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Supplementary Figure S1. Pedigree, breakpoints, and the IGV screen capture of NM-1

A. Depiction of NM-1 in the three-generational (parents-offspring-GO) pedigree. Males are
marked with squares and females are marked with circles. The occurrence of the NM-1 was
detected in offspring and then transmitted to 2 1 GO. Animals carrying NM-1 are marked with the
bolt mark. To indicate the paternal origin of NM-1, the bolt mark in the offspring is put on the left
side. The haplotype which the dnSV occurred upon is marked with the grey bar, whereas other
haplotypes are marked with dotted bar. The dnSV occurred upon paternal haplotype of the
offspring, which is indicated by the yellow star symbol on the grey haplotype. Co-segregation of



the grey haplotype and the NM-1 indicated perfect linkage between the two. B. Characterization
of the breakpoints of NM-1. Reference sequence marked with black is unaffected sequence, and
the one marked with red is affected sequence. Discordant read-pairs spanning the breakpoints
are visualized by red bars with white color sequences (marked with arrows). The lower part shows
the breakpoint sequence homology. The sequences shown in blue indicate the homology. For the
following figures (Supplementary Figs. 2-19), the same color schemes (red) were used for
deletions. In case of duplications, green color was used to mark discordant read-pairs and
affected sequence. C. Integrative Genome Browser (IGV) (Robinson et al. 2011) screen capture
of the NM-1 in the current pedigree. The dotted vertical lines indicate proximal (left one) and distal
breakpoints (right one), respectively. The colorful reads indicate soft- or hard- clipped reads
thereby indicating a deletion. Left panel shows the animals (sire, dam, offspring, and GO) and
their genotypes. The numbers on the right side of the panel are obtained from duphold software
(Pedersen and Quinlan 2019). Duphold calculates the fold-coverage change of the SV affected
region against the 1-kb flanking sites, which can be useful in interpreting the actual read-depth
change occurring in the SV of interest.
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Supplementary Figure S2. Pedigree, breakpoints, and the IGV screen capture of NM-2

A. Depiction of NM-2 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-2. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-2 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (green) aligned
at the proximal and distal breakpoints support the presence of NM-2.
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Supplementary Figure S3. Pedigree, breakpoints, and the IGV screen capture of NM-3

A. Depiction of NM-3 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-3. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-3 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (green) aligned
at the proximal and distal breakpoints support the presence of NM-3.
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Supplementary Figure S4. Pedigree, breakpoints, and the IGV screen capture of NM-4

A. Depiction of NM-4 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-4. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-4 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (red) aligned at
the proximal and distal breakpoints support the presence of NM-4.
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Supplementary Figure S5. Pedigree, breakpoints, and the IGV screen capture of NM-5

A. Depiction of NM-5 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-5. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-5 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (red) aligned at
the proximal and distal breakpoints support the presence of NM-5.
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Supplementary Figure S6. Pedigree, breakpoints, and the IGV screen capture of NM-6

A. Depiction of NM-6 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-6. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-6 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (red) aligned at
the proximal and distal breakpoints and the reduced sequencing coverage support the presence
of NM-6.
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Supplementary Figure S7. Pedigree, breakpoints, and the IGV screen capture of NM-7

A. Depiction of NM-7 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-7. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-7 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (red) aligned at
the proximal and distal breakpoints support the presence of NM-7.
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Supplementary Figure S8. Pedigree, breakpoints, and the IGV screen capture of NM-8

A. Depiction of NM-8 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-8. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-8 in the current
pedigree. Legend is identical to supplementary figure 1C. The discordant reads (red) aligned at
the proximal and distal breakpoints support the presence of NM-8.
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Supplementary Figure S9. Pedigree, breakpoints, and the IGV screen capture of NM-9

A. Depiction of NM-9 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of NM-9. The legend is identical to
supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-9 in the current
pedigree. Legend is identical to supplementary figure 1C. The split reads (marked with multiple
colors) aligned at the proximal and distal breakpoints support the presence of NM-9.
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Supplementary Figure S10. Pedigree, breakpoints, and the IGV screen capture of NM-10
A. Depiction of NM-10 in the three-generational pedigree. The legend is identical to
supplementary figure 1A. B. Characterization of the breakpoints of NM-10. The breakpoint
junctions are marked with A, B, C, and D. In the reference genome, the proximal breakpoint is
bridged with A-B junction and the distal breakpoint is bridged with C-D junction. In the NM-10
carrier, these junctions are replaced by A-C and B-D, respectively. The sequence below shows
wild-type sequence (black) and reverse complementary sequence (blue). The sequence aligned
at the C junction in the case is marked with red, and the sequenced aligned at the B junction in
the case is marked with blue. The SNPs are marked with bold underlined black (wild-type) green
(derived) characters. C. IGV (Robinson et al. 2011) screen capture of the NM-10 in the current
pedigree. Legend is identical to supplementary figure 1C. The light blue and dark blue reads are
discordant read pairs with forward-forward or reverse-reverse orientations, respectively. These
discordant read pairs together with the soft-clipped reads (colorful reads) at the breakpoints
indicate an inversion.
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Supplementary Figure S11. Pedigree, breakpoints, and the IGV screen capture of NM-11
A. Depiction of NM-11 in the three-generational pedigree. The legend is identical to
supplementary figure 1A. B. Characterization of the breakpoints of NM-11. The legend is identical
to supplementary figure 1B. C. IGV (Robinson et al. 2011) screen capture of the NM-11 in the
current pedigree. Legend is identical to supplementary figure 1C. The discordant reads (red)
aligned at the proximal and distal breakpoints support the presence of NM-11.
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Supplementary Figure S12. Pedigree, breakpoints, and the IGV screen capture of A-1

A. Depiction of A-1 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of A-1. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the A-1 in the current pedigree. Legend
is identical to supplementary figure 1C. The discordant reads (red) aligned at the proximal and
distal breakpoints support the presence of A-1.

16



A | (Parents) m _65 B

'geaeelr\é: GTGGCTCAGGGAATC STCAGTTTAATCATT T \TTCTTAAGACATACT’ ATATTTTATTATGATG
il Y .7 AGTTTAATCATTTATA TTCATGTTTTATICTTAAGACATACTTATATA gl
Split-reads ¥ >
Supporting i I
Il (Offspri p Breakpoints e e
( Spnng) i IR 1/ C\GTCAGT TTAATCATTTATATTTTAGGAAAAA -
Reference
Sequence GTGGCTCAGGGAATCTGGH [ S TCAGTTTAATCATT T# 7TCTTAAGACATACTTATATEXAGAGTGCATATWTATTATGATG
Derived e S e s
Sequence
1 (GO) “Dﬁ

c Co T TTREN I T [ Ll T ,
e i “yl‘-“ tit ‘ | i ‘ e T
Sire ; e i L LR i I
0/0) . W VR VRUMTGREL TN B SR i Ly
(0/0) " | } ‘ } I 1
|
|
T Y Y Y A B G A TR WYY fobete, Y
Dam | | o o l P “ ' !’ ek TOL)'
o) [ | R A | SRR i
! | ] \_ B LI !
_ |
el ot I‘ }I il NN e e s
Offspring | (! [+ T R T
1) [HPAIEES T T il L
| L ‘ (R
|
. [
GO1 ety \ I !l il i | tl[_\_]lﬁK]m‘ ni I'! d oy 12“@{1}
o) Lo + SR fo :Hh -USA[i’_n R R
| TR
GO2 s g oo i) 0 i 0 A 1ot 0 \|‘|’ albbhada bt shibtiatnu i o 0 A derdil s sinss ol
(0/0) S B T PR H TR R
) 4 el A | i | ' iy 0 B a0 |
[
GO3 [ |I||‘ il 8 bt T I}yllh Lol uchifin e a0 A i b | |‘H. 0 Y |‘n wril]
Ry A T R e T AT B R ¥ T T L e P T R R e N
o) TR TR R (}\1‘:1 TR 1.60
GO4 ’““:.!I“‘ L .'f ||? [y I‘ A Ll ! T Il l‘ 1‘_ .1I ST i .
o (R T T T OB P aee
| Wl 1 M L
| |
GO5 Bl i O T ‘J[:![x had gt b ot ! VA G R R 1 TN Y s i b, i,
SRR R R R s L i b L
| . Il g } s " (B | . | i

10,528-bp duplication

Supplementary Figure S$13. Pedigree, breakpoints, and the IGV screen capture of A-2

A. Depiction of A-2 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of A-2. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the A-2 in the current pedigree. Legend
is identical to supplementary figure 1C. The discordant reads (green) aligned at the proximal and
distal breakpoints support the presence of A-2.
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Supplementary Figure S14. Pedigree, breakpoints, and the IGV screen capture of A-3

A. Depiction of A-3 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of A-3. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the A-3 in the current pedigree. Legend
is identical to supplementary figure 1C. The discordant reads (red) aligned at the proximal and
distal breakpoints support the presence of A-3.
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Supplementary Figure S15. Pedigree, breakpoint, and the IGV screen capture of M-1

A. Depiction of M-1 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of M-1. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the M-1 in the current pedigree. Legend
is identical to supplementary figure 1C. For brevity, only sire, dam, and the eight offspring of the
sire is visualized (grand-offspring not shown). Dam marked with asterisk is the maternal animal
of the 7" offspring. Dam of 2" offspring was not available, hence not shown. The discordant reads

(red) aligned at the proximal and distal breakpoints support the presence of M-1.
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Supplementary Figure S$16. Pedigree, breakpoint, and the IGV screen capture of M-2

A. Depiction of M-2 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of M-2. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the M-2 in the current pedigree. Legend
is identical to supplementary figure 1C. The discordant reads (red) aligned at the proximal and
distal breakpoints support the presence of M-2.
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Supplementary Figure S17. Pedigree, breakpoint, and the IGV screen capture of M-3

A. Depiction of M-3 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of M-3. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the M-3 in the current pedigree. Legend
is identical to supplementary figure 1C. The discordant reads (red) aligned at the proximal and
distal breakpoints support the presence of M-3.
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Supplementary Figure S18. Pedigree, breakpoint, and the IGV screen capture of M-4

A. Depiction of M-4 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the structure of the M-4 allele. C. IGV (Robinson et al. 2011)
screen capture of the M-4 in the current pedigree. Legend is identical to supplementary figure 1C.
The discordant reads aligned at the start and the end of the 101-Kb deletion (red) and at the 8-kb
duplication (green) support the presence of M-4.
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Supplementary Figure S$19. Pedigree, breakpoint, and the IGV screen capture of M-5

A. Depiction of M-5 in the three-generational pedigree. The legend is identical to supplementary
figure 1A. B. Characterization of the breakpoints of M-5. The legend is identical to supplementary
figure 1B. C. IGV (Robinson et al. 2011) screen capture of the M-5 in the current pedigree. Legend
is identical to supplementary figure 1C. The discordant reads (red) aligned at the proximal and
distal breakpoints support the presence of M-5.

23



I M-1
Proximal breakpoint | 1,263-bp deletion

| ’ Y

‘ \

Distal breakpoint

i

Sire T : :
(AIGI-) I
!

|

Offspring 1, 7 = e
M-1 carriers = == e
(-/A)

\
|
|
|

1 |

- t

1 |

1 i

] |

1 I

1 |

Offspring 2-5
Wildtype
(A/A)

Offspring 6,8
Wildtype —

|
|
|
|
|
I :
| 2 =
|
|
|
:
(GIG) |

e

G>A SNP

Supplementary Figure S20. Characterization of three haplotypes involving M-1

The presence of a polymorphic G>A SNP (marked with red dotted box) within M-1 in the sire
supports the sire is mosaic (carrying A, G, and deletion alleles), and that M-1 is a post-zygotic
DNM. The G>A SNP was phased, however was not assigned to either paternal or maternal
haplotype of the sire, as there was no grandparents data available. For the eight offspring of the
sire, two received the M-1 (Offspring 1 and 7), whereas the remaining six received wild-type allele
(Offspring 2-6,8; no deletion). The G>A SNP genotypes of the six offspring were either A/A or
G/G, hence confirming that the sire is a mosaic animal, carrying (i) wild-type haplotype (no
deletion) with A allele, (ii) wild-type haplotype (no deletion) with G allele, and (iii) a deleted
haplotype carrying M-1. By taking into account the long haplotype blocks shared in this pedigree,
it was possible to determine that the M-1 occurred on the A allele carrying haplotype (see
Supplementary Fig. 15A). The IGV screen capture in the current figure was made with “view as
pair” option, unlike the one in Supplementary Fig. 15C, which was made a default mode.
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Supplementary Figure S21. Characterization of three haplotypes involving M-2

A. IGV screen capture showing the breakpoints of the M-2. To have sufficient resolution, the mid-
part is not shown (indicated by a white vertical bar). Discordant reads supporting the M-2 are filled
with red. Red dotted box shows the presence of polymorphic variants within the M-2, thus
indicating (i) presence of three haplotypes and (ii) post-zygotic origin of M-2. Reconstruction of
reads spanning over the M-2 unravels three haplotypes. These three reads are marked with blue,
brown, and red asterisks. The dotted line connects the forward and reverse reads. The blue reads
have much larger insert size than the average, supporting M-2. B. A schematic drawing of the
three haplotypes shown in panel (e). The two variants (C>T SNP and G>T SNP), each located
outside and inside of the M-2, respectively, were phased into a maternal haplotype (T-T; red
asterisk) and a paternal haplotype (C-G; brown asterisk). Additional to these haplotypes, there is
a paternal haplotype with a discordant read-pair, depicted with a curved dotted line (C-DEL; blue
asterisk).
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Supplementary Figure S22. Characterization of three haplotypes involving M-3

A. IGV screen capture showing the breakpoints of the M-3. To have sufficient resolution, the mid-
part is not shown (indicated by a white vertical bar). Discordant reads supporting the M-3 are
displayed as red. A polymorphic variant within the M-3 (only one is shown in the figure), is marked
with an arrow. This indicates (i) presence of three haplotypes and (ii) post-zygotic origin of M-3.
Reconstruction of reads spanning over the M-3 unravels three haplotypes involving M-3. These
three reads are marked with green, brown, and red asterisks. The dotted line connects the forward
and reverse reads. The brown reads have much larger insert size than the average, supporting
M-3. The red dotted box shows the presence of dnPM (see Supplementary Fig. 29). B. A
schematic drawing of the three haplotypes shown in panel (b). The two variants (G>A SNP and
T>C SNP), each located outside and inside of the M-3, respectively, were phased into a maternal
haplotype (A-C; red asterisk) and a paternal haplotype (G-T; green asterisk). Additional to these

haplotypes, there is a paternal haplotype with a discordant read-pair, depicted with a curved
dotted line (G-DEL; brown asterisk).
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Supplementary Figure S23. Characterization of three haplotypes involving M-4

A. IGV screen capture showing the breakpoints of the 101-kb deletion of the M-4. To have
sufficient resolution, the mid-part is not shown (indicated by a white vertical bar). Discordant reads
supporting the M-4 are displayed as red. A polymorphic variant within the M-4 (only one is shown
in the figure), is marked with an arrow. This indicates (i) presence of three haplotypes and (ii)
post-zygotic origin of M-4. Reconstruction of reads spanning over the M-4 unravels three
haplotypes involving M-4. These three reads are marked with red, blue, and brown asterisks. The
dotted line connects the forward and reverse reads. The brown reads have much larger insert
size than the average, supporting M-4. B. A schematic drawing of the three haplotypes shown in
panel (e). The variant (T>C SNP), each located outside of the M-4 were phased into a maternal
haplotype (C-Wt; red asterisk) and a paternal haplotype (T-Wt; blue asterisk). Additional to these

haplotypes, there is a paternal haplotype with a discordant read-pair, depicted with a curved
dotted line (T-DEL; brown asterisk).
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Supplementary Figure S24. Characterization of three haplotypes involving M-5

A. Reconstruction of reads spanning over the M-5 unravels three haplotypes involving M-5. These
three reads are marked with green, blue, and black asterisks. The dotted line connects the forward
and reverse reads. The black reads have much larger insert size than the average, supporting M-
5. The red dotted box shows the presence of a dnPM (see Supplementary Fig. 30). B. A schematic
drawing of the three haplotypes shown in panel (f). A variant (C>G SNP) located outside and of
the M-5 was phased into a maternal haplotype (C-Wt; green asterisk) and a paternal haplotype
(G-Wt; blue asterisk). Additional to these haplotypes, there is a paternal haplotype with a
discordant read-pair, depicted with a curved dotted line (G-DEL; black asterisk).

28



A Belyeu (2021) J ] -
Werling (2018) J —
Brandler (2018) 3 ——
Turner (2017) J ——
Kloosterman (2015) —
B Damona .|_
Belyeu (2021) J | ——
Werling (2018) { o —%—= Cohort_type
Brandler (2018) { § —e—
Turner (2017) 4 2 —— ¢ :z:thy
Kloosterman (2015) - —
0.0 0.1 0.2 0.3

Number of dnSV detected per trio

Supplementary Figure $S25: Comparison of the number of dnSV detected per trio between
the Damona pedigree and human studies.

The number of dnSV per trio in the Damona pedigree was compared with those from human
studies, which used families with healthy offspring (blue: healthy) and families with offspring
affected with autism spectrum disorder (ASD: orange). The horizontal bars correspond to the 95%
confidence intervals of the estimates. A. (“All"), the numbers take diverse types of structural
variants into account (e.g., mobile elements insertions). B. (“Matching”) the numbers were
recomputed using only deletions, duplications and inversion, the types of SV that were used in

this study on the Damone pedigree.
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Supplementary Figure $S26. Characterization of repeat sequences spanning the
breakends of the 19 dnSV

We evaluated potential dnSV formation mechanisms, with an aim to identify ones formed via non-
allelic homologous recombination (NAHR), by investigating repeat sequences surrounding the
breakends. Each panel consists of a dot plot, a schematic drawing marking breakends of dnSV
and repeats (arrows) and known bovine repeats in the corresponding region. Dot plots were
obtained from BLAST (blastn; blast.ncbi.nlm.nih.gov) by aligning two identical sequences that
span over breakends (2-kb before and after the proximal and distal breakends, respectively). The
red inward facing brackets indicate breakends of deletions, the red outward facing brackets
indicate breakends of duplications, and the right-side facing brackets indicate breakends of
inversions. Red dotted vertical lines indicate breakends.
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Reproductive technology

Call:

Im(formula = Nunber.of.dnSV.detect ~ Sample.Type.Prob + Repro.Prob +
Age.Sire.in.years + Age.Dam.in.years + Sequ.Depth.Prob +
Sequ.Depth.Sire + Sequ.Depth.Dam, data = Damona)

Residuals:
Min 10 Median 3Q Max
-0.40973 -0.23842 -0.06011 0.01672 1.68408

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) -0.362429 0.360963 -1.004 0.3174
Sample.Type.ProbSperm -0.025460 0.100668 -0.253 0.8008
Repro.ProbFlushed embryo -0.045857 ©.088849 -0.516 0.6067

Repro.ProbIVF 0.218360 0.088979 2.454 0.0156 *
Age.Sire.in.years -0.002786 0.020118 -0.138 0.8901
Age.Dam.in.years -0.022603 ©0.033280 -0.679 0.4983
Sequ.Depth.Prob -0.009394 0.007267 -1.293 0.1987
Sequ.Depth.Sire 0.011707 0.005276 2.219 0.0284 *
Sequ.Depth.Dam 0.018425 0.010319 1.786 0.0767 .
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 < ’ 1

Residual standard error: 0.381 on 118 degrees of freedom
Multiple R-squared: 0.1503, Adjusted R-squared: ©.09266
F-statistic: 2.608 on 8 and 118 DF, p-value: 0.01156

Supplementary Figure S27. Effect of ART and sire’s sequence depth on dnSV rate

A. Confidence intervals for the number of dnSV detected on average per offspring obtained by Al,
MOET or IVF were estimated by bootstrapping. We sampled 127 “offspring” with replacement
from the complete list (Supplemental Table 2) of Damona probands one hundred times and
computed for each bootstrapped sample the number of dnSV detected per animal by ART
category. The distributions of the obtained numbers are shown, showing the marked effect of
IVF. B. Testing the effect of sample type of the proband (sperm or blood), reproductive technique
used to produce the proband (Al, MOET, or IVF),
of the dam at reproduction (in years), sequence depth of offspring, sire, and dam on the number
of dnSV detected using a linear model implemented with the Im() function in R. The output of the

analysis is shown.
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Supplementary Figure S28. Characterization of the cluster mutation involving NM-1

A. An overview of the cluster DNM consisting of NM-1 and 22-bp deletion. The red horizontal
stripes shown in the offspring mark the discordant reads that span over the breakpoints of NM-1.
The 22-bp deletion is located 108-bp from the proximal breakpoint of NM-1. The region
encompassing the 22-bp deletion (marked with the red dotted box) is zoomed in the panel C. B.
Genotypes of the cluster DNM in the current pedigree. Wt stands for wild-type and DEL stands
for deletion. The offspring carries both NM-1 and the paired 22-bp deletion, however GO 4 and
GO 5 of which NM-1 was transmitted did not receive the 22-bp deletion. Animals carrying NM-1
are marked with translucent orange. Pictures on the right side shows the IGV screen capture at
the 22-bp deletion and the NM-1. C. IGV screen capture at the 22-bp deletion. Reconstruction of
reads spanning over the 22-bp deletion and C>T SNP at the vicinity unravels three haplotypes.
These three read pairs are marked with black, green, and blue asterisks. A read marked with red
asterisk is a forward read that carries the 22-bp deletion and its read pair is mapped at the distal
breakpoint of the NM-1, thus the read pair together supports both the 22-bp deletion and NM-1.
D. A schematic drawing of the three haplotypes shown in panel (c). The two variants present in
this region (C>T SNP and 22-bp deletion) can be phased into a maternal haplotype carrying T-
Wt (black asterisk) and a paternal haplotype carrying C-Wt (blue asterisk). Additional to these
haplotypes, there is a paternal haplotype with the 22-bp deletion (C-DEL; green asterisk),
indicating post-zygotic origin of the 22-bp deletion. The discordant reads marked with red show
that there is haplotype supporting both NM-1 and the 22-bp deletion concurrently.
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Supplementary Figure $29. Characterization of the cluster mutation involving NM-8

A. An overview of the cluster DNM consisting of NM-8 and A>T substitution. The A>T substitution
is located 367-bp from the distal breakpoint of NM-8. The region encompassing the A>T
substitution is (marked with the red dotted box) is zoomed in the panel (c). B. Genotypes of the
cluster DNM in the current pedigree. Wt stands for wild-type and DEL stands for deletion. The
offspring carries both NM-8 and the T allele (mutated allele). Of the five GOs, three GOs (GOs
1/3/5), received DEL allele, however only GO1 also received the T allele. Animals carrying NM-8
are marked with translucent orange. Pictures on the right side show the IGV screen capture at
the NM-8 and the A>T substitution. C. IGV screen capture at the A>T substitution. Reconstruction
of reads spanning over the A>T substitution and two other SNPs (A>G and G>C) at the vicinity
unravels three haplotypes. These three reads are marked with green, blue, and orange asterisks.
D. A schematic drawing of the three haplotypes shown in panel (c). The three variants present in
this region can be phased into a maternal haplotype carrying A-A-G alleles (green asterisk) and
a paternal haplotype carrying G-A-C alleles (orange asterisk). Additional to these haplotypes,
there is a paternal haplotype with the dnPM (T allele; G-T-C; blue asterisk), indicating post-zygotic
origin of the A>T substitution. Below the drawings of three haplotypes is shown a discordant read
pair (filled with red), which can be observed in GO 5 (See panel (b)). GO 5 carries NM-8, but not
the dnPM.
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Supplementary Figure S30. Characterization of the cluster mutation involving NM-9

A. An overview of the cluster DNM consisting of NM-9 and a 11-bp insertion. The 11-bp insertion
is located 404-bp from the proximal breakpoint of NM-9. B. Genotypes of the cluster DNM in the
current pedigree. Wt stands for wild-type, DEL stands for deletion, INS stands for insertion. The
offspring carries both NM-9 and the 11-bp insertion allele (mutated allele). The GO received both
NM-9 and the 11-bp INS. Animals carrying NM-10 are marked with translucent orange. Pictures
on the right side show the IGV screen capture at the 11-bp insertion and NM-9. C. Amplicon
sequencing validation data obtained for the 11-bp insertion in the offspring. In this experiment,
the number of reads supporting this reference (WT) and the mutated alleles (INS) were 52 and
33, respectively, thus underlining allelic dosage deviating from ~0.5. D. Amplicon sequencing
validation data obtained for the 11-bp insertion in the GO. In this experiment, the number of reads
supporting this reference (WT) and the mutated alleles (INS) were 35 and 18, respectively, hence
the allelic dosage deviating from ~0.5. Thus, taking the allelic dosage shown in the offspring and
GO together, the allelic imbalance (deviating from ~0.5) may arise from technical artefacts,
instead of an indication of post-zygotic mutation in the offspring.
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Supplementary Figure S31. Characterization of the cluster mutation involving A-2

A. An overview of the cluster DNM consisting of A-2 and G>A substitution. The G>A substitution
is located 2,913-bp from the distal breakpoint of A-2. B. Genotypes of the cluster DNM in the
current pedigree. Wt stands for wild-type and DUP stands for duplication. The offspring carries
both A-2 and the A allele (mutated allele). Of the five GOs, two GOs (GOs 4 and 5), received both
DUP and A alleles. Animals carrying A-2 are marked with translucent orange. Pictures on the right
side show the IGV screen capture at the A-2 distal breakpoint and the G>A substitution. The G>A
substitution occurred in the offspring was zoomed in (marked with the black outline). The number
of reads supporting the reference (G) and the mutated alleles (A) in the NGS data were 17 and 3,
respectively. C. Amplicon sequencing validation data obtained for the G>A substitution in the
offspring. In this experiment, the number of reads supporting this reference (G) and the mutated
alleles (A) were 402 and 121, respectively, thus revealing an allelic dosage deviating from ~0.5.
D. Amplicon sequencing validation data obtained for the G>A substitution in one of the GOs. In
this experiment, the number of reads supporting the reference (G) and the mutated alleles (A)
were 237 and 250, respectively, hence the allelic dosage is ~0.5.
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Supplementary Figure S$32. Characterization of the cluster mutation involving M-3

A. An overview of the cluster DNM consisting of M-3 and a 1-bp deletion. The 1-bp deletion is
located 410-bp from the proximal breakpoint of M-3. The region encompassing the 1-bp deletion
is (marked with the red dotted box) is zoomed in the panel (c). B. Genotypes of the cluster DNM
in the current pedigree. Wt stands for wild-type and DEL stands for deletion. The offspring carries
both M-3 and the 1-bp deletion allele (mutated allele). Of the five GOs, two (GOs 3 and 4) received
both M-3 and the 1-bp deletion. Animals carrying M-3 are marked with translucent orange.
Pictures on the right side show the IGV screen capture at the M-3 and the 1-bp deletion. C. IGV
screen capture at the 1-bp deletion. Reconstruction of reads spanning over the 1-bp deletion and
a SNP (G>A) at the vicinity unravels three haplotypes. These three reads are marked with red,
orange, and purple asterisks. D. A schematic drawing of the three haplotypes shown in panel (c).
The two variants (Wt>DEL and G>A SNP), located outside of M-3, were phased into a maternal
haplotype (Wt-A; red asterisk) and a paternal haplotype (Wt-G; purple asterisk). Additional to
these haplotypes, there is a paternal haplotype with the dnPM (DEL-G; orange asterisk). E.
Amplicon sequencing validation data obtained for the 1-bp deletion in the offspring and GOs 3
and 4. The allelic dosage in offspring was inferior to the one shown in GO.
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Supplementary Figure S$33. Characterization of the cluster mutation involving M-5

A. An overview of the cluster DNM consisting of M-5 and an 8-bp deletion. The 8-bp deletion is
located 592-bp from the proximal breakpoint of M-5. The region encompassing the 8-bp deletion
is (marked with the red dotted box) is zoomed in the panel (c). B. Genotype of the cluster DNM in
the current pedigree. Wt stands for wild-type and DEL stands for deletion. The offspring carries
both M-5 and the 8-bp deletion allele (mutated allele). Of the five GOs, one (GO 1) received both
M-5 and the 8-bp deletion. Animals carrying M-5 are marked with translucent orange. Pictures on
the right side show the IGV screen capture at the M-5 and the 8-bp deletion. The 8-bp deletion is
highlighted with the arrows. C. IGV screen capture at the 8-bp deletion. Reconstruction of reads
spanning over the 8-bp deletion and a SNP (C>G) at the vicinity unravels three haplotypes. These
three reads are marked with black, red, and orange asterisks. D. A schematic drawing of the three
haplotypes shown in panel (c). The two variants (Wt>DEL and C>G SNP), located outside of M-
5, were phased into a maternal haplotype (Wt-C; red asterisk) and a paternal haplotype (Wt-G;
orange asterisk). Additional to these haplotypes, there is a paternal haplotype with the dnPM
(DEL-G; red asterisk). E. The NGS data shows that the number of reads supporting the reference
(Wt) and the mutated alleles (8-bp deletion) for the offspring were 34 and 9. The lower panel
shows the NGS data of the GO 1, where the number of reads supporting the reference (Wt) and
the mutated alleles (8-bp DEL) for the GO were 8 and 8, respectively. Below, amplicon
sequencing validation data obtained for the 8-bp deletion in GO 1 is shown. In this experiment,
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the number of reads supporting the reference and the mutated alleles (8-bp DEL) were 19 and
14, respectively.
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