 11-way ruminant alignment covering all six ruminant family (including six
cervid species as same as shown in Supplemental Fig. S15) and estimated the neutral
evolutionary rate using 4-fold degenerate sites. The 4-fold degenerate sites of all species were
extracted from multiple sequence alignments according to the gene annotations of the
reference genome.

The alignment was extracted from the original alignment in our lab’s website
(http://animal.omics.pro/genomebrowser/cgi-bin/hgTablesCattle?clade=ruminantia&org=ARS
_UCD_addY) (Fu et al. 2022). Detailed genome information can be found at:
http://animal.omics.pro/code/index.php/RGD/loadByGet?address[][=RGD/Download/GenoDo

wnload.php (Fu et al. 2022).


http://animal.omics.pro/genomebrowser/cgi-bin/hgTablesCattle?clade=ruminantia&org=ARS_UCD_addY
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http://animal.omics.pro/code/index.php/RGD/loadByGet?address%5b%5d=RGD/Download/GenoDownload.php

I

IR =

Armadilo
Hyrax

Elephant

Manatee

Aardvark

Elephant shrew

Cape golden mole

Small madagascar hedgehog
Scatree shrew

Guinea pig
Long tailed chinchilla
Degu

Jerboa

Rat

Mouse

Golden hamster
Deer mouse

Prairie vole

Sunda flying lemur
Small-eared galago
Aye-aye

Coquerels sifaka
Gray mouse lemur
Tarsier

Sauirrel monkey
Night monkey
Marmoset
Red-colobus
Baboon

Green monkey

Chimpanzee
Human
Solenodon
Star-nosed mole

Parells mustached bat
Common vampire bat
Long-fingered bat

Big brown bat

Davids myotis

Brown bat

Brandts bat

False vampire,

Great roundleaf bat
Greater horseshoe bat
Chinese rufous horseshoe bat
Straw-colored fruit bat
Egyptian rousette
Large flying fox

Chi Black flying fox
Malayan pangolin
Chinese pangolin

Cat

Tiger

Dog

Polar bear

Seal

Lesser panda

Ferret

Sea otter

Rhinoceros
Sumatran-rhinoceros
Ass
Przewalskis-horse
Horse

Camel

Alpaca

Pig

Okapi

Giraffe

David deer

Red deer
White-tailed deer

goat
Hippopotamus

Grey whale

Minke whale

Antarctic minke whale
SpermWhale

‘Yangtze river dolphin
Beluga whale
KillerWhale

Yangtze finless porpoise
Bottlenose dolphin

Ostrich
Pink-footed goose

Swan goose

Duck

Mallard

Helmeted guineafow!
Northern bobwhite

Scaled quail

Turkey

Black grouse

Greater prairie chicken
Japanese quail

Chinese bamboo partridge
Chicken

White-tailed tropicbird

L} American crow
Hooded crow
Tibetan ground-tit
Great tit
Silver-eye
Willow warbler
Two-barred Warbler
Greenish warbler
Collared fiycatcher
Siberian stonechat
Javan myna
Common starling
White-rumped munia
Zebra finch
House sparrow
Common canary
White-throated sparrow
Yellow-rumped warbler

0.1 Tawny-bellied seedeater
- Medium ground finch

Sunbittern
American flamingo
Great-crested grebe
Red-throated loon

Northern fulmar
Emperor penguin
Adelie penguin
Oriental stork
Crested ibis
Dalmatian pelican
Little egret
Pelagic cormorant
Great cormorant

Galapagos flightless cormorant

Yellow-throated sandgrouse
Brown roatelo

Band-tailed pigeon

Rock pigeon

Bar-tailed trogon

Hornbill

Kea

Scarlet macaw

Common cuckoo
Chuck-wills-widow
Macqueens bustard
Red-crested turaco
Hoatzin

Kildeer

Thick-billed guilemot
Bar-tailed godwit
Ruff

Okinawa rail
Grey-crowned crane
Red-crowned crane
Red-legged seriema
Peregrine falcon
Saker falcon

Turkey vulture
White-tailed eagle
Golden eagle
Cuckoo roller

Bam owl

Spotted owl

Blue-fronted amazon
Puerto rican parrot
Rose-ringed parakeet
Peach-faced lovebird
Budgerigar

Speckled mousebird

Hummingbird

Chimney swift

Down, ipecker

Carmine bee-eater
— Rifleman

Willow flycatcher

Blue-crowned manakin

Golden-collared manakin

Supplemental Fig. S1 Phylogenetic tree construction. Phylogenomic constructions of (A)

95 mammals and (B) 94 birds inferred by GTR+F+I+G4 model in IQ-TREE (Nguyen et al.

2015) using 4-fold degenerate sites generated from whole genome alignment and the

maximum likelihood method. Branch length presents the number of substitutions per site.
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Supplemental Fig. S2 Comparison of mUCE:s in this study with 481 human-rodent
UCEs. There are 474 human-rodent UCEs still exist in the 64,678 candidate mUCEs in this

study. 194 human-rodent UCEs are shared with the final 2,191 mUCEs we identified.
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Supplemental Fig. S3 Example of a human-rodents UCE excluded from our mammalian
UCE set. uc.1 is an example of human-rodents UCEs that was included in our candidate
mUCESs but was subsequently filtered out due to excessive mutations. The 470-way alignment
of uc.1 in the UCSC genome browser shows that uc.1 exhibits imperfect ultra-conservation

across mammals and does not meet our two criteria.
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Supplemental Fig. S4 Example of a new identified mammalian UCE with

species-specific mutations. (A) mUCE.1968 is located in the 3'UTR region of KLHLI4. (B)
Sequence alignment of 218-bp mUCE.1968 from UCSC genome browser. (C) Alignment of
115-bp sub-region shows that most sites are identical across mammals but also reveals a few
pangolin-specific GC-biased substitutions. Dots in the sequence alignment refer to bases that

are identical to those in the human genome. Substitutions are shown in red.
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Supplemental Fig. S6 Distribution signatures of SNPs in UCEs. Enrichment of (A) human
SNPs and (B) chicken SNPs in UCEs and RAND under different SNP frequency criteria is
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Supplemental Fig. S7 Representative enriched Gene Ontology terms of mammalian and
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Supplemental Fig. S8 gBGC trend among UCEs in specific mammalian lineages.
Distribution of substitution numbers in UCEs and fast-evolving UCEs of all species in 9
mammalian lineages. The substitution numbers of each fast-evolving UCE and
gBGC-induced fast-evolving UCE were counted according to the mutation direction,
including S—W type and W—S type. The X axis indicates the number of W—S substitutions

[n(W—S)]. S—>W substitutions were scored as negative values.
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Supplemental Fig. S9 Accelerated evolution and gBGC of UCEs in birds. (A) Number of

fast-evolving UCEs (red) and gBGC-induced fast-evolving UCEs (green) in specific avian

lineages (red dots) based on our constructed phylogeny (left) and a reference phylogeny

(right). (B) Proportion of fast-evolving UCE:s in ten test avian lineages calculated based on

two phylogeny. (C) Proportion of gBGC-induced fast-evolving UCEs in ten test avian

lineages calculated based on two phylogeny. (D) Number of gBGC-induced fast-evolving

UCEs in each avian species calculated based on two phylogeny. (E) Distribution of



substitution numbers in fast-evolving UCEs of all species. (F) Distribution of substitution
numbers in gBGC-induced fast-evolving UCEs of all species. The substitution numbers of
each fast-evolving UCE and gBGC-induced fast-evolving UCE were counted according to the
mutation direction, including S—W type and W—S type. The X axis indicates the number of

W—S substitutions [n(W—S)]. S—>W substitutions were scored as negative values.
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Supplemental Fig. S10 Negative associations between fast-evolving UCEs and two

life-history traits. (A) Negative correlations between the number of fast-evolving mUCEs

and body mass (left) and generation time (right) in mammals. (B) Negative correlations

between the number of fast-evolving aUCEs and body mass (left) and generation time (right)
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Supplemental Fig. S11 Associations between other confounding factors and the number

of fast-evolving UCEs. (A) Positive correlation between the number of fast-evolving UCEs

and genome-wide neutral substitution rate in mammals (left) and birds (right).(B) Correlation

between the number of fast-evolving UCEs and assembly size of mammalian (left) and avian
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Negative correlations between gBGC-induced fast-evolving aUCEs and body mass (left) and

generation time (right) in birds.



Goat
12 - Sheep
1.0 Chiru
0.8 Cattle
0.6 White-tailed deer
0.4 Red deer
0.2 Okapi
0.1 Giraffe
Hippopotamus
Grey whale
Antarctic minke whale
Minke whale
Sperm whale
Beluga whale
Yangtze River dolphin
Killer whale
Bottlenose dolphin
Yangtze finless porpoise
Pig
Arabian camel
Ass
Horse
Sumatran rhinoceros
Southern white rhinoceros
Big brown bat
Black flying fox
Large flying fox
Great roundleaf bat
Greater horseshoe bat
Chinese rufous horseshoe bat
Malayan pangolin I
Chinese pangolin
Cat
Dog
Car Seal
Ferret
Sea otter

—— Solenodon

Star-nosed mole
{ Hedgehog

Cetartiodactyla

Perissodactyla

P ]

Chiroptera

N

Carnivora Pholidota

Eulipotyphla

Shrew
Sunda flying lemur
— Small-eared galago
Squirrel-monkey
bt Night monkey
Marmoset
Red-colobus
Green-monkey
Baboon
Gibbon
Sumatran orangutan
Gorilla
1 Human
> Chimpanzee
— Tree shrew
Squirrel
Naked-mole-rat
Degu
Long tailed chinchilla
Rat
Mouse
Prairie vole
Deer mouse
_'_ Elephant shrew
Small Madagascar hedgehog
f— Aardvark
L _r Manatee
Elephant

—— Armadillo

Primates

Rodentia

Afrotheria

0.01

Supplemental Fig. S13 Non-synonymous substitution rate (dx) of ZNF536 in 69

mammalian species. The dn shows that ZNF536 gene in bat species has accumulated many

mutations. The branch lengths represent dn values, while the different dn/ds ratios are shown

in different colors.



A

0.02411905

Human
0.0474849 Goat
0.107585
oarones M Chinese pangolin
. 0.0740577 Cat
002411905 oooasege 12 Indian flying fox
0.02411905 00845806 ode 3 0.0908138 Malagasy straw-colored fruit bat
00703673 T e Egyptian rousette
_l Node 1 l[Ml'—i&mtor's roundleaf bat
480993 (shrink 0 1.0) 0104733, Greater horseshoe bat
Node 7 locestets Indian false vampire
0.070627 —oeze Greater bulldog bat
00670928 0.0646199 Parnell's mustached bat
oomemy Node 3 124,956 (shrink t0 1.0 000205455 Common vampire bat
00712052 Node 4 - Pale spear-nosed bat
0.0728664 Pallas's mastiff bat
0.134648 0.145124 Schreibers' long-fingered bat
0100881 00862219 Greater mouse-eared bat
Node 5 | o.101446 00816467 o
— Node 6 0130041 Kuhl's pipistrelle
Tree scale: 0.1 0.154025 Big brown bat
B
1.00- l I I 1.00 — 0.80
) %) Bl
£ 095 ) 5 095 - € 075 : - .
5 5 = *
= 0.90 ) = 0.90 . 2 1
8 E g 0.70
2 0.85/ | | 3 085 3
) : ?@ ”
@T 0.80; | o 0.80 1 065
= = =
5 0.754 s 0.75 5
° o S 0.60
£ 0.70] £ 070 5
g g8 S 055
9] o o 0.
£ 0.651 & 0.65 o
0.60 0.60 0.50
Gene Site 65 Site 69 Site 73 Gene Site 909 Gene Site 1153  Site 1157

Supplemental Fig. S14 Positively selected sites induced by gBGC in chiropteran ZNF536.

(A) Four lineages tested for positively selected sites within the ZNF536 gene. Branch lengths

represent dn/ds ratios of the ZNF536 gene. Test nodes are indicated by triangles in different
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0.1; ** P<0.01.
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