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Supplemental  Note  S1.  On  concerns  regarding  the  biological  relevance  of  our  model 

simulations and parameter choice. 

We used simulations of kinetic models to compare the two methods in Fig. 2, i.e., pre‐mRNA‐

based  and  mRNA‐based.  Using  model  simulation,  we  compared  them  under  a  range  of 

parameter  sets.  Concerns  may  arise  as  the  simulations  of  the  model  may  not  accurately 

capture  the  behaviors  of  real  networks,  making  it  challenging  to  validate  the  enhanced 

performance  of  our  proposed  pre‐mRNA‐based  method  compared  to  the  mRNA‐based 

method. We would like to address such concerns with the following clarifications. 

We would like to clarify that the kinetic rates used in our study were not arbitrary. These 

rates were based on experimental measurements from a previous study (Rabani et al. 2014), 

which  allowed  us  to  select  default  kinetic  parameters  according  to  the  median  values 

measured  in  that  study. We  further  collected experimentally measured RNA half‐lives and 

splicing rates from several literature studies (Table SN1 and Table SN2) to justify that the ranges 

of  parameters  used  in  Fig.  2  are  biologically  reasonable.  Importantly,  from  these 

experimentally determined parameters, it is apparent that mRNA half‐life is typically on the 

order of hours and the pre‐mRNA splicing time is typically on the order of minutes, and such 

ranges of parameters were covered  in our analysis  in Fig. 2. Although we cannot provide a 

gene‐specific  estimation  of  parameters,  we  believe  that  it  is  appropriate  and  acceptable 

practice to computationally enumerate possible combinations of parameters (as in Fig. 2) in 

order to provide a quantitative understanding of the model behavior. More generally, in our 

simulations, we  intentionally varied  these parameters  to explore  the  trends and principles 

underlying the determination of GRN  inference accuracy. By doing so, we aimed to provide 

useful rules and principles that indicate when the inference would be accurate or inaccurate. 

It is important to note that these simulations are not intended to model the networks in real 

experimental  datasets  but  rather  serve  as  a  means  for  understanding  general  rules  and 

principles. 

 

Cell type  Median mRNA half‐life  Reference DOI 

HeLa TO cells  3.4 h  10.1101/gr.130559.111 

Human K562 cells  50 min  10.1126/science.aad9841 

Mouse ESC  3.9 h  10.1038/nmeth.4435 
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Human K562 cells  8.5 h  10.1021/jacs.8b08554 

Mouse ESC  7.1 h  10.1093/dnares/dsn030 

Human B cell  315 min  10.1093/nar/gkp542 

Mouse fibroblasts  274 min  10.1093/nar/gkp542 

Mouse DC  86.1 min  10.1016/j.cell.2014.11.015 

 

 

We acknowledged the concern that kinetic rates are highly dependent on gene and cell‐

type or tissue context. Our intention in varying the parameters was to explore a wide range of 

possible kinetic scenarios and not  to  restrict ourselves  to a specific biological context. This 

approach  allowed  us  to  gain  insights  into  the  general  principles  governing GRN  inference 

accuracy, which can be applicable across different biological settings. It should also be noted 

that  for a  range of parameter combinations, we  showed  that pre‐mRNA  is not necessarily 

better  than  mRNA  in  terms  of  capturing  upstream  regulatory  activity  dynamics,  thus 

illustrating potential biological settings where pre‐mRNA would perform worse than mRNA for 

GRN inference. 

  We next explained why we cannot simply use rates inferred from scVelo in the analysis of 

our model. We have carefully examined the validity of the parameters inferred from a typical 

scRNA‐seq dataset using the scVelo tool, such as the splicing rate parameter and the mRNA 

degradation  rate  parameter,  and  found  that  the  software  cannot  provide  an  accurate 

estimation of such rate parameters. More specifically, as  illustrated  in the tutorial from the 

scVelo website  (https://scvelo.readthedocs.io/en/stable/DynamicalModeling/),  the  inferred 

pre‐mRNA splicing rates are on the same order of magnitude as the mRNA degradation rates. 

Notably, such a result is in sharp contrast with the experimentally determined results (Table 

SN1 and Table SN2), as the measured splicing rate is much faster than the mRNA degradation 

rate. 

Cell type  Typical splicing time  Reference DOI 

Drosophila  2 min  10.7554/eLife.32537 

Human neuroblastoma cell  5‐10 min  10.1038/nsmb.1666 

Human U2OS cell  0.4‐7 min  10.1083/jcb.201009012 

Human HEK293  2.5‐3 min  10.1016/j.celrep.2013.08.013 

Mouse DC  14 min  10.1016/j.cell.2014.11.015 

Table SN1. Experimentally measured mRNA half‐lives from 8 separate literatures. 

Table SN2. Experimentally measured pre‐mRNA splicing time from 5 separate literatures. 
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Supplemental Note S2. On the comparison between AEP and AUPR metrics 

We have analyzed the performance of our  inferred networks using both AEP (Average Early 

Precision) and AUPR as two separate metrics. Although we used AUPR to evaluate networks 

inferred from experimental single‐cell datasets, we believed that AEP  is a more appropriate 

and  informative metric, which focuses on the most confident  links  in the  inferred network. 

More specifically, we observed that AUPR is generally less sensitive than AEP, particularly when 

evaluating  the  results using  the Motif database as  the  ground  truth  (Fig. 4E‐F).  For a  few 

datasets evaluated using AUPR,  the mRNA‐based method performed better  than  the pre‐

mRNA‐based  method,  and  it  was  unclear  what  factors  might  have  contributed  to  this 

observation, which necessitates further investigations. Nevertheless, we believe that including 

AUPR  as  an  additional  performance  metric  can  provide  valuable  insights  into  the  global 

performance of our inferred networks. 

 

Supplemental Note S3. Analysis using transcription factor induction datasets. 

In order to further demonstrate the enhanced performance of the pre‐mRNA‐based method 

over the mRNA‐based method, we chose to compare the inferred GRNs from datasets where 

exogenously induced TFs were used to program cell fates. The rationale is that we should be 

able to recover the TFs being induced in the inferred network without needing to rely on GRN 

databases as  the ground  truth. More  specifically, we utilized scRNA‐seq data generated by 

Hersbach  et  al.,  2022,  particularly  the  Ascl1‐Hnf1a‐Myod1‐Oct4_induction_24h_biol_rep1 

dataset  (GSM6504514) and  the Ascl1‐Hnf1a‐Myod1‐Oct4_induction_48h_biol_rep1 dataset 

(GSM6504515).  In  these  experiments,  the  authors  induced  cell  fate  transition  in  mouse 

embryonic fibroblast cells using several TFs.   

We first compared the inferred GRNs of the first dataset, i.e., at 24 h post‐induction using 

the  pre‐mRNA‐based  or  the  mRNA‐based  method  (Supplemental  Fig.  S6C).  For  the  GRN 

inferred using the pre‐mRNA‐based method, two of the largest hub TFs (i.e., Ascl1 and Myod1) 

belonged to the TFs being exogenously expressed, which are as expected. For the GRN inferred 

using the mRNA‐based method, one of the hub nodes was the ribosomal protein Rps4x, which 

was comparable  in size  to  the TF being  induced  (i.e., Ascl1). Thus,  it appears  that  the pre‐

mRNA‐based  method  better  captured  the  immediate  regulatory  effects  caused  by  the 
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exogenous TFs at  the 24 h  time point. We next compared  the  inferred GRNs at 48 h post‐

induction  (Supplemental  Fig.  S6D). The  top hub nodes  in  the GRN  inferred using  the pre‐

mRNA‐based method became  ribosomal proteins while  the  top hub nodes  for  the mRNA‐

based method were still the TFs being induced (i.e., Myod1 and Ascl1).   

Based on the results from the two post‐induction time points, we reasoned that the pre‐

mRNA‐based method captured the transient up‐regulation of the target genes of Ascl1 and 

Myod1, which led to much more enhanced pre‐mRNA levels of target genes at 24 h compared 

to at 48 h. In contrast, because mRNA levels of target genes were used for inference for the 

mRNA‐based  method,  relatively  persistent  activities  of  Ascl1  and  Myod1  were  inferred, 

instead  of  transient  bursts  of  activities.  Because  it  is  known  that  a  step  increase  in  TF 

expression  typically  leads  to an adaptive  response  in downstream gene expression  (i.e.,  a 

transient pulse of target activation), we reasoned that the pre‐mRNA‐based method appeared 

to capture such an adaptive response more accurately compared to the mRNA‐based method. 

 

 

   

5



●

●

●
● ● ● ● ● ●

100 200 500 1000 2000 500010000

0.
6

0.
7

0.
8

0.
9

1.
0

Effect of regulation time

Ton (min)

Ac
cu

ra
cy

●

●

●

●

●

●

●
● ●

pre-mRNA
mRNA

●

●

●

●

●

●
● ● ●

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Dependency on
transcription rate

● ●

●

●
●

●

● ● ●

Simulated traces (w/o stochasticity) and inference accuracy

0 50 100 150 200

0
10

0
30

0
50

0

Step-wise up regulation

Step-wise down regulation

Pulse-like up regulation

Pulse-like down regulation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150 200

0
20

0
40

0
60

0
80

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150 200 250 300

0
10

0
30

0
50

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (min)

Time (min)

Time (min)

Time (min)

Ex
pr

es
si

on
 le

ve
l

Ex
pr

es
si

on
 le

ve
l

Ex
pr

es
si

on
 le

ve
l

Ex
pr

es
si

on
 le

ve
l

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

(min-1)

pre-mRNA

mRNA

Simulated traces (w/o stochasticity)
and inference accuracy

0 50 100 150 200 250 300

0
10

0
20

0
30

0
40

0
50

0
60

0

Time (min)

Time (min)

Ex
pr

es
si

on
 le

ve
l

Ex
pr

es
si

on
 le

ve
l

g(t)

g(t)

u(t)

u(t)

s(t)

s(t)

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
10

12

Simulated traces (w/ stochasticity)
and inference accuracy

 = 0.1min-1

u s

Ac
cu

ra
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u s

Ac
cu

ra
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kinetic model

g(t)

A

u s

u s

Ac
cu

ra
cy

Supplemental Figure S1. Using model simulaƟons to compare pre-mRNA and mRNA dynamics.
(A) KineƟc model used for simulaƟng transcripƟonal regulaƟon. In the first equaƟon, unspliced mRNA level 
(pre-mRNA level) is increased by transcripƟon at the rate of g(t)α and is then reduced by splicing at the rate 
of βu. In the second equaƟon, spliced mRNA level is increased by splicing at the rate of βu and is reduced by 
degradaƟon at the rate of γs.
(B) SchemaƟcs illustraƟng the calculaƟon of inference accuracy. Simulated pre-mRNA (red) or mRNA (blue) 
trace was used to calculate inference accuracy, defined by the overlap between the binarized expression 
trace and the regulatory acƟvity trace (i.e., g(t)).
(C) Simulated pre-mRNA and mRNA traces for a gene with high expression level and fast regulaƟon (i.e., short 
T

on
 as in Fig. 2A). The bar graph shows the calculated inference accuracies of the two traces. 

(D) Simulated pre-mRNA and mRNA traces for a gene undergoing four different types of transcripƟonal regu-
laƟon and the corresponding inference accuracies. 
(E) The effect of regulaƟon Ɵme (T

on
) on the accuracies of pre-mRNA-based and mRNA-based methods.

(F) StochasƟcally simulated pre-mRNA and mRNA traces for a gene with low expression level and slow regula-
Ɵon (i.e., long T

on
). Note that with this parameter set, the inference accuracy of pre-mRNA is worse than 

mRNA. 
(G) The effect of transcripƟon rate on the accuracies of pre-mRNA-based and mRNA-based methods in the 
presence of stochasƟcity.  
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Supplemental Figure S2. SchemaƟcs illustraƟng the pipeline of simulaƟon using the dyngen package.
SimulaƟon started with the choice of network backbones and kineƟc parameters, and the dyngen pack-
age was used for performing stochasƟc dynamic simulaƟons. The output trajectories were converted 
into count matrices (see Methods), which were then used for network inference using GENIE3. Panels 
on the right contain example outputs showing how AUPR can be different across simulaƟon replica-
Ɵons.
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Supplemental Figure S3. Network backbones and types of dynamics in the simulaƟon.
(A) Four types of network backbones used in simulaƟons. Example networks for each type are shown. Red edges 
represent acƟvaƟon, while blue edges represent inhibiƟon.
(B) Examples of four typical types of dynamics observed in simulaƟons.
(C) Pie chart illustraƟng the numbers of TFs exhibiƟng different types of acƟvity dynamics in each backbone. Note 
that the classificaƟon was based on dynamics shown in B.
(D) ComparaƟve analysis of GRN inference algorithm performance on a syntheƟc dataset (with bifurcaƟng back-
bone, 200 genes, 750 cells) generated by dyngen, demonstraƟng the impact of using different input matrices, 
including pre-mRNA (target)/mRNA (regulator), total counts (mRNA plus pre-mRNA) for both target and regulator, 
and mRNA for both target and regulator. Six algorithms were tested: (1) correlaƟon, (2) propr, (3) ARACNE, (4) PIDC, 
(5) TIGRESS, and (6) GENIE3. 
(E) Boxplots showing the comparison between pre-mRNA-based method and mRNA-based method in four back-
bones. The raƟo of AUPR between pre-mRNA and mRNA was calculated for each backbone (related to Fig. 3B).
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Supplemental Figure S4. Factor-dependency analysis in simulated datasets.
(A) The effect of transcripƟon rate on network inference accuracy in four backbones. Four different transcripƟon rates were 
used for separate simulaƟons. Error bars indicate S.D., n = 10.
(B) The effect of mRNA half-life on network inference accuracy in four network backbones. Four different mRNA half-lives were 
used for separate simulaƟons. Error bars indicate S.D., n = 10.
(C) The effect of protein half-life on network inference accuracy in four network backbones. Four different protein half-lives 
were used for separate simulaƟons. Error bars indicate S.D., n = 10.
(D) The combined effects of two parameters on mRNA-based method (leŌ) and on the relaƟve performance between the two 
methods (right) for the linear backbone. For the right panel, difference in AUPR was calculated by AUPR (pre-mRNA) minus 
AUPR (mRNA).
(E) Analogous as (D) for the cycle backbone.
(F) The effect of splicing Ɵme on network inference accuracy in four backbones. Splicing Ɵme was varied from 1 to 100 min. 
Note that the default splicing Ɵme in our simulaƟons is 10 min.
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Supplemental Figure S5. Network moƟf analysis for the simulated datasets of the four different backbones.
(A) SchemaƟc illustraƟng fan-out error in network inference. When gene 1 regulates both genes 2 and 3, it oŌen occurs 
that the inference algorithm erroneously considered gene 3 being regulated by gene 2 (and/or vice versa).
(B) SchemaƟc illustraƟng cascade error in network inference. When gene 1 regulates gene 2, and gene 2 regulates gene 3, 
it oŌen occurs that the inference algorithm erroneously considered gene 1 regulaƟng gene 3.
(C) Boxplots showing fan-out errors in four backbones. PredicƟon confidence was esƟmated for each type of links (1->2, 
1->3 and 2<->3), and was compared with the background levels (for all links in the syntheƟc network, i.e., TRUE, and for 
links that are not in the syntheƟc network, i.e., FALSE). 
(D) Analogous to (C) for cascade errors in the four backbones.
(E) Summary of fan-out errors and cascade errors in the four backbones.
(F) RepresentaƟve simulated traces showing fan-out error in the cycle backbone. 
(G) The combined effects of protein half-life and transcripƟon rate on network inference for the cycle backbone.
(H) The effect of protein half-life on moƟf errors for the cycle backbone.
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Supplemental Figure S6. AddiƟonal comparisons between pre-mRNA-based and mRNA-based methods using experimental 
single-cell datasets.
(A) The effect of subsampling on inference accuracy for four different datasets. Reads from each dataset were subsampled to 
~30% of the original read numbers and both pre-mRNA-based and mRNA-based methods were implemented for GRN infer-
ence. Average early precisions were shown for GRNs inferred from both methods before (leŌ) and aŌer (right) subsampling. 
Data on the leŌ was from Fig. 4A. 
(B) AUPR raƟo for mRNA-based or pre-mRNA-based method versus UMI counts per cell (exon or intron) for individual 
datasets. AUPR raƟo was calculated by diving the AUPR of the network inferred from either method by that of the network 
from a random predictor  Inferred GRN was evaluated with the DoRothEA database.
(C-D) Inferred GRNs from single mouse embryonic fibroblast cells induced by reprograming transcripƟon factors at 24h (C) or 
48 h (D) post-inducƟon using either the pre-mRNA-based method or the mRNA-based method. Raw sequencing data were 
downloaded from GSM6504514 (C) and GSM6504515 (D). In these networks, the edges represent the inferred transcripƟonal 
regulaƟon from one TF (transcripƟon factor) to one target gene. The size of the node represents the number of inferred target 
genes for the TF. 500 interacƟons (edges) of the highest confidence were shown (i.e., Top500 network).
(E) Inference accuracy using a snRNA-seq dataset. A snRNA-seq dataset for mouse skeletal myofibers (SRX7939765) was used. 
Cell number was 8064 , UMI count per cell: intron 3622, exon 1247. AEP evaluated using either DoRothEA database or MoƟf 
GRN.
(F) Inferred GRN for the human forebrain dataset using mRNA-based method. Top300 network was shown. See also Fig. 5B.
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Supplemental Figure S7. Extended characterizaƟons for factor-dependency analysis of GRNs inferred from 
experimental datasets.
(A) The effect of the expression level or the mRNA half-life on inference accuracy using the mRNA-based or the 
pre-mRNA-based method. For each panel, target genes were first divided into two groups according to the 
expression level (of pre-mRNA or mRNA) or the mRNA half-life, and the top-10-precision of each target (i.e., 
mean inference precision of the top 10 inferred TFs of each target) within each bin was calculated and shown in 
the boxplots. p-values from Wilcoxon tests were ploƩed in Fig. 5B. 
(B) The dependency of the network inference accuracy on the TF dynamics for individual datasets. The dynamics 
of TFs were approximated using cell-to-cell variabiliƟes of TF acƟviƟes measured by public single-cell ATAC-seq 
data. The mean variability from scATAC-seq data of mulƟple cell lines was used (Methods). TFs from each data-
set were sorted according to TF dynamics, and the fracƟon of TFs more accurately inferred by pre-mRNA-based 
method than mRNA-based method was calculated for TFs above the indicated value of TF dynamics on x-axis 
(i.e., we focus on TFs with high dynamics). 
(C) Analogous to (B) except that the TF dynamics were from ATAC-seq data measured in human forebrain.

A

B
C
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Supplemental Table S1. Detailed information on datasets used in the study. 
 

Name in the 
study 

Species  Cell type  SRA accession 
GEO 

accession 
url  Data source 

hFB  human  human week 10 
fetal forebrain 
dataset 

SRR6470906,SRR6470
907 

    Velocyto 

hESC_1  human  hESC  SRR6328624      SRR 

hESC_2  human  hESC  SRR9117953      SRR 

PBMC  human  PBMC      https://support.10x
genomics.com/singl
e‐cell‐gene‐
expression/datasets
/2.1.0/pbmc8k 

10x Genomics 

A549  human  A549  SRR8144883, 
SRR8144884, 
SRR8144885, 
SRR8144886, 
SRR8144887 

    SRR 

hBM  human  Bone marrow  SRR6192408      SRR 

hEK  human  Embryonic kidney 
cortex kidney 1 

SRR6921770      SRR 

hLungPro  human  Lung progenitors  SRR6042036      SRR 

hPancIslet  human  Pancreatic islets  SRR7142646      SRR 

hPancPro  human  Pancreatic 
progenitor cells 

SRR7905628      SRR 

hBCell  human  B cell  SRR7340856      SRR 

hCortOrga  human  Cortical organoids  SRR6996081      SRR 

hLiverPro  human  Hepatocyte‐
derived liver 
progenitor‐like 
cells 

SRR7721684,SRR7721
685,SRR7721686,SRR
7721687 

    SRR 

hLiverHomo  human  Patient 1 Total 
Liver Homogenate 

SRR7276474      SRR 

hNKCell  human  CD56Neg NK cells  SRR7293994      SRR 

hCD4TCell  human  Precursors of 
human CD4+ 
cytotoxic T 
lymphocytes 

SRR6260183,SRR6260
184 

    SRR 

hMonoCell  human  Peripheral blood 
mononuclear cell 

SRR6260181,SRR6260
182 

    SRR 

hPlacenta  human  Placenta  SRR7895963      SRR 

hSpleen  human  spleen  SRR8073185      SRR 

hTCell  human  T cells  SRR7797510      SRR 

mEndocri  mouse  endocrinogenesis
_day15 

  GSE13218
8 

  scVelo 

mEpi  mouse  intestinal 
epithelium  

  GSE92332    Velocyto 

mBM  mouse  Bone Marrow    GSE10998
9 

  Velocyto 

mDenGy  mouse  hippocampal 
dentate gyrus 
neurogenesis 

  GSE95753    scVelo 

mFB  mouse  Forebrain  SRR11966461      SRR 

mESC_1  mouse  mESC 2I  SRR12318312      SRR 

mESC_2  mouse  mESC Serum  SRR12318318      SRR 

mESC_3  mouse  mESC 2I  SRR11394540      SRR 

mE3.5  mouse  E3.5  SRR82562xx      SRR 

mEK  mouse  E15.5 embryonic 
kidney 

SRR7689139      SRR 
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Supplemental Table S2. Analysis of top five hub TFs from six different datasets. 

Network Method TF1 TF2 TF3 TF4 TF5 Note 

hFB 

 

mRNA-

based 

RPL6 NEUROD2 SOX2 SOX4 HES1 

In the mRNA-based network, the top 1 hub TF is 

RPL6, a component of the large ribosomal subunit, 

which appears unrelated to neuronal development. 

In contrast, the pre-mRNA-based network identifies 

MEF2C as a top 5 hub TF, which is crucial for 

normal neuronal development. 

 pre-

mRNA-

based 

NEUROD2 SOX2 HES1 SOX4 MEF2C 

mBM 

 

mRNA-

based 

Ltf Anxa1 Mxd1 Rps4x Hmgb2 

The mRNA-based network identifies Rps4x and 

Hmgb2 as hub TFs. Rps4x is a ribosomal protein 

and unlikely to be a TF, while Hmgb2 acts as a 

cytoplasmic promiscuous immunogenic DNA/RNA 

sensor. The pre-mRNA-based network identifies 

Cebpb and Pou2af1 as hub TFs. Cebpb is an 

essential transcription factor regulating the 

expression of genes involved in immune and 

inflammatory responses, and Pou2af1 regulates 

transcription in various tissues, including activating 

immunoglobulin gene expression. 

 pre-

mRNA-

based 

Ltf Cebpb Anxa1 Mxd1 Pou2af1 

mEpi 

 

mRNA-

based 

Tff3 Rps4x Ckmt1 Gm2000 Rps10 

The mRNA-based network identifies Rps4x and 

Rps10 as hub TFs, both of which are ribosomal 

proteins. The pre-mRNA-based network identifies 

Creb3l4 and Hmgn3 as hub TFs. Creb3l4 is a 

transcriptional activator potentially involved in the 

unfolded protein response, while Hmgn3 binds to 

nucleosomes, regulating chromatin structure and 

associated processes such as transcription, DNA 

replication, and DNA repair. 

 pre-

mRNA-

based 

Ckmt1 Tff3 Gm2000 Creb3l4 Hmgn3 

mDenGy 

 

mRNA-

based 

Ybx1 Gm10269 Sox4 Zbtb20 Nfib 

The mRNA-based network identifies Nfib as a hub 

TF, a transcriptional activator of GFAP essential for 

proper brain development. The pre-mRNA-based 

network identifies Rps4x as a hub TF, a ribosomal 

protein seemingly unrelated to neuronal 

development. 

 pre-

mRNA-

based 

Ybx1 Gm10269 Sox4 Zbtb20 Rps4x 

mEndocri  

 

mRNA-

based 

Rps4x Neurog3 Sox4 Hspa5 Gadd45a 

The hub TFs inferred by both intron and mRNA-

based methods are the same.  pre-

mRNA-

based 

Neurog3 Sox4 Hspa5 Rps4x Gadd45a 

mND 

 

mRNA-

based 

Hmgb2 Rps4x Kif22 Ybx1 Sox11 

The mRNA-based network identifies Rps4x, Kif22, 

and Ybx1 as hub TFs. Rps4x is a ribosomal protein, 

Kif22 is a kinesin family member involved in 

spindle formation and chromosome movements  
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 pre-

mRNA-

based 

Sox11 Hmgb2 Celf4 Tbr1 Neurod2 

during mitosis and meiosis, and Ybx1 is a DNA- 

and RNA-binding protein involved in various 

processes. The pre-mRNA-based network identifies 

Celf4, Tbr1, and Neurod2 as hub TFs. Celf4 

mediates exon inclusion/exclusion in pre-mRNA 

that are subjected to tissue-specific and 

developmentally regulated alternative splicing, Tbr1 

is a transcriptional repressor involved in multiple 

aspects of cortical development, and Neurod2 is a 

transcriptional regulator implicated in neuronal 

determination. 

15


	2023-07-17-Supplemental Material
	2023-07-17_supp
	2023-07-17-Supplemental Material



