Supplementary Material

1 Phasing Algorithm

A Hidden Markov Model (HMM) is defined by a state space, transition probabilities, emission probabilities, and a set
of observations. In our case, the state space is the set of ways that the children can inherit the two maternal copies of
the chromosome (m; and ms) and the two paternal copies (p1 and ps). For example, for a family with two children
(m1p1, map1) represents a state where the first child inherits parental copies m; and p; and the second child inherits
parental copies ms and p;. Since we are working with whole-genome sequencing data, we also include a hard-to-sequence
region flag in our state space in order to detect and flag regions with many sequencing errors. The transmission probabilities
in our model represent recombination events where the chromosome inherited by a child switches from one parental copy
to the other. We use estimates of 1.39¢~2 and 9.23e for the probability of maternal and paternal recombination per
base-pair [4].

The emission probabilities in our model represent the probability of sequencing errors. We estimate these probabilities
directly from the genotype data using a family-based method [5]. Finally, the observations are the variant calls for each
family. We use the Viterbi algorithm [2] to identify the sequence of states that best explains the observed variant calls.
The result is a fully phased family - which copy of parental chromosomes each child inherited at each region of the genome.

2 K-mer Length Choice

We chose a k-mer length of 100 using the following logic. We first estimated the average number of reads beginning at
each loci by dividing the total number of reads that were properly paired and mapped to GRCh38 for each sample by the
length of the diploid human genome (6.27x10'%) and taking the average. This gave us an average of 0.12 read starts per
loci (and an average 17.61x coverage per loci per genome copy). A k-mer originating from position g in the genome will
be present in a 150 bp read if the read starts in the interval [g + k& — 150, g]. A k-mer from the genome will also not be
present in a read if that read has a sequencing error within that k-mer region. Several studies have estimated Illumina
short-read sequencing errors to be between e=.01% and .05% per base [8, 6, 7]. Assuming reads are equally distributed in
the genome, the probability that that a k-mer originating from a random location in the genome is contained in N total
reads for a given sample can be described by a Poisson distribution P(X = N;u = 0.12(151 — k)(1 — €)¥).

We limit our k-mer search for k-mers that occur at least twice in an individual to improve computation time by ignoring
singletons. Using the Poisson distribution described, Fig. S1 shows the probability that a k-mer will occur at least N
times in an individual's set of reads. For N = 2, across various error rates, we see that the elbow in the curve, the location
where this probability begins to drop sharply off, is a little after k=100. Therefore, we chose k=100 as a good length to
balance k-mer uniqueness and the probability the k-mer occurs in the raw reads. The k-mer extraction and localization
pipelines are fairly memory and computationally expensive, so we did not experiment with k-mers of different lengths.

3 Maximum Likelihood Model

We previous developed and validated a proof-of-concept algorithm to localize 100-bp k-mers extracted from 150 bp reads
[1]. We review the mathematics of this maximum likelihood model, and discuss the modifications that we added in order
to allow localization of tandem repeats and for sequence originating from the sex chromosomes.

The goal of the maximum likelihood model is as follows: For each k-mer, we wish to find it's corresponding location
(region 1) in the genome that best explain the distribution of the k-mer counts in all of the families. We define the
distribution of a given k-mer in all samples as K, and the distribution of a given k-mer in family f as K¢. Therefore, we
want to find the region r that maximizes the likelihood of observing k. We can rewrite this likelihood in log-likelihood
form:

(s K) = 3 log(P(Kqr)) (1)
f

To compute this likelihood, we must compute P(K¢|r), the probability of a family’s k-mer counts given the k-mer's
hypothetical region. We assume that children inherit the given k-mer in a Mendelian fashion: from each parent, they
receive either 0 or 1 copy of the k-mer. A parent with the k-mer present on both copies of their chromosome is guaranteed
to pass down the k-mer to their child, a parent without the k-mer present on either copy of their chromosome will never
pass the k-mer down to their offspring, and a parent who is heterozygous for the k-mer has a 50% chance of passing the



k-mer down to an offspring. The possible phased genotypes denoted in the order of (maternal allele, paternal allele) is
G = {“0/07,“1/0”,“0/17, “1/1” } where 1 denotes that a person has the k-mer on the given copy of their chromosomes
and 0 indicates it is absent. We will call mother’s genotype g,,, father's genotype g, (p for paternal), and a child's
genotype g.. We can also define mother's, father’s, and child’s k-mer counts as k,,, kp, and k. respectively. Using this
notation and the law of total probability, we can rewrite our family-wise probability of observing the data as:

P(Kglr) = Z P(K¢|7, g, 9p) P(gm, 9p) = Z (P(kplgp)P(kmmm)HP(kC|QC)> P(gm; gp) (2)

gm,gpeG Im gpeG

We iterate over all possible genotypes for the mother and the father but not for the children because from our phasing
algorithm, we already know which copy of mom’s DNA a child inherited, and which copy of dad’s DNA a child inherited at
any given region. We can therefore compute the child’'s genotype for a k-mer, given the region, and the parent’'s phased
genotypes:

ge = phase(c, v, gm., gp) (3)

The phase() function queries the inheritance pattern of a child ¢ at a region r in the phasing dictionary. Using the
phasing information, it then combines the maternal haploid genotype on the appropriate copy of g,, with the paternal
haploid genotype on the appropriate copy of g, to infer the child’s diploid genotype.

Now let's compute P(k, g), the probability of a k-mer count in a person, given a person's genotype. We assume that
the sequencing pipeline, which used random-PCR targeted every region of the genome at an equal read depth, or at least
that the PCR amplification bias has similar profiles across samples (the same regions of the genome are consistently under
or over amplified). In our original algorithm, we assumed that k-mers were unique to a single location in the genome, with
no copy number variation. k-mer depth then follows a Poisson distribution, dependent on genotype heterozygosity and
average k-mer depth p. A theoretical py, can be derived for each person using the total number of sequencing reads, the
length of the person’s genome (which differ slightly between males and females), and the length of the k-mer. The average
ux of a 100-bp k-mer for our samples was 5.83. Using the syntax where > (“0/0”) = 0, > (“0/1”7) = >_(“0/1”) =1,
and Y (“1/1”) = 2, a k-mer distribution can be summarized as follows:

P(k|ga ;U'k) = Ppoisson(k; 123 Zg) (4)

However, we modified our original algorithm to account for tandem repeats, identical sequences that occur next to or
near each other in tandem. We first normalize very high values of k to be between 0 and 10 by performing the following
operation. For each family, using maz(ky) as the maximum counts of a k-mer any family member, we convert each family

member's k to:
k

W = g Hesntmar i) | ®)

We then only need to iterate over small numbers of possible repeats. To compute the probability of k* occurrences of a
subsequence, ASLAN iterates not only over possible genotypes, but also over possible numbers of repeats. Rather than
combinations of 0 and 1, the set of genotypes G in Eq. 2 then becomes the number of repeats a person has on each copy
of their chromosome:

G = {“61/62” : cleC, CQEC} (6)

where ¢ is the number of copies of a repeat on each copy of a genome. Since we have transformed k to be a single digit
number, we iterate over C={0, 1,2, 3,4,5} to reduce the number of iterations we must compute a probability for.

Our original algorithm was written for autosomes, but we made some modifications to give ASLAN the ability to
localize sequences originating from the X and Y chromosomes as well. Instead of iterating over g,,, g,eG in Eq. 2 we
account for the non-Mendelian inheritance patterns of the sex chromosomes. For regions on the Y chromosome, we iterate
over g, € ‘“0/0” and g, € {“0/c” : ceC'}. For regions on the X chromosome, we iterate over g,e{“c1/c2” : ¢1,c2eC} and
gpe{ “c/0” : ceC'}.

Given the phasings and k-mer counts, for every family we can now compute the log-likelihood of a given k-mer
belonging to each region of the genome log(P(K¢|r)) and we can take the cumulative log-likelihoods to compute the
total log-likelihood of a given k-mer belonging to each region of the genome log(P(K|r)).

Rather than reporting only the region with maximum likelihood and be at the whim of statistical noise, we estimate a
maximum likelihood interval [3]. From our cumulative likelihoods, we find all the neighboring regions on the graph whose
relative likelihoods are within a certain threshold. That is, our maximum likelihood interval is:

{r: ég;; >=t} (7

where t is a certain threshold. Because k-mers very in their allele frequencies and families in which they are present,
and because families vary in their IBD patterns, k-mer likelihood profiles are susceptible to different amounts of statistical



noise. For that reason, we choose ¢ as a function of the standard deviation (¢) in each k-mer’s log-likelihood profile.
Specifically, we define our maximum likelihood region to be:

L(r)
L(7)

{r:log—-=) >= —yo(log(L(r)))} (8)

where v is a hyperparameter that we must tune. We tried values of v between .01 and 1, ultimately choosing .1 for a
balance of sensitivity and specificity, localizing 96% of medium-prevalence (prevalence of 0.2 to 0.8) k-mers, with a 90%
accuracy and median resolution of 870Kb. If regions from multiple different chromosomes fell into our maximum likelihood
region for a given k-mer, we considered that k-mer unlocalized. A schematic of this pipeline is shown in Fig. 1 in the
manuscript, with actual family-wise and cumulative log-likelihood graphs computed by our algorithm on a k-mer from the
data.

The code for our localization algorithm can be accessed at
https://github.com/briannachrisman/alt_haplotypes.

4 Validation

4.1 Synthetic Dataset Generation

We generated synthetic datasets of theoretical k-mer distributions. We analyzed the performance of the algorithm on
k-mers with different prevalences in a population and average number of tandem repeats. For each theoretical k-mer,
we generated a location, a prevalence, and the average number of tandem repeats. For k-mer location, randomly sample
uniformly across the 263,461 regions separated by our datasets recombination points identified in the phasing algorithm.
Since the y-chromosome technically accounts for only one of these 263,461 regions, we also append many theoretical
y-chromosome k-mers to our simulated dataset. To generate the population prevalence of the k-mer, the probability that
the k-mer appears in one copy of the genome by random uniform sampling between 0 to 1. We performed the entire
pipeline three different times, using average tandem repeat numbers of 1, 10, and 100. We generate a distribution of
counts for a theoretical k-mer by doing the following for each family:

1. For each parent’s two copies of the genome, we choose whether that copy contains the k-mer in each copy of their
genome by comparing a randomly generated number to the prevalence of the k-mer.

2. For copies that do contain the k-mer, we simulate the number of tandem repeats of the k-mer they contain. We
do this by sampling from a Poisson distribution, where the mean is equal to the given average number of tandem
repeats in the population. For the simulated datasets where the average tandem repeat number is 1, we assume the
k-mer is non-repetitive and only has 1 repeat in every individual with the k-mer.

3. We simulate the children’s "true” counts of a k-mer by using the phasing information to find which copy of their
parents’ chromosomes they inherited from the chosen location in the genome, and taking the sum of the number of
k-mers on the appropriate parent copies.

4. To generate the observed number of counts of a k-mer in each parent and child’'s WGS reads, we sample from a
Poisson distribution. For the mean, we use the expected number of k-mer counts given the true counts of a k-mer,
the individual's coverage metrics, and the sex-specific size of the genome.

We generate synthetic datasets using average tandem repeat counts of 1, 10, and 100. For each of these datasets, we
generate distributions for 100,000 autosomal and X-chromosome k-mers and 1,000 y-chromosome k-mers.

4.2 Extracting Reads and Locations from Alternative Sequences from the Decoy Genome

While the synthetic dataset shows our algorithm worked in theory, the synthetic dataset was generated using many of the
same assumptions that the algorithm was based on and therefore is somewhat of an unfair proof of accuracy. First of
all, the synthetic dataset was generated assuming the phasings of the iHART dataset were correct. Secondly, to generate
the number of k-mers observed for any individual, it uses a Poisson distribution assuming equally likely coverage of every
location, the same distribution that the model assumes.

Therefore, we additionally validate our model using k-mers extracted from alternative sequences in the decoy genome.
The decoy genome contains several hundred alternative sequences (identified by the "ALT" suffix in their contigs), cor-
responding to sequences that are not in the primary reference genome, but that have been found in enough individuals
that the Human Genome Reference Consortia included them in GRCh38 [9]. While some of these sequences are unplaced
scaffolds, many do have known locations with respect to the reference genome and are labelled accordingly. As localizing
non-reference sequences to the human reference genome is the precise goal of our algorithm, these labelled ALT sequences
serve as an excellent validation dataset. Using the ASLAN pipeline, we extracted all unique 100-mers (1,094,247 total
k-mers) from each of the labelled ALT sequences (233 total contigs), counted their distributions and localized them.



4.3 Maximum Likelihood Interval Hyper-parameter Tuning

Our phasing and maximum likelihood algorithms rely mainly on distributions, parameters, and probabilities derived from
basic statistics and biology. However, the final step of the localization process involves selecting a maximum likelihood
interval that is within a certain range of the maximum likelihood interval. This range is based off of the standard deviation
of the final likelihood distribution multiplied by a constant, A. This constant is the only hyperparameter that we tune.
Using a higher A, a kmer's final selected regions comprise either longer localization region, or may include non-contiguous
regions (upon which a k-mer would be considered unlocalized). Using a smaller A, a k-mer will get localized to a tighter
region, but it is more likely that k-mer is localized incorrectly. As shown in Figs. S2E and S3F, we tried 6 different
values of A between .01 and 1, and identified .1 to provide a good balance between localization success, accuracy, and
region length in both the synthetic and decoy validation datasets. Subsequent results and figures that do not specify the
parameter of the ), can be assumed to use A=0.1

5 Supplementary Figures
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Figure S1: Determination of optimal k-mer length. We computed the probability that a k-mer of a given length would
occur at least N times in an individual's set of reads, using different values of N sequencing error rate per base. We used
error rates of (A) 0, (B) .0001, (C) .0004, and (D) .001. Even at the highest error rate, a k-mer length of 100 gives ;
.95% probability that a k-mer occurs at least twice in an individual’s reads if it occurs in their genome.
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Figure S2: Results and hyperparameter tuning of ASLAN on synthetic dataset. (A) Performance vs k-mer prevalence as
various k-mer prevalences, tandem repeat numbers, and A values. (B) Distribution of localized region length at varying
A values and tandem repeat numbers. (C) Summary of performance at chosen value of A=0.1. (D) Confusion matrix
of predicted chromosome vs simulated chromosome for aggregated repeat counts, using A=.1. (E) Summary of ASLAN
performance statistics across varying A values.
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Figure S3: Results of running ASLAN on k-mers extracted from reads aligning to ALT sequences in the decoy genome. (A)

Localization ability and accuracy for k-mers of various prevalences. (B) Absolute number of k

mers unlocalized, localized

correctly, and localized incorrectly for varying prevalences. (C) Distribution of localized region lengths. (D) Distance from

and unable to

localize in terms of absolute counts for each different contig. (F) Localization ability, accuracy, and median region lengths

true location for incorrectly localized sequences. (E) Breakdown of correctly localized, incorrectly localized,

) Confusion

(H

tuning A to different values. (G) Breakdown of performance in terms of relative fraction for each contig.
matrix of chromosome localization. (I) Distribution of correct and incorrect localizations with respect to loci.
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