
1

Supplemental Materials for

Accurate and fast graph-based pangenome annotation and clustering with ggCaller

Samuel T. Horsfield, Gerry Tonkin-Hill, Nicholas J. Croucher, John A. Lees

Correspondence to: s.horsfield19@imperial.ac.uk

Contents

Supplementary Methods ... 2

Supplementary Figures ... 7

Supplementary Tables ... 19

Supplementary References .. 24

mailto:s.horsfield19@imperial.ac.uk

2

Supplementary Methods

Graph indexing

The de Bruijn graph (DBG) used by ggCaller is generated by Bifrost (Holley & Melsted,

2020). Bifrost was chosen as it is highly scalable to hundreds of thousands of bacterial

genomes and has an intuitive C++ API. To build a DBG, Bifrost first generates an index of all

k-mers in the population using a blocked Bloom filter. 𝑘 = 31 has been shown to provide a

good balance of efficiency and sensitivity of detection of shared/divergent sequences in

bacterial genomes (Holley & Melsted, 2020), and so is used as the default in ggCaller. Starting

with a single k-mer, Bifrost queries the presence of its suffix (length= 𝑘 − 1) appended with

each of A, C, G and T within the blocked Bloom filter (Figure 1, step 1). Connections of length

𝑘 − 1 between k-mer suffixes and prefixes are treated as edges. Each k-mer is assigned

colours, which describe in which genomes they are present in. Unitigs, also known as nodes,

are generated by merging unbranching k-mer paths into a single DNA sequence. Branching

paths, described by edges, represent variation within a population. A genome can be

regenerated from a DBG by traversing a path made up of nodes assigned with a specific

colour.

Once the DBG is built, ggCaller iterates over the DNA sequence in each node and

identifies stop codons in each reading frame, storing this information in a six-bit bitset, where

each bit represents a reading frame (three forward and three reverse) (Figure 1, step 2). A

bit is set to ‘1’ if at least one stop codon is present in that reading frame, and ‘0’ otherwise.

ggCaller stores the node colours in a separate bitset; as the colours of the constituent k-mers

within a node may not all be identical due to contig breaks (Schulz et al., 2022), ggCaller takes

the intersection of the colours of the start and end k-mers for each node to calculate node

frequency. ggCaller additionally determines the frequency of stop codons for each reading

frame within the graph by counting the number of set bits. For accurate start site identification,

ggCaller also identifies the first base of all start codons, and 𝑘 − 1 downstream bases (𝑘

chosen as this is the shortest possible node length). This sequence is then translated into its

respective amino acid sequence and further split into l-mers (𝑙 = 𝑚 / 3, where 𝑚 = Bifrost

minimiser size, chosen to ensure sufficient coverage of each start site). The coverage of each

l-mer is calculated within the population and stored in a robin-hood unordered map to be used

using graph traversal. Using amino-acid l-mers reduces the impact of small mutations on the

calculation of start site frequency, which would otherwise make start sites of non-identical

orthologues appear less frequent.

 As Bifrost does not consider sequence contiguity from input genomes when inferring

edges, traversal of a Bifrost DBG can result in generation of sequences that are not present

in the original genomes (Břinda et al., 2021). To prevent this, candidate paths are queried

against input genomes to ensure they are present as contiguous sequence in the input. An

FM-index is built from each genome in node space (using node identifiers rather than DNA

sequence) using kseq (https://github.com/lh3/seqtk) and SDSL v3 (Gog et al., 2014), to which

paths can be compared during traversal. Building an FM-index using node identifiers rather

than DNA sequence greatly reduces the size of the index, reducing the memory and time

required to load and search the index.

3

Stop codon search using iterative graph traversal

 ggCaller uses an iterative depth first search (DFS) algorithm to pair stop-codons in the

same reading frame (Figure 1, step 3a). To reduce the search space, ggCaller traverses the

DBG colour-by-colour (i.e. sample-by-sample). Starting at a source node containing at least

one stop codon, ggCaller iteratively visits all neighbour nodes with the same colour, with each

neighbour added to the top of a stack. Each iteration of the algorithm removes the top node

from the stack and visits its neighbours with the same colour as the source node. As each

neighbour is visited, the complete path in node space is queried against an FM-index of the

given colour to ensure the path is also contiguous in the underlying genome (Figure 1, step

3b). This process is repeated until all stop codons in the source node have been paired with

a downstream stop codon in the same reading frame. This is now designated as a complete

‘stop-to-stop’ path. This process is repeated for each node containing at least one stop codon,

and for each colour in the DBG.

ORF identification within stop-to-stop paths

For each complete ‘stop-to-stop’ path, ggCaller identifies all possible start codons in the path

and pairs them with their respective downstream stop codons to generate a list of candidate

ORFs (Figure 1, step 4). Starting at the start site for the longest possible ORF, start positions

for consecutively shorter ORFs are compared to the current ‘high-scorer’, with the score

dictated by: i) the translation initiation site score given by Balrog, ii) the median population

coverage for all amino-acid l-mers in the start site, and iii) the number of times the start site

has been chosen as the high-scorer in orthologous ORFs. For a start position of a shorter

ORF to be chosen as a high-scorer, it must ‘win’ in 2/3 of the above criteria against the

previous high-scorer.

To avoid checking start positions of short ORFs that are likely to be incorrect, their start

sites are penalised using a probabilistic model. As genes are characterised by long stretches

of DNA without two stop codons in the same reading frame, the average frequency of stop

codons within genes will be lower than the population average. Therefore, short ORFs can be

penalised based on the probability of observing the longer of two ORFs if stop codons

occurred at a constant rate (Equation 1). This is given by the population stop-codon frequency

(𝑝) and the difference in length between the long (𝑙𝑙𝑜𝑛𝑔) and short (𝑙𝑠ℎ𝑜𝑟𝑡) ORF. This gives the

probability of the longer ORF occurring by chance if stop codons occurred randomly at the

population average frequency (𝑞). 𝑞 is only calculated between the current high-scorer and

next start site in the iteration. If 𝑞 falls below a threshold, meaning the probability of observing

the current high scorer is unlikely by chance, all subsequent shorter ORFs are ignored. A

default of 𝑞 < 0.2 (i.e. <20% probability of longer ORF occurring by chance) was chosen, as

this provides a good trade-off between sensitivity and precision.

Equation 1:

𝑞 = (1 − 𝑝)𝑙𝑙𝑜𝑛𝑔−𝑙𝑠ℎ𝑜𝑟𝑡

4

ORF clustering and gene scoring

At this stage, all ORFs have been identified across all colours. However, many of these

sequences are similar, so to remove redundancy from downstream scoring and pangenome

steps, ggCaller first clusters ORFs using an algorithm with a similar approach to Linclust

(Steinegger & Söding, 2018), but adapted for DBG sequences (Figure 1, step 5). Firstly,

ggCaller identifies all sets of ORFs which share at least one node as candidate clusters,

placing them in a ‘node group’, and identifies the largest ORF for each node group as a centre

sequence. ggCaller then translates every ORF and aligns them with the centre sequence of

the node group(s) it belongs to using Edlib (Šošić & Šikić, 2017). If the comparison surpasses

a given identity and length cut-off, the ORF is clustered with the centre sequence. A default of

98% for identity and length cut-off was chosen, as these are the initial clustering parameters

used in Panaroo for identifying orthologues. For ORFs that do not cluster with a centre

sequence, the process is repeated until each ORF is either paired with a centre sequence, or

is a centre sequence itself.

 Centre sequences are then scored based on how likely they are to be a real coding

sequence by using Balrog (Figure 1, step 6). Balrog uses a temporal convolutional network

which generates an average score per amino-acid residue, which is incorporated with start

codon sequence, the length and TIS score to generate an individual score for each ORF in

the cluster. ORFs with a score below a pre-defined cut-off (default = 100, as used in Balrog)

are removed from the set. Those surpassing the score are regarded as candidate protein

coding sequences (CDSs).

CDS filtering

 In the final prediction step, overlapping CDSs must be filtered to pick the most likely

final gene calls. This is achieved by finding the highest-scoring tiling path through regions of

the DBG with overlapping CDSs. Overlaps between CDSs are first calculated for each colour

using a sparse matrix generated using Eigen v3 (Guennebaud, Jacob et al., 2010). Each row

in the sparse matrix is an CDS ID and each column is a node in the DBG, with ‘1’ in each cell

where the node is contained within the ORF, and ‘0’ otherwise. This matrix is multiplied by the

transpose of itself, resulting in a sparse matrix with CDS IDs on both rows and columns, and

non-zero values off the diagonal indicating ORFs that share at least one node and therefore

have a potential overlap. ggCaller then iterates over these potential overlaps, and identifies

whether each pair of CDSs genuinely overlap, or whether they simply share sequence, such

as a repeated motif. Overlaps are calculated using respective DBG coordinates of each CDS.

If two CDSs do overlap, then the number of overlapping base-pairs is calculated, as well as

the direction of the overlap.

 For each set of overlaps, ggCaller then generates a subgraph of these CDSs as a

directed graph using the boost graph library (Siek et al., 2002), where each node is an CDS,

and each edge is an overlap (Figure 1, step 7). Each node is labelled with the respective

score for that CDS, and each edge with the overlap penalty calculated from the size of the

overlap and the penalty scores provided by Balrog. The graph is then separated into

connected components, and each component is traversed using the Bellman-Ford algorithm

(Bellman, 1958; Ford & Fulkerson, 1962) to determine the highest scoring path. The Bellman-

Ford algorithm requires two small modifications to the graph: all scores are multiplied by -1,

and all cycles in the graph are pruned via removal of back edges (Siek et al., 2002). A transitive

closure is then generated, which connects all upstream nodes to all downstream nodes that

have a viable path between them. This step enables skipping of CDSs mid-way within a path

if a higher scoring path is present. CDSs present in the highest-scoring path are returned as

‘true’ gene-calls.

5

Pangenome analysis using DBG-based Panaroo

 Panaroo builds gene graphs and applies filtering criteria to prune false positive gene

calls, and gene refinding to mitigate false negatives. We integrated these steps into ggCaller

for the same advantages, and to simultaneously and efficiently produce an annotated

pangenome matrix. The original version of Panaroo (Tonkin-Hill et al., 2020) operates on linear

genome annotations; a gene graph is then generated by CD-hit (Li & Godzik, 2006) iteratively

clustering genes, and adjacency information between genes drawn from input assemblies. As

it would be redundant to regenerate this information from the above annotations, we

implemented a modified version that works directly with the ggCaller annotated graph (Figure

1, step 8). Genes which do not have existing neighbours from the overlap step are connected

to a neighbour via a DFS of the DBG for each colour. All connected genes are used to generate

a gene graph, where genes are added to the same nodes if they belong to the same clusters

calculated previously. We implemented the same three stringency settings as Panaroo for

removing spurious COGs. Spurious COGs are identified as those at the end of contigs (i.e.

have 0/1 edges), or are in a separate component to the majority of COGs. Each stringency

mode removes spurious COGs below a certain population frequency (strict: <5%, moderate:

<1%, sensitive: none removed).

 We also included several alterations to the original Panaroo algorithm. After the initial

collapse of gene families, each gene cluster is functionally annotated (i.e. predicted gene

name and function through similarity search) based on alignment of each cluster’s centre

sequence to a pre-defined annotation database using DIAMOND (Buchfink et al., 2014) and

HMMER3 (Eddy, 2009). This annotation is then shared across all members of the cluster. This

cluster-by-cluster annotation approach scales more efficiently than existing linear genome

annotation tools when analysing many genomes at once. We provide two default annotation

databases; UniProt (Bateman et al., 2021) (queried ‘Bacteria’ and ‘Virus’, only reviewed

sequences included) for DIAMOND and HMM profiles from Prokka (Seemann, 2014) for

HMMER3. Custom databases can also be provided (amino acid FASTA for DIAMOND, HMM-

profiles generated by ‘hmmbuild’ for HMMER3). Gene-refinding, which is implemented in

Panaroo to search for missing gene-calls within linear genomes, has been altered to work

within the Bifrost DBG. We also simplified within-cluster alignment, replacing the choice of

aligners with only MAFFT. We implemented two options for running MAFFT: i) default mode,

where all sequences are aligned together, and ii) reference mode, where centre sequences

are aligned together, and then the remainder of sequences are aligned in reference-guided

mode. The former is faster when only a few sequences are present in each cluster, whereas

the latter can be used to speed-up alignment of large clusters.

Querying of sequences within an annotated DBG

ggCaller supports querying new sequences against an annotated DBG, which is useful

during functional inference of significant hits in pangenome wide association studies. Multiple

query sequences can be supplied, which are broken into k-mers and queried against the graph

using the Bifrost ‘query’ function. This identifies all node sequences that are found in the query

sequence. As all CDSs identified by ggCaller are indexed by node, any that share at least one

node with the query sequences are returned. Returned CDSs are output in FASTA format,

detailing the query or queries with which they overlap, and the genome(s) in which they are

found.

6

Output files and plots

 By default, ggCaller generates FASTA files of all CDSs in nucleotide and amino-acid

format. ggCaller also generates the same files as Panaroo (except for gene_data.csv, a

summary of CDSs and their annotation, all of which is included in ggCaller FASTA files),

including a gene-presence absence matrix, annotated graph in GML format, and per-cluster

alignments in FASTA format. If annotation is specified, ggCaller can also generate GFF files

for assemblies included in the DBG. We also implemented pairSNP-cpp

(https://github.com/gtonkinhill/pairsnp-cpp) and Rapidnj (Simonsen et al., 2008) to rapidly

generate SNP distance matrices, and neighbour-joining Newick trees of all input genomes.

ggCaller also generates within-cluster alignments and concatenated core-genome alignments

for phylogenetic analysis. Additionally, ggCaller uses SNP-sites (Page et al., 2016) to identify

single nucleotide polymorphisms in alignments in VCF format. ggCaller also generates

summary graphs, including a rarefaction curve for estimating pangenome ‘openness’ (Tettelin

et al., 2005), and gene frequency distributions (Baumdicker et al., 2010), either in terms of

cluster size or population proportion.

Computational optimizations

ggCaller is written in C++ and Python, and is parallelizable through use of OpenMP

(Dagum & Menon, 1998) and Python’s multiprocessing module. ggCaller relies on robin-hood

hash maps for in-memory storage of ORF graph coordinates, which are more time and

memory efficient than standard C++ unordered maps (https://github.com/martinus/robin-hood-

hashing). ggCaller reimplements the Balrog model of translation initiation site and gene

structure (Sommer & Salzberg, 2021). The temporal convolutional network structure and

weights are rewritten using torch to enable direct C++ integration (Collobert et al., 2002).

These models were initially trained using pytorch and compatible only with a Python API

(Paszke et al., 2019), with torch reimplementation improving model querying speed and

enabling parallelisation using shared memory. ORF scores generated by Balrog are stored in

a lock-free dictionary which can be accessed by independent threads to avoid rescoring the

same sequence. ggCaller builds an FM-index using node identifiers instead of DNA sequence

to identify incorrect paths generated during DBG traversal. This significantly reduces time and

memory requirements during FM-index querying.

https://github.com/gtonkinhill/pairsnp-cpp
https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing

7

Supplementary Figures

Supplementary Figure 1: 3’ accuracy of gene prediction comparison for pneumococcal capsular
biosynthetic operons with and without fragmentation. The scatterplot compares precision and recall for gene
predictions, for which the 3’ end matches that of a ground-truth sequence. A 5’ match between the prediction and

ground-truth is allowed but not required.

Supplementary Figure 2: Length comparison of shared False positives (FPs) between ggCaller and
comparator tools when applied to pneumococcal capsular biosynthetic operons without fragmentation.
Horizontal panels describe the comparator gene-prediction tools which share FPs with ggCaller. Colours describe
whether the FP matches the 3’ end of a ground truth sequence but mismatches at the 5’ end (3’ Present) or if the

FP is a spurious prediction (3’ Absent). Dashed line is the line of identity.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Tool

ggCaller

Prokka

GeneMarkS 2

Assembly

Original

Fragmented

GeneMarkS 2 Prokka

100 300 1000 3000 10000 100 300 1000 3000 10000

100

300

1000

3000

10000

3 Present

3 Absent

8

Supplementary Figure 3: Length comparison of False positives (FPs) exclusive to each tool between
ggCaller and comparator gene-prediction tools when applied to pneumococcal capsular biosynthetic
operons without fragmentation. Colours describe whether the FP matches the 3’ end of a ground truth sequence
but mismatches at the 5’ end (3’ Present) or if the FP is a spurious prediction (3’ Absent).

Supplementary Figure 4: Comparison of estimated core, accessory and total pangenome sizes across
simulated populations for simulations not included in Figure 3. Panels describe simulations with simple (A)
and complex (B) sources of error. Bars indicate the predicted number of COGs for each workflow. Ground truth
values are represented by the grey dotted line in each panel. Horizontal panels describe simulation parameters,
vertical panels describe COG frequency; core (99% ≤ x ≤ 100%), accessory (0 ≤ x < 99%) and total (0 ≤ x ≤
100%).

0

250

500

750

1000

1250

3 Present

3 Absent

G/ 1 m e 1 G/ 10 m e 15

C
o
re

A
c
c
e
s
s
o
ry

T
o
ta
l

0

500

1000

1500

2000

0

200

 00

0

500

1000

1500

2000

9

Supplementary Figure 5: Comparison of COG annotation accuracy across simulated populations for
simulations not included in Figure 4. False negatives (top) are COGs that were present in the ground-truth set
but not called by a workflow. False positives (bottom) are COGs that were called by a workflow but were not present

in the ground-truth set.

G/ 1 m e 1 G/ 10 m e 15

0

100

200

0

25

50

75

10

Supplementary Figure 6: Comparison of number of COGs that contain at least one prediction error. For a
COG to have a prediction error, it must contain an incorrectly predicted gene in one of the individual genomes. This
can either be a gene called by a workflow which is missing in the ground truth (false positive), or a gene that is
missed by a workflow present in the ground truth (false negative).

G/ 0.1 m e 1 G/ 10 m e 1 G/ 10 m e 1

1

10

100

1000

G/ 1 m e 1 G/ 10 m e 15

1

10

100

1000

Contaminated Fragmented

1

10

100

1000

11

Supplementary Figure 7: COG prediction consistency across pangenome analysis workflows for real
bacterial genome datasets. Plots show number of sequences with a COG (top) and within-COG Coefficient of
Variation (CV) of CDS lengths (bottom). Refound genes and sequences annotated as ‘pseudogenes’ were
removed from ggCaller and PEPPAN respectively. Points and bars highlight average and standard error
respectively Horizontal panels describe species datasets: M. tuberculosis from Cohen et al., (2015),
S. pneumoniae from Croucher et al., (2015), E. coli from Kallonen et al., (2017).

M. tuberculosis S. pneumoniae E. coli

3

3

3

 0

 2

0.01

0.02

0.03

0.0

0.05

200

2 0

2 0

320

0.02

0.0

0.0

190

200

210

0.01

0.02

0.03

0.0

12

Supplementary Figure 8: Comparison of within-COG stop site soft-clipping across ggCaller, Prokka and
the original S. pnuemoniae Massachusetts dataset. (A) Description of stop site soft clipping. (B) Boxplot
comparisons of stop site soft-clipping protein sequences of Pbp1a, Pbp2a, PspA and PsrP based on alignment

with the manually annotated reference in Spn23F.

13

Supplementary Figure 9: Core genome neighbour-joining tree generated by ggCaller annotated with
resistance phenotype and AMR gene presence in S. pneumoniae. Trees were built from (A) 325 isolates with
tetracycline MIC data and (B) 604 isolates with erythromycin data (Croucher et al., 2015). Trees were displayed
using Microreact (Argimón et al., 2016). Key for core SNP-distance to branch length shown in bottom left corner of
each panel. Blocks to right of trees describe sequence clusters assigned in Croucher et al., drug resistance
phenotype and AMR gene presence identified by ggCaller.

14

Supplementary Figure 10: Comparison of de Bruijn Graph complexity and ggCaller computational
performance. Nodes refer to unitigs within a de Bruijn Graph, edges refer to connections between nodes. Point
labels indicate the number of isolate genomes included in analysis. All analyses were run with 16 threads. Colours
describe dataset: S. pneumoniae (Massachusetts), dataset from Croucher et al., (2015); S. pneumoniae (Global),
dataset from Gladstone et al., (2019); N. gonorrhoeae (Global), dataset from Blackwell et al., (2021).

1

10

100

1000

10000

1

10

100

1000

10000

0

20

 0

 0

 0

100

120

1 0

1 0

1 0

200

220

0

20

 0

 0

 0

100

120

1 0

1 0

1 0

200

220

 o. Isolates

1000

2000

3000

Dataset

S. pneumoniae (Massachusetts)

S. pneumoniae (Global)

 . gonorrhoeae (Global)

15

Supplementary Figure 11: Fold speed-up of ggCaller over Prokka + Panaroo for increasing dataset size.
Fold speed-up was calculated by dividing the runtime of Prokka + Panaroo by that of ggCaller for runs with identical
datasets. Both workflows were run with 16 threads. Colours describe dataset: S. pneumoniae (Massachusetts),
dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al., (2019);
N. gonorrhoeae (Global), dataset from Blackwell et al., (2021).

0

20

 0

 0

 0

10 100 1000

Dataset

S. pneumoniae (Massachusetts)

S. pneumoniae (Global)

 . gonorrhoeae (Global)

16

Supplementary Figure 12: Computational performance comparison between ggCaller and pangenome
analysis workflows. Workflows were run across three datasets: (A) S. pneumoniae (Massachusetts), dataset
from Croucher et al., (2015); (B) S. pneumoniae (Global), dataset from Gladstone et al., (2019); (C) N. gonorrhoeae
(Global), dataset from Blackwell et al., (2021). Workflows were split into gene prediction and annotation (Prokka)
and pangenome analysis (Panaroo, PEPPAN and Roary), with the exception of ggCaller, which includes all of
these processes. PEPPAN did not finish with 2000 Global S. pneumoniae genomes. All tools were run using 16
threads.

5 isolates 10 isolates 50 isolates 100 isolates 500 isolates

1e 01

1e 03

1e 05

0.1

1.0

10.0

100.0

5 isolates 10 isolates 50 isolates 100 isolates 500 isolates 1000 isolates 2000 isolates

1e 01

1e 03

1e 05

0.1

1.0

10.0

100.0

5 isolates 10 isolates 50 isolates 100 isolates 500 isolates 1000 isolates 3000 isolates

1e 01

1e 03

1e 05

0.1

1.0

10.0

100.0

17

Supplementary Figure 13: Gene prediction consistency across pangenome analysis tools on three
pathogen datasets. Workflows were compared on the number of gene sequences within each COG (top) and
within-COG sequence length coefficient of variation (CV) (bottom). Points and bars describe the mean and
standard error of each distribution respectively. Horizontal panels dataset: S. pneumoniae (Massachusetts),
dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al., (2019); N.

gonorrhoeae (Global), dataset from Blackwell et al., (2021).

S. pneumoniae (Massachusetts) S. pneumoniae (Global) . gonorrhoeae (Global)

0

200

 00

 00

 00

0.000

0.025

0.050

0.075

0.100

ggCaller

Prokka Panaroo

Prokka PEPPA

Prokka Roary

18

Supplementary Figure 14: Core, accessory and total pangenome size comparison across pangenome
analysis tools on three pathogen datasets. Vertical panels describe simulation parameters, vertical panels
describe COG frequency; core (99% ≤ x ≤ 100%), accessory (0 ≤ x < 99%) and total (0 ≤ x ≤ 100%). S. pneumoniae
(Massachusetts), dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al.,
(2019); N. gonorrhoeae (Global), dataset from Blackwell et al., (2021). The fall in core genome size observed at
N=50 genomes for N. gonorrhoeae in ggCaller, Panaroo and Roary is likely due to biased sampling of a particular
lineage, as it is does not occur at smaller or larger sample sizes.

S. pneumoniae (Massachusetts) S. pneumoniae (Global) . gonorrhoeae (Global)

C
o
re

A
c
c
e
s
s
o
ry

T
o
ta
l

500

1000

1500

0

20000

 0000

 0000

0

20000

 0000

 0000

ggCaller

Panaroo

PEPPA

Roary

19

Supplementary Tables

Supplementary Table 1: Counts of shared and unique False positives (FP) and False negatives (FN)
between ggCaller and other gene-prediction tools when applied to pneumococcal capsular biosynthetic
operons without fragmentation. FN and FP were calculated based on exact matching to ground truth sequences,
meaning 3’ and 5’ ends must match for identification. If only the 3’ end matches between a prediction and ground
truth, these sequences are designated as ‘3’ present’. If the prediction does not match the 5’ or 3’ end of any ground
truth, this sequence is designated as ‘3 absent’.

Comparator Error type present Error presence Count

GeneMarkS-2 + Panaroo

FP

3' Present

Both 6

ggCaller 4

GeneMarkS-2 + Panaroo 3

3' Absent

Both 12

ggCaller 13

GeneMarkS-2 + Panaroo 6

FN 3' Present

Both 6

ggCaller 4

GeneMarkS-2 + Panaroo 3

Prokka + Panaroo

FP

3' Present

Both 5

ggCaller 5

Prokka + Panaroo 1

3' Absent

Both 17

ggCaller 8

Prokka + Panaroo 2

FN 3' Present

Both 5

ggCaller 5

Prokka + Panaroo 1

20

Supplementary Table 2: Core, Accessory and Total pangenome size estimates for simulated bacterial
populations. Ground-truth values for each simulation are highlighted in bold. COG categories by frequency; core
(99% ≤ x ≤ 100%), Accessory (0 ≤ x < 99%) and total (0 ≤ x ≤ 100%).

Simulation Workflow Core COGs Accessory COGs Total COGs

G/L=0.1 m=e-14

Ground-truth 2243 16 2259

ggCaller (sensitive) 2147 214 2361

ggCaller (moderate) 2146 189 2335

ggCaller (strict) 2145 161 2306

Prokka + Panaroo (sensitive) 2088 92 2180

Prokka + Panaroo (moderate) 2088 92 2180

Prokka + Panaroo (strict) 2074 66 2140

Prokka + PEPPAN 2066 69 2135

Prokka + Roary 2013 241 2254

G/L=1 m=e-14

Ground-truth 2143 116 2259

ggCaller (sensitive) 2068 294 2362

ggCaller (moderate) 2065 253 2318

ggCaller (strict) 2068 221 2289

Prokka + Panaroo (sensitive) 1990 196 2186

Prokka + Panaroo (moderate) 1990 196 2186

Prokka + Panaroo (strict) 1980 153 2133

Prokka + PEPPAN 1977 149 2126

Prokka + Roary 1841 478 2319

G/L=10 m=e-14

Ground-truth 1826 433 2259

ggCaller (sensitive) 1778 565 2343

ggCaller (moderate) 1772 531 2303

ggCaller (strict) 1777 488 2265

Prokka + Panaroo (sensitive) 1700 489 2189

Prokka + Panaroo (moderate) 1700 474 2174

Prokka + Panaroo (strict) 1688 447 2135

Prokka + PEPPAN 1695 433 2128

Prokka + Roary 1585 686 2271

G/L=10 m=e-15

Ground-truth 1844 415 2259

ggCaller (sensitive) 1802 495 2297

ggCaller (moderate) 1800 454 2254

ggCaller (strict) 1801 436 2237

Prokka + Panaroo (sensitive) 1737 439 2176

Prokka + Panaroo (moderate) 1735 417 2152

Prokka + Panaroo (strict) 1723 488 2211

Prokka + PEPPAN 1708 416 2124

Prokka + Roary 1668 543 2211

G/L=10 m=e-16

Ground-truth 1771 488 2259

ggCaller (sensitive) 1739 556 2295

ggCaller (moderate) 1746 507 2253

ggCaller (strict) 1745 478 2223

Prokka + Panaroo (sensitive) 1682 496 2178

Prokka + Panaroo (moderate) 1682 471 2153

Prokka + Panaroo (strict) 1667 445 2112

21

Prokka + PEPPAN 1655 455 2110

Prokka + Roary 1602 586 2188

Contaminated

Ground-truth 1826 433 2259

ggCaller (sensitive) 1772 763 2535

ggCaller (moderate) 1768 584 2352

ggCaller (strict) 1771 540 2311

Prokka + Panaroo (sensitive) 1715 790 2505

Prokka + Panaroo (moderate) 1715 501 2216

Prokka + Panaroo (strict) 1703 453 2156

Prokka + PEPPAN 1688 780 2468

Prokka + Roary 1605 1004 2609

Fragmented

Ground-truth 1826 433 2259

ggCaller (sensitive) 1743 1161 2904

ggCaller (moderate) 1737 822 2559

ggCaller (strict) 1725 700 2425

Prokka + Panaroo (sensitive) 1333 1463 2796

Prokka + Panaroo (moderate) 1333 872 2205

Prokka + Panaroo (strict) 1322 805 2127

Prokka + PEPPAN 1531 754 2285

Prokka + Roary 666 1726 2392

22

Supplementary Table 3: COG annotation accuracy results for simulated bacterial populations. False
positives are COGs that were called by a workflow but were not present in the ground-truth set. False negatives
are COGs that were present in the ground-truth set but not called by a workflow. COGs containing errors have an
incorrectly predicted gene in at least one individual genome, either a gene that is called when absent, or missed
when present.

Parameters Workflow False positives False negatives ≥

G/L=0.1 m=e-14

ggCaller (sensitive) 72 160 34

ggCaller (moderate) 72 162 34

ggCaller (strict) 72 172 27

Prokka + Panaroo (sensitive) 84 197 17

Prokka + Panaroo (moderate) 78 197 17

Prokka + Panaroo (strict) 71 219 17

Prokka + PEPPAN 68 253 16

Prokka + Roary 85 197 78

G/L=1 m=e-14

ggCaller (sensitive) 74 161 22

ggCaller (moderate) 74 171 21

ggCaller (strict) 74 180 19

Prokka + Panaroo (sensitive) 87 194 20

Prokka + Panaroo (moderate) 82 201 19

Prokka + Panaroo (strict) 73 229 18

Prokka + PEPPAN 69 254 8

Prokka + Roary 93 193 1879

G/L=10 m=e-14

ggCaller (sensitive) 83 170 29

ggCaller (moderate) 82 186 29

ggCaller (strict) 82 190 22

Prokka + Panaroo (sensitive) 81 197 34

Prokka + Panaroo (moderate) 81 204 33

Prokka + Panaroo (strict) 68 228 29

Prokka + PEPPAN 78 259 15

Prokka + Roary 88 197 1661

G/L=10 m=e-15

ggCaller (sensitive) 78 183 12

ggCaller (moderate) 78 202 13

ggCaller (strict) 76 208 14

Prokka + Panaroo (sensitive) 88 204 23

Prokka + Panaroo (moderate) 82 217 23

Prokka + Panaroo (strict) 74 239 21

Prokka + PEPPAN 72 254 20

Prokka + Roary 94 203 1716

G/L=10 m=e-16

ggCaller (sensitive) 77 174 15

ggCaller (moderate) 76 200 14

ggCaller (strict) 74 216 15

Prokka + Panaroo (sensitive) 87 201 24

Prokka + Panaroo (moderate) 81 213 23

Prokka + Panaroo (strict) 75 233 22

Prokka + PEPPAN 70 258 12

Prokka + Roary 89 200 1680

Contaminated ggCaller (sensitive) 214 174 32

23

ggCaller (moderate) 124 190 33

ggCaller (strict) 119 196 30

Prokka + Panaroo (sensitive) 321 200 26

Prokka + Panaroo (moderate) 121 204 25

Prokka + Panaroo (strict) 96 227 20

Prokka + PEPPAN 311 257 18

Prokka + Roary 330 199 108

Fragmented

ggCaller (sensitive) 90 169 425

ggCaller (moderate) 88 187 421

ggCaller (strict) 84 197 417

Prokka + Panaroo (sensitive) 95 191 924

Prokka + Panaroo (moderate) 84 199 921

Prokka + Panaroo (strict) 69 228 917

Prokka + PEPPAN 84 261 509

Prokka + Roary 158 191 1445

Supplementary Table 4: Comparison of Prokka runtimes and memory usage using default and custom
databases. Prokka was run on Neisseria gonorrhoeae WHO-M (Genbank Accession: GCA_900087615.2) and
Streptococcus pneumoniae ATCC 700669 (Genbank Accession: GCA_000026665.1). The S. pneumoniae custom
database was retrieved from Croucher et al. (2015). The N. gonorrhoeae custom database was retrieved from
Unemo et al., (2016).

Species Annotation
database

No.
Genomes

No. Gene
Annotations
(HMM profiles)

Runtime (mins) Peak Memory
(Gb)

Neisseria
gonorrhoeae

Default NA 32148 (2389) 0.57 0.156136

Custom 14 32056 0.52 0.162148

Streptococcus
pneumoniae

Default NA 32148 (2389) 0.58 0.154436

Custom 616 1231479 9.47 0.434968

Supplementary Table 5: Simulation parameters using infinitely many genes model. Gene gain and loss rates
are measured in per-generation per genome. Gene mutation rate is measured in per-generation per-nucleotide.
No. genes is the number of genes simulated (i.e. those in accessory genome), remainder are left as core genes.
No. isolates determines how many genomes are simulated. Effective population size determines the population
size in terms of the number of gene copies.

Name Gene
gain
rate

Gene
loss
rate

Gene
mutation
rate

No.
Genes

No.
Isolates

Effective
population
size

Additional (custom script used)

G/L=0.1 m=e-
14

1e-13 1e-12 1e-14 1000 100 106 NA

G/L=1 m=e-
14

1e-12 1e-12 1e-14 1000 100 106 NA

G/L=10 m=e-
14

1e-12 1e-13 1e-14 1000 100 106 NA

G/L=10 m=e-
15

1e-12 1e-13 1e-15 1000 100 106 NA

G/L=10 m=e-
16

1e-12 1e-13 1e-16 1000 100 106 NA

Contaminated 1e-12 1e-13 1e-14 1000 100 106 10kb fragmented Staphylococcus
Epidermidis added per genome
(insert_random_genome_fragments.py)

Fragmented 1e-12 1e-13 1e-14 1000 100 106 Genomes fragmented
(fragment_fasta.py)

24

S

Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E.,

Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A.,

da Silva, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Castro, . G., … Teodoro,

D. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids

Research, 49(D1), D480–D489. https://doi.org/10.1093/NAR/GKAA1100

Baumdicker, F., Hess, W. R., & Pfaffelhuber, P. (2010). The diversity of a distributed

genome in bacterial populations. Https://Doi.Org/10.1214/09-AAP657, 20(5), 1567–

1606. https://doi.org/10.1214/09-AAP657

Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16, 87–90.

Blackwell, G. A., Hunt, M., Malone, K. M., Lima, L., Horesh, G., Alako, B. T. F., Thomson, N.

R., & Iqbal, Z. (2021). Exploring bacterial diversity via a curated and searchable

snapshot of archived DNA sequences. PLoS Biology, 19(11).

https://doi.org/10.1371/JOURNAL.PBIO.3001421

Břinda, K., Baym, M., & Kucherov, G. (2021). Simplitigs as an efficient and scalable

representation of de Bruijn graphs. Genome Biology, 22(1).

https://doi.org/10.1186/s13059-021-02297-z

Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using

DIAMOND. Nature Methods 2014 12:1, 12(1), 59–60.

https://doi.org/10.1038/nmeth.3176

Cohen, K. A., Abeel, T., Manson McGuire, A., Desjardins, C. A., Munsamy, V., Shea, T. P.,

Walker, B. J., Bantubani, N., Almeida, D. V., Alvarado, L., Chapman, S. B., Mvelase, N.

R., Duffy, E. Y., Fitzgerald, M. G., Govender, P., Gujja, S., Hamilton, S., Howarth, C.,

 arimer, J. D., … Earl, A. M. (2015). Evolution of Extensively Drug-Resistant

Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of

Mycobacterium tuberculosis Isolates from KwaZulu-Natal. PLoS Medicine, 12(9).

https://doi.org/10.1371/JOURNAL.PMED.1001880

Collobert, R., Bengio, S., & Mariéthoz, J. (2002). Torch: a modular machine learning

software library.

Croucher, N. J., Finkelstein, J. A., Pelton, S. I., Parkhill, J., Bentley, S. D., Lipsitch, M., &

Hanage, W. P. (2015). Population genomic datasets describing the post-vaccine

evolutionary epidemiology of Streptococcus pneumoniae. Scientific Data 2015, 2(1), 1–

9. https://doi.org/10.1038/sdata.2015.58

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-memory

programming. IEEE Computational Science and Engineering, 5(1), 46–55.

https://doi.org/10.1109/99.660313

Eddy, S. R. (2009). A new generation of homology search tools based on probabilistic

inference. Genome Informatics. International Conference on Genome Informatics,

23(1), 205–211. https://doi.org/10.1142/9781848165632_0019

Ford, L. R., & Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press.

Gladstone, R. A., Lo, S. W., Lees, J. A., Croucher, N. J., van Tonder, A. J., Corander, J.,

Page, A. J., Marttinen, P., Bentley, L. J., Ochoa, T. J., Ho, P. L., du Plessis, M.,

25

Cornick, J. E., Kwambana-Adams, B., Benisty, R., Nzenze, S. A., Madhi, S. A.,

Hawkins, P. A., Everett, D. B., … Bentley, S. D. (2019a). International genomic

definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and

vaccine impact. EBioMedicine, 43, 338–346.

https://doi.org/10.1016/j.ebiom.2019.04.021

Gladstone, R. A., Lo, S. W., Lees, J. A., Croucher, N. J., van Tonder, A. J., Corander, J.,

Page, A. J., Marttinen, P., Bentley, L. J., Ochoa, T. J., Ho, P. L., du Plessis, M.,

Cornick, J. E., Kwambana-Adams, B., Benisty, R., Nzenze, S. A., Madhi, S. A.,

Hawkins, P. A., Everett, D. B., … Bentley, S. D. (2019b). International genomic

definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and

vaccine impact. EBioMedicine, 43, 338–346.

https://doi.org/10.1016/j.ebiom.2019.04.021

Gog, S., Beller, T., Moffat, A., & Petri, M. (2014). From theory to practice: Plug and play with

succinct data structures. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8504 LNCS,

326–337. https://doi.org/10.1007/978-3-319-07959-2_28/COVER/

Guennebaud, G., Jacob, B., & others. (2010). Eigen v3.

Holley, G., & Melsted, P. (2020). Bifrost: highly parallel construction and indexing of colored

and compacted de Bruijn graphs. Genome Biology, 21(1), 249.

https://doi.org/10.1186/s13059-020-02135-8

Kallonen, T., Brodrick, H. J., Harris, S. R., Corander, J., Brown, N. M., Martin, V., Peacock,

S. J., & Parkhill, J. (2017). Systematic longitudinal survey of invasive Escherichia coli in

England demonstrates a stable population structure only transiently disturbed by the

emergence of ST131. Genome Research, 27(8), 1437–1449.

https://doi.org/10.1101/GR.216606.116

Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of

protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659.

https://doi.org/10.1093/bioinformatics/btl158

Page, A. J., Taylor, B., Delaney, A. J., Soares, J., Seemann, T., Keane, J. A., & Harris, S. R.

(2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments.

Microbial Genomics, 2(4), e000056.

https://doi.org/10.1099/MGEN.0.000056/CITE/REFWORKS

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury Google, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Xamla, A. K., Yang, E., Devito, Z.,

Raison abla, M., Tejani, A., Chilamkurthy, S., Ai, Q., Steiner, B., … Chintala, S.

(2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library.

https://doi.org/10.5555/3454287.3455008

Schulz, T., Wittler, R., & Stoye, J. (2022). Sequence-based pangenomic core detection.

IScience, 25(6), 104413. https://doi.org/10.1016/J.ISCI.2022.104413

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14),

2068–2069. https://doi.org/10.1093/bioinformatics/btu153

Siek, Jeremy., Lee, L.-Quan., & Lumsdaine, Andrew. (2002). The boost graph library : user

guide and reference manual. Addison-Wesley.

26

Simonsen, M., Mailund, T., & Pedersen, C. N. S. (2008). Rapid neighbour-joining. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 5251 LNBI, 113–122. https://doi.org/10.1007/978-

3-540-87361-7_10/COVER/

Sommer, M. J., & Salzberg, S. L. (2021). Balrog: A universal protein model for prokaryotic

gene prediction. PLOS Computational Biology, 17(2), e1008727.

https://doi.org/10.1371/journal.pcbi.1008727

Šošić, M., & Šikić, M. (2017). Edlib: a C/C  library for fast, exact sequence alignment using

edit distance. Bioinformatics, 33(9), 1394–1395.

https://doi.org/10.1093/bioinformatics/btw753

Steinegger, M., & Söding, J. (2018). Clustering huge protein sequence sets in linear time.

Nature Communications 2018 9:1, 9(1), 1–8. https://doi.org/10.1038/s41467-018-

04964-5

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S.

V, Crabtree, J., Jones, A. L., Durkin, A. S., Deboy, R. T., Davidsen, T. M., Mora, M.,

Scarselli, M., Margarit Y Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P.,

 elson, W. C., … Fraser, C. M. (2005). Genome analysis of multiple pathogenic

isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.”

Proceedings of the National Academy of Sciences, 102(39), 13950–13955.

https://doi.org/10.1073/pnas.0506758102

Tonkin-Hill, G., MacAlasdair, N., Ruis, C., Weimann, A., Horesh, G., Lees, J. A., Gladstone,

R. A., Lo, S., Beaudoin, C., Floto, R. A., Frost, S. D. W., Corander, J., Bentley, S. D., &

Parkhill, J. (2020). Producing polished prokaryotic pangenomes with the Panaroo

pipeline. Genome Biology, 21(1), 1–21. https://doi.org/10.1186/S13059-020-02090-

4/FIGURES/7

Unemo, M., Golparian, D., Sánchez-Busó, L., Grad, Y., Jacobsson, S., Ohnishi, M., Lahra,

M. M., Limnios, A., Sikora, A. E., Wi, T., & Harris, S. R. (2016). The novel 2016 WHO

Neisseria gonorrhoeae reference strains for global quality assurance of laboratory

investigations: phenotypic, genetic and reference genome characterization. The Journal

of Antimicrobial Chemotherapy, 71(11), 3096–3108.

https://doi.org/10.1093/JAC/DKW288

