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Supplementary Methods

Graph indexing

The de Bruijn graph (DBG) used by ggCaller is generated by Bifrost (Holley & Melsted,
2020). Bifrost was chosen as it is highly scalable to hundreds of thousands of bacterial
genomes and has an intuitive C++ API. To build a DBG, Bifrost first generates an index of all
k-mers in the population using a blocked Bloom filter. k = 31 has been shown to provide a
good balance of efficiency and sensitivity of detection of shared/divergent sequences in
bacterial genomes (Holley & Melsted, 2020), and so is used as the default in ggCaller. Starting
with a single k-mer, Bifrost queries the presence of its suffix (length= k — 1) appended with
each of A, C, G and T within the blocked Bloom filter (Figure 1, step 1). Connections of length
k —1 between k-mer suffixes and prefixes are treated as edges. Each k-mer is assigned
colours, which describe in which genomes they are present in. Unitigs, also known as nodes,
are generated by merging unbranching k-mer paths into a single DNA sequence. Branching
paths, described by edges, represent variation within a population. A genome can be
regenerated from a DBG by traversing a path made up of nodes assigned with a specific
colour.

Once the DBG is built, ggCaller iterates over the DNA sequence in each node and
identifies stop codons in each reading frame, storing this information in a six-bit bitset, where
each bit represents a reading frame (three forward and three reverse) (Figure 1, step 2). A
bit is set to ‘1’ if at least one stop codon is present in that reading frame, and ‘0’ otherwise.
ggCaller stores the node colours in a separate bitset; as the colours of the constituent k-mers
within a node may not all be identical due to contig breaks (Schulz et al., 2022), ggCaller takes
the intersection of the colours of the start and end k-mers for each node to calculate node
frequency. ggCaller additionally determines the frequency of stop codons for each reading
frame within the graph by counting the number of set bits. For accurate start site identification,
ggCaller also identifies the first base of all start codons, and k — 1 downstream bases (k
chosen as this is the shortest possible node length). This sequence is then translated into its
respective amino acid sequence and further split into I-mers (I = m /3, where m = Bifrost
minimiser size, chosen to ensure sufficient coverage of each start site). The coverage of each
I-mer is calculated within the population and stored in a robin-hood unordered map to be used
using graph traversal. Using amino-acid I-mers reduces the impact of small mutations on the
calculation of start site frequency, which would otherwise make start sites of non-identical
orthologues appear less frequent.

As Bifrost does not consider sequence contiguity from input genomes when inferring
edges, traversal of a Bifrost DBG can result in generation of sequences that are not present
in the original genomes (Bfinda et al., 2021). To prevent this, candidate paths are queried
against input genomes to ensure they are present as contiguous sequence in the input. An
FM-index is built from each genome in node space (using node identifiers rather than DNA
sequence) using kseq (https://github.com/Ih3/seqtk) and SDSL v3 (Gog et al., 2014), to which
paths can be compared during traversal. Building an FM-index using node identifiers rather
than DNA sequence greatly reduces the size of the index, reducing the memory and time
required to load and search the index.



Stop codon search using iterative graph traversal

ggCaller uses an iterative depth first search (DFS) algorithm to pair stop-codons in the
same reading frame (Figure 1, step 3a). To reduce the search space, ggCaller traverses the
DBG colour-by-colour (i.e. sample-by-sample). Starting at a source node containing at least
one stop codon, ggCaller iteratively visits all neighbour nodes with the same colour, with each
neighbour added to the top of a stack. Each iteration of the algorithm removes the top node
from the stack and visits its neighbours with the same colour as the source node. As each
neighbour is visited, the complete path in node space is queried against an FM-index of the
given colour to ensure the path is also contiguous in the underlying genome (Figure 1, step
3b). This process is repeated until all stop codons in the source node have been paired with
a downstream stop codon in the same reading frame. This is how designated as a complete
‘stop-to-stop’ path. This process is repeated for each node containing at least one stop codon,
and for each colour in the DBG.

ORF identification within stop-to-stop paths

For each complete ‘stop-to-stop’ path, ggCaller identifies all possible start codons in the path
and pairs them with their respective downstream stop codons to generate a list of candidate
ORFs (Figure 1, step 4). Starting at the start site for the longest possible ORF, start positions
for consecutively shorter ORFs are compared to the current ‘high-scorer’, with the score
dictated by: i) the translation initiation site score given by Balrog, ii) the median population
coverage for all amino-acid I-mers in the start site, and iii) the number of times the start site
has been chosen as the high-scorer in orthologous ORFs. For a start position of a shorter
ORF to be chosen as a high-scorer, it must ‘win’ in 2/3 of the above criteria against the
previous high-scorer.

To avoid checking start positions of short ORFs that are likely to be incorrect, their start
sites are penalised using a probabilistic model. As genes are characterised by long stretches
of DNA without two stop codons in the same reading frame, the average frequency of stop
codons within genes will be lower than the population average. Therefore, short ORFs can be
penalised based on the probability of observing the longer of two ORFs if stop codons
occurred at a constant rate (Equation 1). This is given by the population stop-codon frequency
(p) and the difference in length between the long (l;,,,4) and short (ls4,,¢) ORF. This gives the
probability of the longer ORF occurring by chance if stop codons occurred randomly at the
population average frequency (q). q is only calculated between the current high-scorer and
next start site in the iteration. If g falls below a threshold, meaning the probability of observing
the current high scorer is unlikely by chance, all subsequent shorter ORFs are ignored. A
default of g < 0.2 (i.e. <20% probability of longer ORF occurring by chance) was chosen, as
this provides a good trade-off between sensitivity and precision.

Equation 1:

q= (1 — p)llong_lshort



ORF clustering and gene scoring

At this stage, all ORFs have been identified across all colours. However, many of these
sequences are similar, so to remove redundancy from downstream scoring and pangenome
steps, ggCaller first clusters ORFs using an algorithm with a similar approach to Linclust
(Steinegger & Soding, 2018), but adapted for DBG sequences (Figure 1, step 5). Firstly,
ggCaller identifies all sets of ORFs which share at least one node as candidate clusters,
placing them in a ‘node group’, and identifies the largest ORF for each node group as a centre
sequence. ggCaller then translates every ORF and aligns them with the centre sequence of
the node group(s) it belongs to using Edlib (So$i¢ & Siki¢, 2017). If the comparison surpasses
a given identity and length cut-off, the ORF is clustered with the centre sequence. A default of
98% for identity and length cut-off was chosen, as these are the initial clustering parameters
used in Panaroo for identifying orthologues. For ORFs that do not cluster with a centre
sequence, the process is repeated until each ORF is either paired with a centre sequence, or
is a centre sequence itself.

Centre sequences are then scored based on how likely they are to be a real coding
sequence by using Balrog (Figure 1, step 6). Balrog uses a temporal convolutional network
which generates an average score per amino-acid residue, which is incorporated with start
codon sequence, the length and TIS score to generate an individual score for each ORF in
the cluster. ORFs with a score below a pre-defined cut-off (default = 100, as used in Balrog)
are removed from the set. Those surpassing the score are regarded as candidate protein
coding sequences (CDSs).

CDS filtering

In the final prediction step, overlapping CDSs must be filtered to pick the most likely
final gene calls. This is achieved by finding the highest-scoring tiling path through regions of
the DBG with overlapping CDSs. Overlaps between CDSs are first calculated for each colour
using a sparse matrix generated using Eigen v3 (Guennebaud, Jacob et al., 2010). Each row
in the sparse matrix is an CDS ID and each column is a node in the DBG, with ‘1’ in each cell
where the node is contained within the ORF, and ‘0’ otherwise. This matrix is multiplied by the
transpose of itself, resulting in a sparse matrix with CDS IDs on both rows and columns, and
non-zero values off the diagonal indicating ORFs that share at least one node and therefore
have a potential overlap. ggCaller then iterates over these potential overlaps, and identifies
whether each pair of CDSs genuinely overlap, or whether they simply share sequence, such
as a repeated motif. Overlaps are calculated using respective DBG coordinates of each CDS.
If two CDSs do overlap, then the number of overlapping base-pairs is calculated, as well as
the direction of the overlap.

For each set of overlaps, ggCaller then generates a subgraph of these CDSs as a
directed graph using the boost graph library (Siek et al., 2002), where each node is an CDS,
and each edge is an overlap (Figure 1, step 7). Each node is labelled with the respective
score for that CDS, and each edge with the overlap penalty calculated from the size of the
overlap and the penalty scores provided by Balrog. The graph is then separated into
connected components, and each component is traversed using the Bellman-Ford algorithm
(Bellman, 1958; Ford & Fulkerson, 1962) to determine the highest scoring path. The Bellman-
Ford algorithm requires two small modifications to the graph: all scores are multiplied by -1,
and all cycles in the graph are pruned via removal of back edges (Siek et al., 2002). A transitive
closure is then generated, which connects all upstream nodes to all downstream nodes that
have a viable path between them. This step enables skipping of CDSs mid-way within a path
if a higher scoring path is present. CDSs present in the highest-scoring path are returned as
‘true’ gene-calls.



Pangenome analysis using DBG-based Panaroo

Panaroo builds gene graphs and applies filtering criteria to prune false positive gene
calls, and gene refinding to mitigate false negatives. We integrated these steps into ggCaller
for the same advantages, and to simultaneously and efficiently produce an annotated
pangenome matrix. The original version of Panaroo (Tonkin-Hill et al., 2020) operates on linear
genome annotations; a gene graph is then generated by CD-hit (Li & Godzik, 2006) iteratively
clustering genes, and adjacency information between genes drawn from input assemblies. As
it would be redundant to regenerate this information from the above annotations, we
implemented a modified version that works directly with the ggCaller annotated graph (Figure
1, step 8). Genes which do not have existing neighbours from the overlap step are connected
to a neighbour via a DFS of the DBG for each colour. All connected genes are used to generate
a gene graph, where genes are added to the same nodes if they belong to the same clusters
calculated previously. We implemented the same three stringency settings as Panaroo for
removing spurious COGs. Spurious COGs are identified as those at the end of contigs (i.e.
have 0/1 edges), or are in a separate component to the majority of COGs. Each stringency
mode removes spurious COGs below a certain population frequency (strict: <5%, moderate:
<1%, sensitive: none removed).

We also included several alterations to the original Panaroo algorithm. After the initial
collapse of gene families, each gene cluster is functionally annotated (i.e. predicted gene
name and function through similarity search) based on alignment of each cluster's centre
sequence to a pre-defined annotation database using DIAMOND (Buchfink et al., 2014) and
HMMER3 (Eddy, 2009). This annotation is then shared across all members of the cluster. This
cluster-by-cluster annotation approach scales more efficiently than existing linear genome
annotation tools when analysing many genomes at once. We provide two default annotation
databases; UniProt (Bateman et al., 2021) (queried ‘Bacteria’ and ‘Virus’, only reviewed
sequences included) for DIAMOND and HMM profiles from Prokka (Seemann, 2014) for
HMMER3. Custom databases can also be provided (amino acid FASTA for DIAMOND, HMM-
profiles generated by ‘hmmbuild’ for HMMER3). Gene-refinding, which is implemented in
Panaroo to search for missing gene-calls within linear genomes, has been altered to work
within the Bifrost DBG. We also simplified within-cluster alignment, replacing the choice of
aligners with only MAFFT. We implemented two options for running MAFFT: i) default mode,
where all sequences are aligned together, and ii) reference mode, where centre sequences
are aligned together, and then the remainder of sequences are aligned in reference-guided
mode. The former is faster when only a few sequences are present in each cluster, whereas
the latter can be used to speed-up alignment of large clusters.

Querying of sequences within an annotated DBG

ggCaller supports querying new sequences against an annotated DBG, which is useful
during functional inference of significant hits in pangenome wide association studies. Multiple
guery sequences can be supplied, which are broken into k-mers and queried against the graph
using the Bifrost ‘query’ function. This identifies all node sequences that are found in the query
sequence. As all CDSs identified by ggCaller are indexed by node, any that share at least one
node with the query sequences are returned. Returned CDSs are output in FASTA format,
detailing the query or queries with which they overlap, and the genome(s) in which they are
found.



Output files and plots

By default, ggCaller generates FASTA files of all CDSs in nucleotide and amino-acid
format. ggCaller also generates the same files as Panaroo (except for gene_data.csv, a
summary of CDSs and their annotation, all of which is included in ggCaller FASTA files),
including a gene-presence absence matrix, annotated graph in GML format, and per-cluster
alignments in FASTA format. If annotation is specified, ggCaller can also generate GFF files
for assemblies included in the DBG. We also implemented pairSNP-cpp
(https://github.com/gtonkinhill/pairsnp-cpp) and Rapidnj (Simonsen et al., 2008) to rapidly
generate SNP distance matrices, and neighbour-joining Newick trees of all input genomes.
ggCaller also generates within-cluster alignments and concatenated core-genome alignments
for phylogenetic analysis. Additionally, ggCaller uses SNP-sites (Page et al., 2016) to identify
single nucleotide polymorphisms in alignments in VCF format. ggCaller also generates
summary graphs, including a rarefaction curve for estimating pangenome ‘openness’ (Tettelin
et al., 2005), and gene frequency distributions (Baumdicker et al., 2010), either in terms of
cluster size or population proportion.

Computational optimizations

ggCaller is written in C++ and Python, and is parallelizable through use of OpenMP
(Dagum & Menon, 1998) and Python’s multiprocessing module. ggCaller relies on robin-hood
hash maps for in-memory storage of ORF graph coordinates, which are more time and
memory efficient than standard C++ unordered maps (https://github.com/martinus/robin-hood-
hashing). ggCaller reimplements the Balrog model of translation initiation site and gene
structure (Sommer & Salzberg, 2021). The temporal convolutional network structure and
weights are rewritten using torch to enable direct C++ integration (Collobert et al., 2002).
These models were initially trained using pytorch and compatible only with a Python API
(Paszke et al., 2019), with torch reimplementation improving model querying speed and
enabling parallelisation using shared memory. ORF scores generated by Balrog are stored in
a lock-free dictionary which can be accessed by independent threads to avoid rescoring the
same sequence. ggCaller builds an FM-index using node identifiers instead of DNA sequence
to identify incorrect paths generated during DBG traversal. This significantly reduces time and
memory requirements during FM-index querying.



https://github.com/gtonkinhill/pairsnp-cpp
https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing
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Supplementary Figure 1: 3’ accuracy of gene prediction comparison for pneumococcal capsular
biosynthetic operons with and without fragmentation. The scatterplot compares precision and recall for gene
predictions, for which the 3’ end matches that of a ground-truth sequence. A 5° match between the prediction and
ground-truth is allowed but not required.
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Supplementary Figure 2: Length comparison of shared False positives (FPs) between ggCaller and
comparator tools when applied to pneumococcal capsular biosynthetic operons without fragmentation.
Horizontal panels describe the comparator gene-prediction tools which share FPs with ggCaller. Colours describe
whether the FP matches the 3’ end of a ground truth sequence but mismatches at the 5’ end (3’ Present) or if the
FP is a spurious prediction (3’ Absent). Dashed line is the line of identity.
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Supplementary Figure 3: Length comparison of False positives (FPs) exclusive to each tool between
ggCaller and comparator gene-prediction tools when applied to pneumococcal capsular biosynthetic
operons without fragmentation. Colours describe whether the FP matches the 3’ end of a ground truth sequence
but mismatches at the 5’ end (3’ Present) or if the FP is a spurious prediction (3’ Absent).
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Supplementary Figure 4: Comparison of estimated core, accessory and total pangenome sizes across
simulated populations for simulations not included in Figure 3. Panels describe simulations with simple (A)
and complex (B) sources of error. Bars indicate the predicted number of COGs for each workflow. Ground truth
values are represented by the grey dotted line in each panel. Horizontal panels describe simulation parameters,
vertical panels describe COG frequency; core (99% < x < 100%), accessory (0 £ x < 99%) and total (0 < x <
100%).
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Supplementary Figure 5: Comparison of COG annotation accuracy across simulated populations for
simulations not included in Figure 4. False negatives (top) are COGs that were present in the ground-truth set
but not called by a workflow. False positives (bottom) are COGs that were called by a workflow but were not present
in the ground-truth set.
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Supplementary Figure 6: Comparison of number of COGs that contain at least one prediction error. For a
COG to have a prediction error, it must contain an incorrectly predicted gene in one of the individual genomes. This
can either be a gene called by a workflow which is missing in the ground truth (false positive), or a gene that is
missed by a workflow present in the ground truth (false negative).
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Supplementary Figure 7: COG prediction consistency across pangenome analysis workflows for real
bacterial genome datasets. Plots show number of sequences with a COG (top) and within-COG Coefficient of
Variation (CV) of CDS lengths (bottom). Refound genes and sequences annotated as ‘pseudogenes’ were
removed from ggCaller and PEPPAN respectively. Points and bars highlight average and standard error
respectively  Horizontal panels describe species datasets: M. tuberculosis from Cohen et al., (2015),
S. pneumoniae from Croucher et al., (2015), E. coli from Kallonen et al., (2017).
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Supplementary Figure 8: Comparison of within-COG stop site soft-clipping across ggCaller, Prokka and
the original S. pnuemoniae Massachusetts dataset. (A) Description of stop site soft clipping. (B) Boxplot
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with the manually annotated reference in Spn23F.
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Supplementary Figure 9: Core genome neighbour-joining tree generated by ggCaller annotated with
resistance phenotype and AMR gene presence in S. pneumoniae. Trees were built from (A) 325 isolates with
tetracycline MIC data and (B) 604 isolates with erythromycin data (Croucher et al., 2015). Trees were displayed
using Microreact (Argimoén et al., 2016). Key for core SNP-distance to branch length shown in bottom left corner of
each panel. Blocks to right of trees describe sequence clusters assigned in Croucher et al., drug resistance
phenotype and AMR gene presence identified by ggCaller.
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Supplementary Figure 10: Comparison of de Bruijn Graph complexity and ggCaller computational
performance. Nodes refer to unitigs within a de Bruijn Graph, edges refer to connections between nodes. Point
labels indicate the number of isolate genomes included in analysis. All analyses were run with 16 threads. Colours
describe dataset: S. pneumoniae (Massachusetts), dataset from Croucher et al., (2015); S. pneumoniae (Global),
dataset from Gladstone et al., (2019); N. gonorrhoeae (Global), dataset from Blackwell et al., (2021).
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Supplementary Figure 11: Fold speed-up of ggCaller over Prokka + Panaroo for increasing dataset size.
Fold speed-up was calculated by dividing the runtime of Prokka + Panaroo by that of ggCaller for runs with identical
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N. gonorrhoeae (Global), dataset from Blackwell et al., (2021).
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Supplementary Figure 12: Computational performance comparison between ggCaller and pangenome
analysis workflows. Workflows were run across three datasets: (A) S. pneumoniae (Massachusetts), dataset
from Croucher et al., (2015); (B) S. pneumoniae (Global), dataset from Gladstone et al., (2019); (C) N. gonorrhoeae
(Global), dataset from Blackwell et al., (2021). Workflows were split into gene prediction and annotation (Prokka)
and pangenome analysis (Panaroo, PEPPAN and Roary), with the exception of ggCaller, which includes all of
these processes. PEPPAN did not finish with 2000 Global S. pneumoniae genomes. All tools were run using 16
threads.
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Supplementary Figure 13: Gene prediction consistency across pangenome analysis tools on three
pathogen datasets. Workflows were compared on the number of gene sequences within each COG (top) and
within-COG sequence length coefficient of variation (CV) (bottom). Points and bars describe the mean and
standard error of each distribution respectively. Horizontal panels dataset: S. pneumoniae (Massachusetts),
dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al., (2019); N.
gonorrhoeae (Global), dataset from Blackwell et al., (2021).
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describe COG frequency; core (99% < x <100%), accessory (0 < x <99%) and total (0 < x<100%). S. pneumoniae
(Massachusetts), dataset from Croucher et al., (2015); S. pneumoniae (Global), dataset from Gladstone et al.,
(2019); N. gonorrhoeae (Global), dataset from Blackwell et al., (2021). The fall in core genome size observed at
N=50 genomes for N. gonorrhoeae in ggCaller, Panaroo and Roary is likely due to biased sampling of a particular
lineage, as it is does not occur at smaller or larger sample sizes.
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Supplementary Tables

Supplementary Table 1: Counts of shared and unique False positives (FP) and False negatives (FN)
between ggCaller and other gene-prediction tools when applied to pneumococcal capsular biosynthetic
operons without fragmentation. FN and FP were calculated based on exact matching to ground truth sequences,
meaning 3’ and 5’ ends must match for identification. If only the 3’ end matches between a prediction and ground
truth, these sequences are designated as ‘3’ present’. If the prediction does not match the 5’ or 3’ end of any ground
truth, this sequence is designated as ‘3 absent'.

Comparator Error type present Error presence Count

Both 6
3' Present ggCaller 4
Ep GeneMarkS-2 + Panaroo 3

Both 12

GeneMarkS-2 + Panaroo 3' Absent ggCaller 13
GeneMarkS-2 + Panaroo 6
Both 6
FN 3' Present ggCaller 4
GeneMarkS-2 + Panaroo 3
Both 5
3' Present ggCaller 5
Ep Prokka + Panaroo 1

Both 17
Prokka + Panaroo 3' Absent ggCaller 8
Prokka + Panaroo 2
Both 5
FN 3' Present ggCaller 5
Prokka + Panaroo 1
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Supplementary Table 2: Core, Accessory and Total pangenome size estimates for simulated bacterial
populations. Ground-truth values for each simulation are highlighted in bold. COG categories by frequency; core
(99% < x £ 100%), Accessory (0 < x <99%) and total (0 < x < 100%).

Simulation Workflow Core COGs Accessory COGs Total COGs
Ground-truth 2243 16 2259
ggCaller (sensitive) 2147 214 2361
ggCaller (moderate) 2146 189 2335
ggCaller (strict) 2145 161 2306
G/L=0.1 m=e-14 Prokka + Panaroo (sensitive) 2088 92 2180
Prokka + Panaroo (moderate) 2088 92 2180
Prokka + Panaroo (strict) 2074 66 2140
Prokka + PEPPAN 2066 69 2135
Prokka + Roary 2013 241 2254
Ground-truth 2143 116 2259
ggCaller (sensitive) 2068 294 2362
ggCaller (moderate) 2065 253 2318
ggCaller (strict) 2068 221 2289
G/L=1 m=e-14 Prokka + Panaroo (sensitive) 1990 196 2186
Prokka + Panaroo (moderate) 1990 196 2186
Prokka + Panaroo (strict) 1980 153 2133
Prokka + PEPPAN 1977 149 2126
Prokka + Roary 1841 478 2319
Ground-truth 1826 433 2259
ggCaller (sensitive) 1778 565 2343
ggCaller (moderate) 1772 531 2303
ggCaller (strict) 1777 488 2265
G/L=10 m=e-14 Prokka + Panaroo (sensitive) 1700 489 2189
Prokka + Panaroo (moderate) 1700 474 2174
Prokka + Panaroo (strict) 1688 447 2135
Prokka + PEPPAN 1695 433 2128
Prokka + Roary 1585 686 2271
Ground-truth 1844 415 2259
ggCaller (sensitive) 1802 495 2297
ggCaller (moderate) 1800 454 2254
ggCaller (strict) 1801 436 2237
G/L=10 m=e-15 Prokka + Panaroo (sensitive) 1737 439 2176
Prokka + Panaroo (moderate) 1735 417 2152
Prokka + Panaroo (strict) 1723 488 2211
Prokka + PEPPAN 1708 416 2124
Prokka + Roary 1668 543 2211
Ground-truth 1771 488 2259
ggCaller (sensitive) 1739 556 2295
ggCaller (moderate) 1746 507 2253
G/L=10 m=e-16 ggCaller (strict) 1745 478 2223
Prokka + Panaroo (sensitive) 1682 496 2178
Prokka + Panaroo (moderate) 1682 471 2153
Prokka + Panaroo (strict) 1667 445 2112
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Prokka + PEPPAN 1655 455 2110
Prokka + Roary 1602 586 2188
Ground-truth 1826 433 2259
ggCaller (sensitive) 1772 763 2535
ggCaller (moderate) 1768 584 2352
ggCaller (strict) 1771 540 2311
Contaminated Prokka + Panaroo (sensitive) 1715 790 2505
Prokka + Panaroo (moderate) 1715 501 2216
Prokka + Panaroo (strict) 1703 453 2156
Prokka + PEPPAN 1688 780 2468
Prokka + Roary 1605 1004 2609
Ground-truth 1826 433 2259
ggCaller (sensitive) 1743 1161 2904
ggCaller (moderate) 1737 822 2559
ggCaller (strict) 1725 700 2425
Fragmented Prokka + Panaroo (sensitive) 1333 1463 2796
Prokka + Panaroo (moderate) 1333 872 2205
Prokka + Panaroo (strict) 1322 805 2127
Prokka + PEPPAN 1531 754 2285
Prokka + Roary 666 1726 2392
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Supplementary Table 3: COG annotation accuracy results for simulated bacterial populations. False
positives are COGs that were called by a workflow but were not present in the ground-truth set. False negatives
are COGs that were present in the ground-truth set but not called by a workflow. COGs containing errors have an
incorrectly predicted gene in at least one individual genome, either a gene that is called when absent, or missed
when present.

Parameters Workflow False positives False negatives 21 Error
ggCaller (sensitive) 72 160 34
ggCaller (moderate) 72 162 34
ggCaller (strict) 72 172 27
G/L=0.1 m=e-14 Prokka + Panaroo (sensitive) 84 197 17
Prokka + Panaroo (moderate) 78 197 17
Prokka + Panaroo (strict) 71 219 17
Prokka + PEPPAN 68 253 16
Prokka + Roary 85 197 78
ggCaller (sensitive) 74 161 22
ggCaller (moderate) 74 171 21
ggCaller (strict) 74 180 19
G/L=1 m=e-14 Prokka + Panaroo (sensitive) 87 194 20
Prokka + Panaroo (moderate) 82 201 19
Prokka + Panaroo (strict) 73 229 18
Prokka + PEPPAN 69 254 8
Prokka + Roary 93 193 1879
ggCaller (sensitive) 83 170 29
ggCaller (moderate) 82 186 29
ggCaller (strict) 82 190 22
G/L=10 m=e-14 Prokka + Panaroo (sensitive) 81 197 34
Prokka + Panaroo (moderate) 81 204 33
Prokka + Panaroo (strict) 68 228 29
Prokka + PEPPAN 78 259 15
Prokka + Roary 88 197 1661
ggCaller (sensitive) 78 183 12
ggCaller (moderate) 78 202 13
ggCaller (strict) 76 208 14
G/L=10 m=e-15 Prokka + Panaroo (sensitive) 88 204 23
Prokka + Panaroo (moderate) 82 217 23
Prokka + Panaroo (strict) 74 239 21
Prokka + PEPPAN 72 254 20
Prokka + Roary 94 203 1716
ggCaller (sensitive) 77 174 15
ggCaller (moderate) 76 200 14
ggCaller (strict) 74 216 15
G/L=10 m=e-16 Prokka + Panaroo (sensitive) 87 201 24
Prokka + Panaroo (moderate) 81 213 23
Prokka + Panaroo (strict) 75 233 22
Prokka + PEPPAN 70 258 12
Prokka + Roary 89 200 1680
Contaminated ggCaller (sensitive) 214 174 32
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ggCaller (moderate) 124 190 33
ggCaller (strict) 119 196 30
Prokka + Panaroo (sensitive) 321 200 26
Prokka + Panaroo (moderate) 121 204 25
Prokka + Panaroo (strict) 96 227 20
Prokka + PEPPAN 311 257 18
Prokka + Roary 330 199 108
ggCaller (sensitive) 90 169 425
ggCaller (moderate) 88 187 421
ggCaller (strict) 84 197 417
Fragmented Prokka + Panaroo (sensitive) 95 191 924
Prokka + Panaroo (moderate) 84 199 921
Prokka + Panaroo (strict) 69 228 917
Prokka + PEPPAN 84 261 509
Prokka + Roary 158 191 1445

Supplementary Table 4: Comparison of Prokka runtimes and memory usage using default and custom
databases. Prokka was run on Neisseria gonorrhoeae WHO-M (Genbank Accession: GCA_900087615.2) and
Streptococcus pneumoniae ATCC 700669 (Genbank Accession: GCA_000026665.1). The S. pneumoniae custom
database was retrieved from Croucher et al. (2015). The N. gonorrhoeae custom database was retrieved from
Unemo et al., (2016).

Species Annotation No. No. Gene | Runtime (mins) Peak Memory
database Genomes Annotations (Gb)
(HMM profiles)
Neisseria Default NA 32148 (2389) 0.57 0.156136
gonorrhoeae Custom 14 32056 0.52 0.162148
Streptococcus Default NA 32148 (2389) 0.58 0.154436
pneumoniae Custom 616 1231479 9.47 0.434968

Supplementary Table 5: Simulation parameters using infinitely many genes model. Gene gain and loss rates
are measured in per-generation per genome. Gene mutation rate is measured in per-generation per-nucleotide.
No. genes is the number of genes simulated (i.e. those in accessory genome), remainder are left as core genes.
No. isolates determines how many genomes are simulated. Effective population size determines the population
size in terms of the number of gene copies.

Name Gene | Gene Gene No. No. Effective Additional (custom script used)
gain loss mutation | Genes | Isolates | population
rate rate rate size
G/L=0.1 m=e- | 1e® le?? le 1000 100 108 NA
14
G/L=1 m=e- | 1e*? le?? le 1000 100 108 NA
14
G/L=10 m=e- | 1le?? | 1e'® le4 1000 100 106 NA
14
G/L=10 m=e- | 1e*? le®® le'® 1000 100 108 NA
15
G/L=10 m=e- | 1e*? le®® lel® 1000 100 108 NA
16
Contaminated | 1e*? | 1e™® le 1000 100 108 10kb  fragmented  Staphylococcus
Epidermidis added per genome
(insert_random_genome_fragments.py)
Fragmented le'? | 1e® le 1000 100 108 Genomes fragmented
(fragment_fasta.py)
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