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Supplementary Methods 

Graph indexing 

The de Bruijn graph (DBG) used by ggCaller is generated by Bifrost (Holley & Melsted, 

2020). Bifrost was chosen as it is highly scalable to hundreds of thousands of bacterial 

genomes and has an intuitive C++ API. To build a DBG, Bifrost first generates an index of all 

k-mers in the population using a blocked Bloom filter. 𝑘 = 31 has been shown to provide a 

good balance of efficiency and sensitivity of detection of shared/divergent sequences in 

bacterial genomes (Holley & Melsted, 2020), and so is used as the default in ggCaller.  Starting 

with a single k-mer, Bifrost queries the presence of its suffix (length= 𝑘 − 1) appended with 

each of A, C, G and T within the blocked Bloom filter (Figure 1, step 1). Connections of length 

𝑘 − 1  between k-mer suffixes and prefixes are treated as edges. Each k-mer is assigned 

colours, which describe in which genomes they are present in. Unitigs, also known as nodes, 

are generated by merging unbranching k-mer paths into a single DNA sequence. Branching 

paths, described by edges, represent variation within a population. A genome can be 

regenerated from a DBG by traversing a path made up of nodes assigned with a specific 

colour.  

Once the DBG is built, ggCaller iterates over the DNA sequence in each node and 

identifies stop codons in each reading frame, storing this information in a six-bit bitset, where 

each bit represents a reading frame (three forward and three reverse) (Figure 1, step 2). A 

bit is set to ‘1’ if at least one stop codon is present in that reading frame, and ‘0’ otherwise. 

ggCaller stores the node colours in a separate bitset; as the colours of the constituent k-mers 

within a node may not all be identical due to contig breaks (Schulz et al., 2022), ggCaller takes 

the intersection of the colours of the start and end k-mers for each node to calculate node 

frequency. ggCaller additionally determines the frequency of stop codons for each reading 

frame within the graph by counting the number of set bits. For accurate start site identification, 

ggCaller also identifies the first base of all start codons, and 𝑘 − 1 downstream bases (𝑘 

chosen as this is the shortest possible node length). This sequence is then translated into its 

respective amino acid sequence and further split into l-mers (𝑙 =  𝑚 / 3, where 𝑚 = Bifrost 

minimiser size, chosen to ensure sufficient coverage of each start site). The coverage of each 

l-mer is calculated within the population and stored in a robin-hood unordered map to be used 

using graph traversal. Using amino-acid l-mers reduces the impact of small mutations on the 

calculation of start site frequency, which would otherwise make start sites of non-identical 

orthologues appear less frequent. 

 As Bifrost does not consider sequence contiguity from input genomes when inferring 

edges, traversal of a Bifrost DBG can result in generation of sequences that are not present 

in the original genomes (Břinda et al., 2021). To prevent this, candidate paths are queried 

against input genomes to ensure they are present as contiguous sequence in the input. An 

FM-index is built from each genome in node space (using node identifiers rather than DNA 

sequence) using kseq (https://github.com/lh3/seqtk) and SDSL v3 (Gog et al., 2014), to which 

paths can be compared during traversal. Building an FM-index using node identifiers rather 

than DNA sequence greatly reduces the size of the index, reducing the memory and time 

required to load and search the index. 
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Stop codon search using iterative graph traversal 

 ggCaller uses an iterative depth first search (DFS) algorithm to pair stop-codons in the 

same reading frame (Figure 1, step 3a). To reduce the search space, ggCaller traverses the 

DBG colour-by-colour (i.e. sample-by-sample). Starting at a source node containing at least 

one stop codon, ggCaller iteratively visits all neighbour nodes with the same colour, with each 

neighbour added to the top of a stack. Each iteration of the algorithm removes the top node 

from the stack and visits its neighbours with the same colour as the source node. As each 

neighbour is visited, the complete path in node space is queried against an FM-index of the 

given colour to ensure the path is also contiguous in the underlying genome (Figure 1, step 

3b). This process is repeated until all stop codons in the source node have been paired with 

a downstream stop codon in the same reading frame. This is now designated as a complete 

‘stop-to-stop’ path. This process is repeated for each node containing at least one stop codon, 

and for each colour in the DBG. 

ORF identification within stop-to-stop paths 

For each complete ‘stop-to-stop’ path, ggCaller identifies all possible start codons in the path 

and pairs them with their respective downstream stop codons to generate a list of candidate 

ORFs (Figure 1, step 4). Starting at the start site for the longest possible ORF, start positions 

for consecutively shorter ORFs are compared to the current ‘high-scorer’, with the score 

dictated by: i) the translation initiation site score given by Balrog, ii) the median population 

coverage for all amino-acid l-mers in the start site, and iii) the number of times the start site 

has been chosen as the high-scorer in orthologous ORFs. For a start position of a shorter 

ORF to be chosen as a high-scorer, it must ‘win’ in 2/3 of the above criteria against the 

previous high-scorer.   

To avoid checking start positions of short ORFs that are likely to be incorrect, their start 

sites are penalised using a probabilistic model. As genes are characterised by long stretches 

of DNA without two stop codons in the same reading frame, the average frequency of stop 

codons within genes will be lower than the population average. Therefore, short ORFs can be 

penalised based on the probability of observing the longer of two ORFs if stop codons 

occurred at a constant rate (Equation 1). This is given by the population stop-codon frequency 

(𝑝) and the difference in length between the long (𝑙𝑙𝑜𝑛𝑔) and short (𝑙𝑠ℎ𝑜𝑟𝑡) ORF. This gives the 

probability of the longer ORF occurring by chance if stop codons occurred randomly at the 

population average frequency (𝑞).  𝑞 is only calculated between the current high-scorer and 

next start site in the iteration. If 𝑞 falls below a threshold, meaning the probability of observing 

the current high scorer is unlikely by chance, all subsequent shorter ORFs are ignored. A 

default of 𝑞 < 0.2 (i.e. <20% probability of longer ORF occurring by chance) was chosen, as 

this provides a good trade-off between sensitivity and precision. 

Equation 1: 

𝑞 = (1 − 𝑝)𝑙𝑙𝑜𝑛𝑔−𝑙𝑠ℎ𝑜𝑟𝑡 

  



4 
 

 

ORF clustering and gene scoring 

At this stage, all ORFs have been identified across all colours. However, many of these 

sequences are similar, so to remove redundancy from downstream scoring and pangenome 

steps, ggCaller first clusters ORFs using an algorithm with a similar approach to Linclust 

(Steinegger & Söding, 2018), but adapted for DBG sequences (Figure 1, step 5). Firstly, 

ggCaller identifies all sets of ORFs which share at least one node as candidate clusters, 

placing them in a ‘node group’, and identifies the largest ORF for each node group as a centre 

sequence. ggCaller then translates every ORF and aligns them with the centre sequence of 

the node group(s) it belongs to using Edlib (Šošić & Šikić, 2017). If the comparison surpasses 

a given identity and length cut-off, the ORF is clustered with the centre sequence. A default of 

98% for identity and length cut-off was chosen, as these are the initial clustering parameters 

used in Panaroo for identifying orthologues. For ORFs that do not cluster with a centre 

sequence, the process is repeated until each ORF is either paired with a centre sequence, or 

is a centre sequence itself. 

 Centre sequences are then scored based on how likely they are to be a real coding 

sequence by using Balrog (Figure 1, step 6). Balrog uses a temporal convolutional network 

which generates an average score per amino-acid residue, which is incorporated with start 

codon sequence, the length and TIS score to generate an individual score for each ORF in 

the cluster. ORFs with a score below a pre-defined cut-off (default = 100, as used in Balrog) 

are removed from the set. Those surpassing the score are regarded as candidate protein 

coding sequences (CDSs). 

CDS filtering  

 In the final prediction step, overlapping CDSs must be filtered to pick the most likely 

final gene calls. This is achieved by finding the highest-scoring tiling path through regions of 

the DBG with overlapping CDSs. Overlaps between CDSs are first calculated for each colour 

using a sparse matrix generated using Eigen v3 (Guennebaud, Jacob et al., 2010). Each row 

in the sparse matrix is an CDS ID and each column is a node in the DBG, with ‘1’ in each cell 

where the node is contained within the ORF, and ‘0’ otherwise. This matrix is multiplied by the 

transpose of itself, resulting in a sparse matrix with CDS IDs on both rows and columns, and 

non-zero values off the diagonal indicating ORFs that share at least one node and therefore 

have a potential overlap. ggCaller then iterates over these potential overlaps, and identifies 

whether each pair of CDSs genuinely overlap, or whether they simply share sequence, such 

as a repeated motif. Overlaps are calculated using respective DBG coordinates of each CDS. 

If two CDSs do overlap, then the number of overlapping base-pairs is calculated, as well as 

the direction of the overlap. 

 For each set of overlaps, ggCaller then generates a subgraph of these CDSs as a 

directed graph using the boost graph library (Siek et al., 2002), where each node is an CDS, 

and each edge is an overlap (Figure 1, step 7). Each node is labelled with the respective 

score for that CDS, and each edge with the overlap penalty calculated from the size of the 

overlap and the penalty scores provided by Balrog. The graph is then separated into 

connected components, and each component is traversed using the Bellman-Ford algorithm  

(Bellman, 1958; Ford & Fulkerson, 1962) to determine the highest scoring path. The Bellman-

Ford algorithm requires two small modifications to the graph: all scores are multiplied by -1, 

and all cycles in the graph are pruned via removal of back edges (Siek et al., 2002). A transitive 

closure is then generated, which connects all upstream nodes to all downstream nodes that 

have a viable path between them. This step enables skipping of CDSs mid-way within a path 

if a higher scoring path is present. CDSs present in the highest-scoring path are returned as 

‘true’ gene-calls. 
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Pangenome analysis using DBG-based Panaroo 

 Panaroo builds gene graphs and applies filtering criteria to prune false positive gene 

calls, and gene refinding to mitigate false negatives. We integrated these steps into ggCaller 

for the same advantages, and to simultaneously and efficiently produce an annotated 

pangenome matrix. The original version of Panaroo (Tonkin-Hill et al., 2020) operates on linear 

genome annotations; a gene graph is then generated by CD-hit (Li & Godzik, 2006) iteratively 

clustering genes, and adjacency information between genes drawn from input assemblies. As 

it would be redundant to regenerate this information from the above annotations, we 

implemented a modified version that works directly with the ggCaller annotated graph (Figure 

1, step 8). Genes which do not have existing neighbours from the overlap step are connected 

to a neighbour via a DFS of the DBG for each colour. All connected genes are used to generate 

a gene graph, where genes are added to the same nodes if they belong to the same clusters 

calculated previously. We implemented the same three stringency settings as Panaroo for 

removing spurious COGs. Spurious COGs are identified as those at the end of contigs (i.e. 

have 0/1 edges), or are in a separate component to the majority of COGs. Each stringency 

mode removes spurious COGs below a certain population frequency (strict: <5%, moderate: 

<1%, sensitive: none removed). 

 We also included several alterations to the original Panaroo algorithm. After the initial 

collapse of gene families, each gene cluster is functionally annotated (i.e. predicted gene 

name and function through similarity search) based on alignment of each cluster’s centre 

sequence to a pre-defined annotation database using DIAMOND (Buchfink et al., 2014) and 

HMMER3 (Eddy, 2009). This annotation is then shared across all members of the cluster. This 

cluster-by-cluster annotation approach scales more efficiently than existing linear genome 

annotation tools when analysing many genomes at once. We provide two default annotation 

databases; UniProt (Bateman et al., 2021) (queried ‘Bacteria’ and ‘Virus’, only reviewed 

sequences included) for DIAMOND and HMM profiles from Prokka (Seemann, 2014) for 

HMMER3. Custom databases can also be provided (amino acid FASTA for DIAMOND, HMM-

profiles generated by ‘hmmbuild’ for HMMER3). Gene-refinding, which is implemented in 

Panaroo to search for missing gene-calls within linear genomes, has been altered to work 

within the Bifrost DBG. We also simplified within-cluster alignment, replacing the choice of 

aligners with only MAFFT. We implemented two options for running MAFFT: i) default mode, 

where all sequences are aligned together, and ii) reference mode, where centre sequences 

are aligned together, and then the remainder of sequences are aligned in reference-guided 

mode. The former is faster when only a few sequences are present in each cluster, whereas 

the latter can be used to speed-up alignment of large clusters. 

Querying of sequences within an annotated DBG 

ggCaller supports querying new sequences against an annotated DBG, which is useful 

during functional inference of significant hits in pangenome wide association studies. Multiple 

query sequences can be supplied, which are broken into k-mers and queried against the graph 

using the Bifrost ‘query’ function. This identifies all node sequences that are found in the query 

sequence. As all CDSs identified by ggCaller are indexed by node, any that share at least one 

node with the query sequences are returned. Returned CDSs are output in FASTA format, 

detailing the query or queries with which they overlap, and the genome(s) in which they are 

found. 

  



6 
 

 

Output files and plots 

 By default, ggCaller generates FASTA files of all CDSs in nucleotide and amino-acid 

format. ggCaller also generates the same files as Panaroo (except for gene_data.csv, a 

summary of CDSs and their annotation, all of which is included in ggCaller FASTA files), 

including a gene-presence absence matrix, annotated graph in GML format, and per-cluster 

alignments in FASTA format. If annotation is specified, ggCaller can also generate GFF files 

for assemblies included in the DBG.  We also implemented pairSNP-cpp 

(https://github.com/gtonkinhill/pairsnp-cpp) and Rapidnj (Simonsen et al., 2008) to rapidly 

generate SNP distance matrices, and neighbour-joining Newick trees of all input genomes. 

ggCaller also generates within-cluster alignments and concatenated core-genome alignments 

for phylogenetic analysis. Additionally, ggCaller uses SNP-sites (Page et al., 2016) to identify 

single nucleotide polymorphisms in alignments in VCF format. ggCaller also generates 

summary graphs, including a rarefaction curve for estimating pangenome ‘openness’ (Tettelin 

et al., 2005), and gene frequency distributions (Baumdicker et al., 2010), either in terms of 

cluster size or population proportion. 

Computational optimizations 

ggCaller is written in C++ and Python, and is parallelizable through use of OpenMP 

(Dagum & Menon, 1998) and Python’s multiprocessing module. ggCaller relies on robin-hood 

hash maps for in-memory storage of ORF graph coordinates, which are more time and 

memory efficient than standard C++ unordered maps (https://github.com/martinus/robin-hood-

hashing). ggCaller reimplements the Balrog model of translation initiation site and gene 

structure (Sommer & Salzberg, 2021). The temporal convolutional network structure and 

weights are rewritten using torch to enable direct C++ integration (Collobert et al., 2002). 

These models were initially trained using pytorch and compatible only with a Python API 

(Paszke et al., 2019), with torch reimplementation improving model querying speed and 

enabling parallelisation using shared memory. ORF scores generated by Balrog are stored in 

a lock-free dictionary which can be accessed by independent threads to avoid rescoring the 

same sequence. ggCaller builds an FM-index using node identifiers instead of DNA sequence 

to identify incorrect paths generated during DBG traversal. This significantly reduces time and 

memory requirements during FM-index querying. 

  

https://github.com/gtonkinhill/pairsnp-cpp
https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing


7 
 

 

Supplementary Figures 

 

Supplementary Figure 1: 3’ accuracy of gene prediction comparison for pneumococcal capsular 
biosynthetic operons with and without fragmentation. The scatterplot compares precision and recall for gene 
predictions, for which the 3’ end matches that of a ground-truth sequence. A 5’ match between the prediction and 

ground-truth is allowed but not required. 

 

Supplementary Figure 2: Length comparison of shared False positives (FPs) between ggCaller and 
comparator tools when applied to pneumococcal capsular biosynthetic operons without fragmentation. 
Horizontal panels describe the comparator gene-prediction tools which share FPs with ggCaller. Colours describe 
whether the FP matches the 3’ end of a ground truth sequence but mismatches at the 5’ end (3’ Present) or if the 

FP is a spurious prediction (3’ Absent). Dashed line is the line of identity. 
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Supplementary Figure 3: Length comparison of False positives (FPs) exclusive to each tool between 
ggCaller and comparator gene-prediction tools when applied to pneumococcal capsular biosynthetic 
operons without fragmentation. Colours describe whether the FP matches the 3’ end of a ground truth sequence 
but mismatches at the 5’ end (3’ Present) or if the FP is a spurious prediction (3’ Absent). 

 

Supplementary Figure 4: Comparison of estimated core, accessory and total pangenome sizes across 
simulated populations for simulations not included in Figure 3. Panels describe simulations with simple (A) 
and complex (B) sources of error. Bars indicate the predicted number of COGs for each workflow. Ground truth 
values are represented by the grey dotted line in each panel. Horizontal panels describe simulation parameters, 
vertical panels describe COG frequency; core (99% ≤  x ≤ 100%), accessory (0 ≤  x < 99%) and total (0 ≤  x ≤ 
100%). 
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Supplementary Figure 5: Comparison of COG annotation accuracy across simulated populations for 
simulations not included in Figure 4. False negatives (top) are COGs that were present in the ground-truth set 
but not called by a workflow. False positives (bottom) are COGs that were called by a workflow but were not present 

in the ground-truth set.  
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Supplementary Figure 6: Comparison of number of COGs that contain at least one prediction error. For a 
COG to have a prediction error, it must contain an incorrectly predicted gene in one of the individual genomes. This 
can either be a gene called by a workflow which is missing in the ground truth (false positive), or a gene that is 
missed by a workflow present in the ground truth (false negative). 
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Supplementary Figure 7: COG prediction consistency across pangenome analysis workflows for real 
bacterial genome datasets. Plots show number of sequences with a COG (top) and within-COG Coefficient of 
Variation (CV) of CDS lengths (bottom). Refound genes and sequences annotated as ‘pseudogenes’ were 
removed from ggCaller and PEPPAN respectively. Points and bars highlight average and standard error 
respectively  Horizontal panels describe species datasets: M. tuberculosis from Cohen et al., (2015), 
S. pneumoniae from Croucher et al., (2015), E. coli from Kallonen et al., (2017). 
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Supplementary Figure 8: Comparison of within-COG stop site soft-clipping across ggCaller, Prokka and 
the original S. pnuemoniae Massachusetts dataset. (A) Description of stop site soft clipping. (B) Boxplot 
comparisons of stop site soft-clipping protein sequences of Pbp1a, Pbp2a, PspA and PsrP based on alignment 

with the manually annotated reference in Spn23F.  
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Supplementary Figure 9: Core genome neighbour-joining tree generated by ggCaller annotated with 
resistance phenotype and AMR gene presence in S. pneumoniae. Trees were built from (A) 325 isolates with 
tetracycline MIC data and (B) 604 isolates with erythromycin data (Croucher et al., 2015). Trees were displayed 
using Microreact (Argimón et al., 2016). Key for core SNP-distance to branch length shown in bottom left corner of 
each panel. Blocks to right of trees describe sequence clusters assigned in Croucher et al., drug resistance 
phenotype and AMR gene presence identified by ggCaller. 
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Supplementary Figure 10: Comparison of de Bruijn Graph complexity and ggCaller computational 
performance. Nodes refer to unitigs within a de Bruijn Graph, edges refer to connections between nodes. Point 
labels indicate the number of isolate genomes included in analysis. All analyses were run with 16 threads. Colours 
describe dataset: S. pneumoniae (Massachusetts), dataset from Croucher et al., (2015); S. pneumoniae (Global), 
dataset from Gladstone et al., (2019); N. gonorrhoeae (Global), dataset from Blackwell et al., (2021). 
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Supplementary Figure 11: Fold speed-up of ggCaller over Prokka + Panaroo for increasing dataset size. 
Fold speed-up was calculated by dividing the runtime of Prokka + Panaroo by that of ggCaller for runs with identical 
datasets. Both workflows were run with 16 threads. Colours describe dataset: S. pneumoniae (Massachusetts), 
dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al., (2019); 
N. gonorrhoeae (Global), dataset from Blackwell et al., (2021).  
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Supplementary Figure 12: Computational performance comparison between ggCaller and pangenome 
analysis workflows. Workflows were run across three datasets: (A) S. pneumoniae (Massachusetts), dataset 
from Croucher et al., (2015); (B) S. pneumoniae (Global), dataset from Gladstone et al., (2019); (C) N. gonorrhoeae 
(Global), dataset from Blackwell et al., (2021). Workflows were split into gene prediction and annotation (Prokka) 
and pangenome analysis (Panaroo, PEPPAN and Roary), with the exception of ggCaller, which includes all of 
these processes. PEPPAN did not finish with 2000 Global S. pneumoniae genomes. All tools were run using 16 
threads. 
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Supplementary Figure 13: Gene prediction consistency across pangenome analysis tools on three 
pathogen datasets. Workflows were compared on the number of gene sequences within each COG (top) and 
within-COG sequence length coefficient of variation (CV) (bottom). Points and bars describe the mean and 
standard error of each distribution respectively. Horizontal panels dataset: S. pneumoniae (Massachusetts), 
dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al., (2019); N. 

gonorrhoeae (Global), dataset from Blackwell et al., (2021). 
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Supplementary Figure 14: Core, accessory and total pangenome size comparison across pangenome 
analysis tools on three pathogen datasets. Vertical panels describe simulation parameters, vertical panels 
describe COG frequency; core (99% ≤ x ≤ 100%), accessory (0 ≤  x < 99%) and total (0 ≤  x ≤ 100%). S. pneumoniae 
(Massachusetts), dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al., 
(2019); N. gonorrhoeae (Global), dataset from Blackwell et al., (2021). The fall in core genome size observed at 
N=50 genomes for N. gonorrhoeae in ggCaller, Panaroo and Roary is likely due to biased sampling of a particular 
lineage, as it is does not occur at smaller or larger sample sizes. 
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Supplementary Tables 

 

Supplementary Table 1: Counts of shared and unique False positives (FP) and False negatives (FN) 
between ggCaller and other gene-prediction tools when applied to pneumococcal capsular biosynthetic 
operons without fragmentation. FN and FP were calculated based on exact matching to ground truth sequences, 
meaning 3’ and 5’ ends must match for identification. If only the 3’ end matches between a prediction and ground 
truth, these sequences are designated as ‘3’ present’. If the prediction does not match the 5’ or 3’ end of any ground 
truth, this sequence is designated as ‘3 absent’. 

Comparator Error type present Error presence Count 

GeneMarkS-2 + Panaroo 

FP 

3' Present 

Both 6 

ggCaller 4 

GeneMarkS-2 + Panaroo 3 

3' Absent 

Both 12 

ggCaller 13 

GeneMarkS-2 + Panaroo 6 

FN 3' Present 

Both 6 

ggCaller 4 

GeneMarkS-2 + Panaroo 3 

Prokka + Panaroo 

FP 

3' Present 

Both 5 

ggCaller 5 

Prokka + Panaroo 1 

3' Absent 

Both 17 

ggCaller 8 

Prokka + Panaroo 2 

FN 3' Present 

Both 5 

ggCaller 5 

Prokka + Panaroo 1 
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Supplementary Table 2: Core, Accessory and Total pangenome size estimates for simulated bacterial 
populations. Ground-truth values for each simulation are highlighted in bold. COG categories by frequency; core 
(99% ≤ x ≤ 100%), Accessory (0 ≤ x < 99%) and total (0 ≤ x ≤ 100%). 

Simulation Workflow Core COGs Accessory COGs Total COGs 

G/L=0.1 m=e-14 

Ground-truth 2243 16 2259 

ggCaller (sensitive) 2147 214 2361 

ggCaller (moderate) 2146 189 2335 

ggCaller (strict) 2145 161 2306 

Prokka + Panaroo (sensitive) 2088 92 2180 

Prokka + Panaroo (moderate) 2088 92 2180 

Prokka + Panaroo (strict) 2074 66 2140 

Prokka + PEPPAN 2066 69 2135 

Prokka + Roary 2013 241 2254 

G/L=1 m=e-14 

Ground-truth 2143 116 2259 

ggCaller (sensitive) 2068 294 2362 

ggCaller (moderate) 2065 253 2318 

ggCaller (strict) 2068 221 2289 

Prokka + Panaroo (sensitive) 1990 196 2186 

Prokka + Panaroo (moderate) 1990 196 2186 

Prokka + Panaroo (strict) 1980 153 2133 

Prokka + PEPPAN 1977 149 2126 

Prokka + Roary 1841 478 2319 

G/L=10 m=e-14 

Ground-truth 1826 433 2259 

ggCaller (sensitive) 1778 565 2343 

ggCaller (moderate) 1772 531 2303 

ggCaller (strict) 1777 488 2265 

Prokka + Panaroo (sensitive) 1700 489 2189 

Prokka + Panaroo (moderate) 1700 474 2174 

Prokka + Panaroo (strict) 1688 447 2135 

Prokka + PEPPAN 1695 433 2128 

Prokka + Roary 1585 686 2271 

G/L=10 m=e-15 

Ground-truth 1844 415 2259 

ggCaller (sensitive) 1802 495 2297 

ggCaller (moderate) 1800 454 2254 

ggCaller (strict) 1801 436 2237 

Prokka + Panaroo (sensitive) 1737 439 2176 

Prokka + Panaroo (moderate) 1735 417 2152 

Prokka + Panaroo (strict) 1723 488 2211 

Prokka + PEPPAN 1708 416 2124 

Prokka + Roary 1668 543 2211 

G/L=10 m=e-16 

Ground-truth 1771 488 2259 

ggCaller (sensitive) 1739 556 2295 

ggCaller (moderate) 1746 507 2253 

ggCaller (strict) 1745 478 2223 

Prokka + Panaroo (sensitive) 1682 496 2178 

Prokka + Panaroo (moderate) 1682 471 2153 

Prokka + Panaroo (strict) 1667 445 2112 
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Prokka + PEPPAN 1655 455 2110 

Prokka + Roary 1602 586 2188 

Contaminated 

Ground-truth 1826 433 2259 

ggCaller (sensitive) 1772 763 2535 

ggCaller (moderate) 1768 584 2352 

ggCaller (strict) 1771 540 2311 

Prokka + Panaroo (sensitive) 1715 790 2505 

Prokka + Panaroo (moderate) 1715 501 2216 

Prokka + Panaroo (strict) 1703 453 2156 

Prokka + PEPPAN 1688 780 2468 

Prokka + Roary 1605 1004 2609 

Fragmented 

Ground-truth 1826 433 2259 

ggCaller (sensitive) 1743 1161 2904 

ggCaller (moderate) 1737 822 2559 

ggCaller (strict) 1725 700 2425 

Prokka + Panaroo (sensitive) 1333 1463 2796 

Prokka + Panaroo (moderate) 1333 872 2205 

Prokka + Panaroo (strict) 1322 805 2127 

Prokka + PEPPAN 1531 754 2285 

Prokka + Roary 666 1726 2392 
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Supplementary Table 3: COG annotation accuracy results for simulated bacterial populations. False 
positives are COGs that were called by a workflow but were not present in the ground-truth set. False negatives 
are COGs that were present in the ground-truth set but not called by a workflow. COGs containing errors have an 
incorrectly predicted gene in at least one individual genome, either a gene that is called when absent, or missed 
when present. 

Parameters Workflow False positives False negatives ≥        

G/L=0.1 m=e-14 

ggCaller (sensitive) 72 160 34 

ggCaller (moderate) 72 162 34 

ggCaller (strict) 72 172 27 

Prokka + Panaroo (sensitive) 84 197 17 

Prokka + Panaroo (moderate) 78 197 17 

Prokka + Panaroo (strict) 71 219 17 

Prokka + PEPPAN 68 253 16 

Prokka + Roary 85 197 78 

G/L=1 m=e-14 

ggCaller (sensitive) 74 161 22 

ggCaller (moderate) 74 171 21 

ggCaller (strict) 74 180 19 

Prokka + Panaroo (sensitive) 87 194 20 

Prokka + Panaroo (moderate) 82 201 19 

Prokka + Panaroo (strict) 73 229 18 

Prokka + PEPPAN 69 254 8 

Prokka + Roary 93 193 1879 

G/L=10 m=e-14 

ggCaller (sensitive) 83 170 29 

ggCaller (moderate) 82 186 29 

ggCaller (strict) 82 190 22 

Prokka + Panaroo (sensitive) 81 197 34 

Prokka + Panaroo (moderate) 81 204 33 

Prokka + Panaroo (strict) 68 228 29 

Prokka + PEPPAN 78 259 15 

Prokka + Roary 88 197 1661 

G/L=10 m=e-15 

ggCaller (sensitive) 78 183 12 

ggCaller (moderate) 78 202 13 

ggCaller (strict) 76 208 14 

Prokka + Panaroo (sensitive) 88 204 23 

Prokka + Panaroo (moderate) 82 217 23 

Prokka + Panaroo (strict) 74 239 21 

Prokka + PEPPAN 72 254 20 

Prokka + Roary 94 203 1716 

G/L=10 m=e-16 

ggCaller (sensitive) 77 174 15 

ggCaller (moderate) 76 200 14 

ggCaller (strict) 74 216 15 

Prokka + Panaroo (sensitive) 87 201 24 

Prokka + Panaroo (moderate) 81 213 23 

Prokka + Panaroo (strict) 75 233 22 

Prokka + PEPPAN 70 258 12 

Prokka + Roary 89 200 1680 

Contaminated ggCaller (sensitive) 214 174 32 
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ggCaller (moderate) 124 190 33 

ggCaller (strict) 119 196 30 

Prokka + Panaroo (sensitive) 321 200 26 

Prokka + Panaroo (moderate) 121 204 25 

Prokka + Panaroo (strict) 96 227 20 

Prokka + PEPPAN 311 257 18 

Prokka + Roary 330 199 108 

Fragmented 

ggCaller (sensitive) 90 169 425 

ggCaller (moderate) 88 187 421 

ggCaller (strict) 84 197 417 

Prokka + Panaroo (sensitive) 95 191 924 

Prokka + Panaroo (moderate) 84 199 921 

Prokka + Panaroo (strict) 69 228 917 

Prokka + PEPPAN 84 261 509 

Prokka + Roary 158 191 1445 

 

Supplementary Table 4: Comparison of Prokka runtimes and memory usage using default and custom 
databases. Prokka was run on Neisseria gonorrhoeae WHO-M (Genbank Accession: GCA_900087615.2) and 
Streptococcus pneumoniae ATCC 700669 (Genbank Accession: GCA_000026665.1). The S. pneumoniae custom 
database was retrieved from Croucher et al. (2015). The N. gonorrhoeae custom database was retrieved from 
Unemo et al., (2016). 

Species Annotation 
database 

No. 
Genomes 

No. Gene 
Annotations 
(HMM profiles) 

Runtime (mins) Peak Memory 
(Gb) 

Neisseria 
gonorrhoeae 

Default NA 32148 (2389) 0.57 0.156136 

Custom 14 32056 0.52 0.162148 

Streptococcus 
pneumoniae 

Default NA 32148 (2389) 0.58 0.154436 

Custom 616 1231479 9.47 0.434968 

 

Supplementary Table 5: Simulation parameters using infinitely many genes model. Gene gain and loss rates 
are measured in per-generation per genome. Gene mutation rate is measured in per-generation per-nucleotide. 
No. genes is the number of genes simulated (i.e. those in accessory genome), remainder are left as core genes. 
No. isolates determines how many genomes are simulated. Effective population size determines the population 
size in terms of the number of gene copies. 

Name Gene 
gain 
rate 

Gene 
loss 
rate 

Gene 
mutation 
rate 

No. 
Genes 

No. 
Isolates 

Effective 
population 
size 

Additional (custom script used) 

G/L=0.1 m=e-
14 

1e-13 1e-12 1e-14 1000 100 106 NA 

G/L=1 m=e-
14 

1e-12 1e-12 1e-14 1000 100 106 NA 

G/L=10 m=e-
14 

1e-12 1e-13 1e-14 1000 100 106 NA 

G/L=10 m=e-
15 

1e-12 1e-13 1e-15 1000 100 106 NA 

G/L=10 m=e-
16 

1e-12 1e-13 1e-16 1000 100 106 NA 

Contaminated 1e-12 1e-13 1e-14 1000 100 106 10kb fragmented Staphylococcus 
Epidermidis added per genome 
(insert_random_genome_fragments.py)  

Fragmented 1e-12 1e-13 1e-14 1000 100 106 Genomes fragmented 
(fragment_fasta.py) 
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