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Supplemental Note S1. On concerns regarding the biological relevance of our model
simulations and parameter choice.

We used simulations of kinetic models to compare the two methods in Fig. 2, i.e., pre-mRNA-
based and mRNA-based. Using model simulation, we compared them under a range of
parameter sets. Concerns may arise as the simulations of the model may not accurately
capture the behaviors of real networks, making it challenging to validate the enhanced
performance of our proposed pre-mRNA-based method compared to the mRNA-based
method. We would like to address such concerns with the following clarifications.

We would like to clarify that the kinetic rates used in our study were not arbitrary. These
rates were based on experimental measurements from a previous study (Rabani et al. 2014),
which allowed us to select default kinetic parameters according to the median values
measured in that study. We further collected experimentally measured RNA half-lives and
splicing rates from several literature studies (Table SN1 and Table SN2) to justify that the ranges
of parameters used in Fig. 2 are biologically reasonable. Importantly, from these
experimentally determined parameters, it is apparent that mRNA half-life is typically on the
order of hours and the pre-mRNA splicing time is typically on the order of minutes, and such
ranges of parameters were covered in our analysis in Fig. 2. Although we cannot provide a
gene-specific estimation of parameters, we believe that it is appropriate and acceptable
practice to computationally enumerate possible combinations of parameters (as in Fig. 2) in
order to provide a quantitative understanding of the model behavior. More generally, in our
simulations, we intentionally varied these parameters to explore the trends and principles
underlying the determination of GRN inference accuracy. By doing so, we aimed to provide
useful rules and principles that indicate when the inference would be accurate or inaccurate.
It is important to note that these simulations are not intended to model the networks in real

experimental datasets but rather serve as a means for understanding general rules and

principles.
Cell type Median mRNA half-life Reference DOI
Hela TO cells 3.4 h 10.1101/gr.130559.111
Human K562 cells 50 min 10.1126/science.aad9841
Mouse ESC 3.9h 10.1038/nmeth.4435




Human K562 cells 8.5h 10.1021/jacs.8b08554
Mouse ESC 7.1h 10.1093/dnares/dsn030
Human B cell 315 min 10.1093/nar/gkp542
Mouse fibroblasts 274 min 10.1093/nar/gkp542
Mouse DC 86.1 min 10.1016/j.cell.2014.11.015

Table SN1. Experimentally measured mRNA half-lives from 8 separate literatures.

Cell type Typical splicing time Reference DOI
Drosophila 2 min 10.7554/elife.32537
Human neuroblastoma cell 5-10 min 10.1038/nsmb.1666
Human U20S cell 0.4-7 min 10.1083/jcb.201009012
Human HEK293 2.5-3 min 10.1016/j.celrep.2013.08.013
Mouse DC 14 min 10.1016/j.cell.2014.11.015

Table SN2. Experimentally measured pre-mRNA splicing time from 5 separate literatures.

We acknowledged the concern that kinetic rates are highly dependent on gene and cell-
type or tissue context. Our intention in varying the parameters was to explore a wide range of
possible kinetic scenarios and not to restrict ourselves to a specific biological context. This
approach allowed us to gain insights into the general principles governing GRN inference
accuracy, which can be applicable across different biological settings. It should also be noted
that for a range of parameter combinations, we showed that pre-mRNA is not necessarily
better than mRNA in terms of capturing upstream regulatory activity dynamics, thus
illustrating potential biological settings where pre-mRNA would perform worse than mRNA for
GRN inference.

We next explained why we cannot simply use rates inferred from scVelo in the analysis of
our model. We have carefully examined the validity of the parameters inferred from a typical
scRNA-seq dataset using the scVelo tool, such as the splicing rate parameter and the mRNA
degradation rate parameter, and found that the software cannot provide an accurate
estimation of such rate parameters. More specifically, as illustrated in the tutorial from the
scVelo website (https://scvelo.readthedocs.io/en/stable/DynamicalModeling/), the inferred
pre-mRNA splicing rates are on the same order of magnitude as the mRNA degradation rates.
Notably, such a result is in sharp contrast with the experimentally determined results (Table
SN1 and Table SN2), as the measured splicing rate is much faster than the mRNA degradation

rate.



Supplemental Note S2. On the comparison between AEP and AUPR metrics

We have analyzed the performance of our inferred networks using both AEP (Average Early
Precision) and AUPR as two separate metrics. Although we used AUPR to evaluate networks
inferred from experimental single-cell datasets, we believed that AEP is a more appropriate
and informative metric, which focuses on the most confident links in the inferred network.
More specifically, we observed that AUPR is generally less sensitive than AEP, particularly when
evaluating the results using the Motif database as the ground truth (Fig. 4E-F). For a few
datasets evaluated using AUPR, the mRNA-based method performed better than the pre-
mRNA-based method, and it was unclear what factors might have contributed to this
observation, which necessitates further investigations. Nevertheless, we believe that including
AUPR as an additional performance metric can provide valuable insights into the global

performance of our inferred networks.

Supplemental Note S3. Analysis using transcription factor induction datasets.

In order to further demonstrate the enhanced performance of the pre-mRNA-based method
over the mRNA-based method, we chose to compare the inferred GRNs from datasets where
exogenously induced TFs were used to program cell fates. The rationale is that we should be
able to recover the TFs being induced in the inferred network without needing to rely on GRN
databases as the ground truth. More specifically, we utilized scRNA-seq data generated by
Hersbach et al., 2022, particularly the Ascll-Hnfla-Myod1-Oct4_induction_24h_biol repl
dataset (GSM6504514) and the Ascll-Hnfla-Myod1-Oct4_induction_48h_biol_repl dataset
(GSM6504515). In these experiments, the authors induced cell fate transition in mouse
embryonic fibroblast cells using several TFs.

We first compared the inferred GRNs of the first dataset, i.e., at 24 h post-induction using
the pre-mRNA-based or the mRNA-based method (Supplemental Fig. S6C). For the GRN
inferred using the pre-mRNA-based method, two of the largest hub TFs (i.e., Ascll and Myod1)
belonged to the TFs being exogenously expressed, which are as expected. For the GRN inferred
using the mRNA-based method, one of the hub nodes was the ribosomal protein Rps4x, which
was comparable in size to the TF being induced (i.e., Ascll). Thus, it appears that the pre-

mRNA-based method better captured the immediate regulatory effects caused by the



exogenous TFs at the 24 h time point. We next compared the inferred GRNs at 48 h post-
induction (Supplemental Fig. S6D). The top hub nodes in the GRN inferred using the pre-
MRNA-based method became ribosomal proteins while the top hub nodes for the mRNA-
based method were still the TFs being induced (i.e., Myod1 and Ascl1).

Based on the results from the two post-induction time points, we reasoned that the pre-
mRNA-based method captured the transient up-regulation of the target genes of Ascll and
Myod1, which led to much more enhanced pre-mRNA levels of target genes at 24 h compared
to at 48 h. In contrast, because mRNA levels of target genes were used for inference for the
mRNA-based method, relatively persistent activities of Ascll and Myodl were inferred,
instead of transient bursts of activities. Because it is known that a step increase in TF
expression typically leads to an adaptive response in downstream gene expression (i.e., a
transient pulse of target activation), we reasoned that the pre-mRNA-based method appeared

to capture such an adaptive response more accurately compared to the mRNA-based method.
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Supplemental Figure S1. Using model simulations to compare pre-mRNA and mRNA dynamics.

(A) Kinetic model used for simulating transcriptional regulation. In the first equation, unspliced mRNA level
(pre-mRNA level) is increased by transcription at the rate of g(t)a and is then reduced by splicing at the rate
of Bu. In the second equation, spliced mRNA level is increased by splicing at the rate of fu and is reduced by
degradation at the rate of ys.

(B) Schematics illustrating the calculation of inference accuracy. Simulated pre-mRNA (red) or mRNA (blue)
trace was used to calculate inference accuracy, defined by the overlap between the binarized expression
trace and the regulatory activity trace (i.e., g(t)).

(C) Simulated pre-mRNA and mRNA traces for a gene with high expression level and fast regulation (i.e., short
T, asin Fig. 2A). The bar graph shows the calculated inference accuracies of the two traces.

(D) Simulated pre-mRNA and mRNA traces for a gene undergoing four different types of transcriptional regu-
lation and the corresponding inference accuracies.

(E) The effect of regulation time (T_ ) on the accuracies of pre-mRNA-based and mRNA-based methods.

(F) Stochastically simulated pre-mRNA and mRNA traces for a gene with low expression level and slow regula-
tion (i.e., long T ). Note that with this parameter set, the inference accuracy of pre-mRNA is worse than
mMRNA.

(G) The effect of transcription rate on the accuracies of pre-mRNA-based and mRNA-based methods in the
presence of stochasticity.
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Supplemental Figure S2. Schematics illustrating the pipeline of simulation using the dyngen package.
Simulation started with the choice of network backbones and kinetic parameters, and the dyngen pack-
age was used for performing stochastic dynamic simulations. The output trajectories were converted
into count matrices (see Methods), which were then used for network inference using GENIE3. Panels
on the right contain example outputs showing how AUPR can be different across simulation replica-
tions.
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Supplemental Figure S3. Network backbones and types of dynamics in the simulation.

(A) Four types of network backbones used in simulations. Example networks for each type are shown. Red edges
represent activation, while blue edges represent inhibition.

(B) Examples of four typical types of dynamics observed in simulations.

(C) Pie chart illustrating the numbers of TFs exhibiting different types of activity dynamics in each backbone. Note
that the classification was based on dynamics shown in B.

(D) Comparative analysis of GRN inference algorithm performance on a synthetic dataset (with bifurcating back-
bone, 200 genes, 750 cells) generated by dyngen, demonstrating the impact of using different input matrices,
including pre-mRNA (target)/mRNA (regulator), total counts (mRNA plus pre-mRNA) for both target and regulator,
and mRNA for both target and regulator. Six algorithms were tested: (1) correlation, (2) propr, (3) ARACNE, (4) PIDC,
(5) TIGRESS, and (6) GENIES3.

(E) Boxplots showing the comparison between pre-mRNA-based method and mRNA-based method in four back-
bones. The ratio of AUPR between pre-mRNA and mRNA was calculated for each backbone (related to Fig. 3B).
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Supplemental Figure S4. Factor-dependency analysis in simulated datasets.
(A) The effect of transcription rate on network inference accuracy in four backbones. Four different transcription rates were
used for separate simulations. Error bars indicate S.D., n = 10.
(B) The effect of mRNA half-life on network inference accuracy in four network backbones. Four different mRNA half-lives were
used for separate simulations. Error bars indicate S.D., n = 10.
(C) The effect of protein half-life on network inference accuracy in four network backbones. Four different protein half-lives
were used for separate simulations. Error bars indicate S.D., n = 10.
(D) The combined effects of two parameters on mRNA-based method (left) and on the relative performance between the two
methods (right) for the linear backbone. For the right panel, difference in AUPR was calculated by AUPR (pre-mRNA) minus

AUPR (MRNA).

(E) Analogous as (D) for the cycle backbone.
(F) The effect of splicing time on network inference accuracy in four backbones. Splicing time was varied from 1 to 100 min.
Note that the default splicing time in our simulations is 10 min.
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Supplemental Figure S5. Network motif analysis for the simulated datasets of the four different backbones.

(A) Schematic illustrating fan-out error in network inference. When gene 1 regulates both genes 2 and 3, it often occurs
that the inference algorithm erroneously considered gene 3 being regulated by gene 2 (and/or vice versa).

(B) Schematic illustrating cascade error in network inference. When gene 1 regulates gene 2, and gene 2 regulates gene 3,
it often occurs that the inference algorithm erroneously considered gene 1 regulating gene 3.
(C) Boxplots showing fan-out errors in four backbones. Prediction confidence was estimated for each type of links (1->2,
1->3 and 2<->3), and was compared with the background levels (for all links in the synthetic network, i.e., TRUE, and for
links that are not in the synthetic network, i.e., FALSE).

(D) Analogous to (C) for cascade errors in the four backbones.

(E) Summary of fan-out errors and cascade errors in the four backbones.
(F) Representative simulated traces showing fan-out error in the cycle backbone.
(G) The combined effects of protein half-life and transcription rate on network inference for the cycle backbone.

(H) The effect of protein half-life on motif errors for the cycle backbone.
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Supplemental Figure S6. Additional comparisons between pre-mRNA-based and mRNA-based methods using experimental
single-cell datasets.

(A) The effect of subsampling on inference accuracy for four different datasets. Reads from each dataset were subsampled to
~30% of the original read numbers and both pre-mRNA-based and mRNA-based methods were implemented for GRN infer-
ence. Average early precisions were shown for GRNs inferred from both methods before (left) and after (right) subsampling.
Data on the left was from Fig. 4A.

(B) AUPR ratio for mRNA-based or pre-mRNA-based method versus UMI counts per cell (exon or intron) for individual
datasets. AUPR ratio was calculated by diving the AUPR of the network inferred from either method by that of the network
from a random predictor Inferred GRN was evaluated with the DoRothEA database.

(C-D) Inferred GRNs from single mouse embryonic fibroblast cells induced by reprograming transcription factors at 24h (C) or
48 h (D) post-induction using either the pre-mRNA-based method or the mRNA-based method. Raw sequencing data were
downloaded from GSM6504514 (C) and GSM6504515 (D). In these networks, the edges represent the inferred transcriptional
regulation from one TF (transcription factor) to one target gene. The size of the node represents the number of inferred target
genes for the TF. 500 interactions (edges) of the highest confidence were shown (i.e., Top500 network).

(E) Inference accuracy using a snRNA-seq dataset. A snRNA-seq dataset for mouse skeletal myofibers (SRX7939765) was used.
Cell number was 8064 , UMI count per cell: intron 3622, exon 1247. AEP evaluated using either DoRothEA database or Motif
GRN.

(F) Inferred GRN for the human forebrain dataset using mRNA-based method. Top300 network was shown. See also Fig. 5B.
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Supplemental Figure S7. Extended characterizations for factor-dependency analysis of GRNs inferred from
experimental datasets.

(A) The effect of the expression level or the mRNA half-life on inference accuracy using the mRNA-based or the
pre-mRNA-based method. For each panel, target genes were first divided into two groups according to the
expression level (of pre-mRNA or mRNA) or the mRNA half-life, and the top-10-precision of each target (i.e.,
mean inference precision of the top 10 inferred TFs of each target) within each bin was calculated and shown in
the boxplots. p-values from Wilcoxon tests were plotted in Fig. 5B.

(B) The dependency of the network inference accuracy on the TF dynamics for individual datasets. The dynamics
of TFs were approximated using cell-to-cell variabilities of TF activities measured by public single-cell ATAC-seq
data. The mean variability from scATAC-seq data of multiple cell lines was used (Methods). TFs from each data-
set were sorted according to TF dynamics, and the fraction of TFs more accurately inferred by pre-mRNA-based
method than mRNA-based method was calculated for TFs above the indicated value of TF dynamics on x-axis
(i.e., we focus on TFs with high dynamics).

(C) Analogous to (B) except that the TF dynamics were from ATAC-seq data measured in human forebrain.
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Supplemental Table S1. Detailed information on datasets used in the study.

Name in the Species Cell type SRA accession GEO, url Data source
study accession
hFB human human week 10 SRR6470906,SRR6470 Velocyto
fetal forebrain 907
dataset
hESC_1 human hESC SRR6328624 SRR
hESC_2 human hESC SRR9117953 SRR
PBMC human PBMC https://support.10x | 10x Genomics
genomics.com/singl
e-cell-gene-
expression/datasets
/2.1.0/pbmc8k
A549 human A549 SRR8144883, SRR
SRR8144884,
SRR8144885,
SRR8144886,
SRR8144887
hBM human Bone marrow SRR6192408 SRR
hEK human Embryonic kidney | SRR6921770 SRR
cortex kidney 1
hLungPro human Lung progenitors SRR6042036 SRR
hPanclslet human Pancreatic islets SRR7142646 SRR
hPancPro human Pancreatic SRR7905628 SRR
progenitor cells
hBCell human B cell SRR7340856 SRR
hCortOrga human Cortical organoids | SRR6996081 SRR
hLiverPro human Hepatocyte- SRR7721684,SRR7721 SRR
derived liver 685,SRR7721686,SRR
progenitor-like 7721687
cells
hLiverHomo human Patient 1 Total SRR7276474 SRR
Liver Homogenate
hNKCell human CD56Neg NK cells | SRR7293994 SRR
hCD4TCell human Precursors of SRR6260183,SRR6260 SRR
human CD4+ 184
cytotoxic T
lymphocytes
hMonoCell human Peripheral blood SRR6260181,SRR6260 SRR
mononuclear cell 182
hPlacenta human Placenta SRR7895963 SRR
hSpleen human spleen SRR8073185 SRR
hTCell human T cells SRR7797510 SRR
mEndocri mouse endocrinogenesis GSE13218 scVelo
_day15 8
mEpi mouse intestinal GSE92332 Velocyto
epithelium
mBM mouse Bone Marrow GSE10998 Velocyto
9
mDenGy mouse hippocampal GSE95753 scVelo
dentate gyrus
neurogenesis
mFB mouse Forebrain SRR11966461 SRR
mESC_1 mouse mESC 2| SRR12318312 SRR
mESC_2 mouse mESC Serum SRR12318318 SRR
mESC_3 mouse mESC 2| SRR11394540 SRR
mE3.5 mouse E3.5 SRR82562xx SRR
mEK mouse E15.5 embryonic SRR7689139 SRR

kidney
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Supplemental Table S2. Analysis of top five hub TFs from six different datasets.

Network | Method TF1 TF2 TF3 TF4 TF5 Note
In the mRNA-based network, the top 1 hub TF is
mRNA- RPL6 NEUROD2 | SOX2 SOX4 HES1 RPL6, a component of the large ribosomal subunit,
LB based which appears unrelated to neuronal development.
pre- In contrast, the pre-mRNA-based network identifies
mRNA- | NEUROD2 SOX2 HES1 SOX4 MEF2C | MEF2C as a top 5 hub TF, which is crucial for
based normal neuronal development.

The mRNA-based network identifies Rps4x and
mMRNA- Ltf Anxal Mxdl Rpsdx Hmgb2 Hmgb?2 as hub TFs. Rps4x is a ribosomal protein
based and unlikely to be a TF, while Hmgb2 acts as a

cytoplasmic promiscuous immunogenic DNA/RNA

sensor. The pre-mRNA-based network identifies
mBM Cebpb and Pou2afl as hub TFs. Cebpb is an
pre- essential transcription factor regulating the
. Ltf Cebpb Anxal Mxdl Pou2afl expression of genes involved in immune and
based inflammatory responses, and Pou2afl regulates
transcription in various tissues, including activating
immunoglobulin gene expression.

The mRNA-based network identifies Rps4x and
mRNA- Tff3 Rpsdx Ckmtl | Gm2000 | RpslO [ Rps10 as hub TFs, both of which are ribosomal
based proteins. The pre-mRNA-based network identifies

Creb314 and Hmgn3 as hub TFs. Creb314 is a

mEpi transcriptional activator potentially involved in the
P unfolded protein response, while Hmgn3 binds to
mRNA- Ckmtl Tff3 Gm2000 | Creb314 | Hmgn3 . .

nucleosomes, regulating chromatin structure and
based associated processes such as transcription, DNA

replication, and DNA repair.

The mRNA-based network identifies Nfib as a hub
mRNA- Ybx1 Gm10269 Sox4 Zbtb20 Nfib TF, a transcriptional activator of GFAP essential for

mDenGy based proper brain development. The pre-mRNA-based
pre- network identifies Rps4x as a hub TF, a ribosomal
mRNA- Ybx1 Gm10269 Sox4 Zbtb20 Rps4x | protein seemingly unrelated to neuronal
based development.
mRNA- Rps4x Neurog3 Sox4 Hspa5 | Gadd45a
S based The hub TFs inferred by both intron and mRNA-
pre- based methods are the same.
mRNA- Neurog3 Sox4 Hspa$5 Rpsd4x | Gadd45a
based
The mRNA-based network identifies Rps4x, Kif22,
ND RNA. Himgb2 Rpsdx it Vhal Soxi1 and Ybx1 as hub TFs. Rps4x is a ribosomal protein,
based Kif22 is a kinesin family member involved in

spindle formation and chromosome movements
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pre-
mRNA-
based

Sox11

Hmgb2

Celf4

Thbrl

Neurod2

during mitosis and meiosis, and Ybx1 is a DNA-
and RNA-binding protein involved in various
processes. The pre-mRNA-based network identifies
Celf4, Tbrl, and Neurod?2 as hub TFs. Celf4
mediates exon inclusion/exclusion in pre-mRNA
that are subjected to tissue-specific and
developmentally regulated alternative splicing, Tbrl
is a transcriptional repressor involved in multiple
aspects of cortical development, and Neurod2 is a
transcriptional regulator implicated in neuronal

determination.
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