
Figure S1. Datasets overview.

Mouse

Age 1m 3m 7m 18m 21m 24m 30m

Aorta √ √ √ √ √ √

BAT √ √ √

Bladder √ √ √ √

Brain (Myeloid) √ √ √ √

Brain (Non-
Myeloid) √ √ √ √

Diaphragm √ √ √

Fat √ √ √

GAT √ √ √

Heart √ √ √ √ √ √

Kidney √ √ √ √ √

Large Intestine √ √ √ √

Limb Muscle √ √ √ √ √ √

Liver √ √ √ √ √ √

Lung √ √ √ √ √ √

Mammary Gland √ √ √

Marrow √ √ √ √ √ √

MAT √ √ √

Pancreas √ √ √ √ √

SCAT √ √ √

Skin √ √ √ √

Spleen √ √ √ √ √ √

Thymus √ √ √ √

Tongue √ √ √ √

Trachea √ √ √

WAT



Figure S1. Dataset overview. 
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Figure S2. Standard Elastic Net model is less robust and less accurate.



Figure S2. Standard Elastic Net model is less robust and less accurate.
(A-C) Difference in coefficients of standard Elastic Net models trained on two 
different brain scRNA-seq datasets (Dulken et al. 2019; Buckley et al. 2023). We 
kept genes that have non-zero coefficients in at least one model for comparison. (A) 
Changes in coefficient sign. For example, 53 (43%) genes with a negative coefficient 
when trained on the Buckley et al data have a zero coefficient when trained on the 
Dulken et al data. (B) Scatter plot of absolute coefficients of each gene learned in the 
two datasets. Horizontal and vertical lines (x = 1e-5, y = 1e-5) represents genes with 
zero coefficients in one model (1e-5 is the pseudo-value added to coefficients before 
log transform). (C) Boxplot of absolute coefficient differences between two models. 
To calculate relative changes (y-axis), we divided the absolute difference against the 
median absolute coefficient across models among all genes (0.05786675). Data 
showed that the median absolute coefficient difference is around 56% of the median 
absolute coefficient value.
(D) Aging scores of limb muscle cells from young mice and young heterochronic 
mice calculated by standard Elastic Net model trained on limb muscle cells of 
different chronological ages. ***p-value < 0.001 using a two-sided unpaired Student’s 
t-test.



Figure S3. Breakdown of Aging Map collections.
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Figure S3. Breakdown of Aging Map collections.
(A) The Aging Map web interface.
(B and C) Upset plots showing the overlap of human (B) and mouse (C) aging genes
from different sources. Combination sets (columns) are mutually exclusive. For
example, the first column in B represents human genes that are only covered by the
PubMed text-mining list.
(D and E) Similar to Figure 2C and D but showing the enrichments of known aging
GO terms (DNA repair, methylation, Telomere length and autophagy) in human (D)
and mouse (E) literature-confirmed aging genes.



Figure S4. Global Gene Expression measure in different tissues



)iJXre 6�� *OoEaO *eQe ([SressioQ oI FeOOs iQ GiIIereQt tissXes�
Violin plots showing the distributions of "Global Gene Expression" defined as log-
transformed mean counts per gene of cells in different tissues and different 
chronological age groups. For each tissue we fitted a linear regression model as 
reported in the figure.



Figure S5. Single-cell Entropy oI FeOOs in different tissues�



Figure S5. Single-cell Entropy oI FeOOs in each sample.
6imilar to Figure. 6� except showing distributions of "6ingle-cell Entrop\". 6ee 
0ethods for detailed definition. p-values were calculated using the Kruskal-Wallis 
test.
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Figure S6. Overview of the Elastic Net-based forward selection method
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Figure S6. Overview of tKe (OastiF 1et�EaseG forward selection method�
($) Flow chart showing the selection process of tissue-specific aging genes
(B) Demonstration of the stop criterion. The red dotted line shows the cut off position.
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Figure S7. Training SCALE
(A) The overlap between Aging Map and selected aging genes by our forward 
selection based Elastic-Net method. X-axis shown how many genes we added when 
performing forward selection.
(B) The plot shows the distribution of non-zero coefficients. The blue dashed lines 
show the cutoffs of coefficients for the top 100 aging genes.
(C) The overlap among selected genes for each tissue. 



Figure S8. Summary of eQriFKeG GO terPs iQ aging gene sets aFross 
tissXes. 
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)iJXre 6�� 6XPPar\ oI eQriFKeG *2 terPs iQ aJiQJ JeQe sets aFross tissXes� 
For the aging gene sets (up- and down-regulated) selected in each tissue, we 
performed G2 enrichment anal\sis and recorded enriched G2 terms separatel\. 
+ere the bar plot show the most frequently enriched G2 pathways across tissues ($� 
up-regulated aging genes� B� down-regulated aging genes). X axis shows the 
number of samples (tissues) where a giYen GO pathway was enriched in the 
sample
s aging gene set.



Figure S9. Expression level of Lars2.



Figure S9. Expression level of Lars2.
Violin plots of Lars2 expression distribution in cells of different tissues and 
different ages.



Figure S10. Expression level of Rpl13a.



Figure S10. Expression level of Rpl13a.
Violin plots of Rpl13a expression distribution in cells of different tissues and 
different ages.



Figure S11. SCALE score GistriEXtioQs in different tissues�



)iJXre 6��� 6&$/( sFore GistriEXtioQs iQ GiIIereQt tissXes�
Data are presented as the mean ± s.d. ***p-value < 0.001, **P-value < 0.01 and *P-
value < 0.05 using a two-sided unpaired Student’s t-test.
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Figure S12. Robustness of selected aging gene sets. 
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Figure S12. Robustness of selected aging gene sets. 
(A) For each tissue, we randomly selected 100 genes from each sample and applied 
the method used to calculate the SCALE score to compute a score based on these 
genes. Next, we calculated the Pearson's correlation coefficient between the 
scores and chronological age to construct the empirical null distribution. Numbers in 
boxes show adjusted p-value according to the null (corrected by the Benjamini-
Hochberg procedure)
(B) Correlation between the SCALE score calculated from original data and data 
downsampled to different depths (x-axis). Data are presented as the mean ± s.d.
(C) The plot shows the change in the drop-out rate when downsampling the data. 
The x-axis shows the degree of downsampling. Data are presented as the 
mean ± s.d.
(D) The plot show the change in the number of remaining UMI counts when 
downsampling the data. The x-axis shows the degree of downsampling. Data are 
presented as the mean ± s.d.



Figure S13. Correlations of SCALE scores calculated by different sizes of 
aging gene sets
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Figure S13. Correlations of SCALE scores calculated by different sizes of 
aging gene sets
The boxplot shows the correlations of SCALE scores calculated by different sizes of 
aging gene sets (top 50 genes to top 200 genes) in different tissues. 



Figure S1�. 7Ke PeaQ QXPEer oI soPatiF PXtatioQs iQ JeQes 
iQFreases GXriQJ aJiQJ aFross tissXes�



)iJXre 6��� 7Ke PeaQ QXPEer oI soPatiF PXtatioQs iQ JeQes iQFreases 
GXriQJ aJiQJ aFross tissXes�
6tandard boxplots showing the distributions of mutation burden (called from single-
cell RNA-seq data) of cells in different tissues and age groups. 



Figure S1�. 5eOatioQsKiS EetweeQ tKe PeaQ QXPEer oI 
soPatiF PXtatioQs iQ JeQes aQG tKe 6&$/( sFore�



)iJXre 6��� 5eOatioQsKiS EetweeQ tKe PeaQ QXPEer oI soPatiF PXtatioQs iQ 
JeQes aQG tKe 6&$/( sFore�
Blue lines and corresponding annotations represent linear regression models 
fitted to the mean number of somatic mutations in genes and the SCALE score 
(divided into 10 groups from low to high). Data are presented as the mean ± s.d.



Figure S1�. 5eOatioQsKiS EetweeQ tKe PeaQ QXPEer oI soPatiF 
PXtatioQs iQ JeQes aQG tKe 6&$/( sFore resiGXaO�



)iJXre 6��� 5eOatioQsKiS EetweeQ tKe PeaQ QXPEer oI soPatiF PXtatioQs iQ 
JeQes aQG tKe 6&$/( sFore resiGXaO�
6imilar to Figure 6�� but here the x-axis in each plot represents 6C$/E score 
residuals after regressing out the chronological age.



Figure S17. SCALE outperformed other single-cell clocks in brain Non-
microglia cells of mice.
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Figure S17. SCALE outperformed other single-cell clocks in brain Non-
microglia cells of mice.
(A) Uniform manifold approximation and projection (UMAP) plot brain Non-microglia
cells of mice. Different colors show different cell types.
(B) SCALE scores of brain Non-microglia cells from wild type mice (normal, blue)
and AD mouse models (AD, red). Data are presented as the mean ± s.e.
(C) Box plot shows predicted chronological age of oligodendrocytes using
corresponding clocks reported by Buckley MT, et al.
(D) Box plot shows predicted chronological age of endothelial cells using
corresponding clocks reported by Buckley MT, et al.
(E) Predicted chronological age of brain cell types (Neuron, Astrocyte, and OPC)
lacking clocks trained by Buckley MT, et al. This box plot shows the results
calculated by all six clocks developed by Buckley MT, et al.
(F) SCALE scores of the brain cell types (in the panel E) lacking clocks trained by
Buckley MT, et al. The numbers show median values of SCALE scores of  cells from
wild type mice (normal, blue) and AD mouse models (AD, red).
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 using a two-sided unpaired 
Student’s t-test.



Figure S18. SCALE scores in different tissues from old mice, young mice, 
old heterochronic mice and young heterochronic mice



Figure S18. SCALE scores in different tissues from old mice, young mice, old 
heterochronic mice and young heterochronic mice
SCALE scores of each tissue from old mice, young mice, old heterochronic mice and 
young heterochronic mice, respectively. **p-value < 0.01 and ***p-value < 0.001 
using a two-sided unpaired Student’s t-test.



Figure S19. Predicted chronological age of different cell types by the 
method reported by Buckley MT, et al. from old mice, young mice, old 
heterochronic mice and young heterochronic mice
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Figure S19. Predicted chronological age of different cell types by the method 
reported by Buckley MT, et al. from old mice, young mice, old heterochronic 
mice and young heterochronic mice
Box plots show predicted chronological age of NSCs, endothelial cells, microglia 
cells, and oligodendocytes cells using corresponding clocks reported by Buckley MT, 
et al. ***p-value < 0.001 using a two-sided unpaired Student’s t-test.
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Figure S20. Cell-type-specific clocks trained by Buckley MT, et al cannot 
distinguish parabiosis effects when applied to unseen cell types

***

***

***

0

10

20

30

Old

Old 
Hete

roc
hro

nic

Yo
un

g H
ete

roc
hro

nic
Yo

un
g

Conditions

SC
AL

E 
sc

or
e

SCALE

A

B



Figure S20. Cell-type-specific clocks trained by Buckley MT, et al cannot 
distinguish parabiosis effects when applied to unseen cell types
(A) Box plots showing predicted chronological age of brain cell types (ependymal
cell, macrophage, neuron, oligo pre cell, pericyte, and T cell) lacking clocks trained
by Buckley MT, et al.
(B) Box plot showing SCALE scores of cells from the same cell types in A. *p-value <
0.05, **p-value < 0.01, and ***p-value < 0.001 using a two-sided unpaired Student’s
t-test.



Figure S21. Generalizing SCALE to human data.
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Figure S21. Generalizing SCALE to human data. 
We applied mouse-data-trained SCALE on a human middle temporal gyrus dataset.
Data are presented as the mean ± s.d. , and the p-value of the linear regression 
between chronological age and SCALE scores are shown.



Figure S22. Generalizing SCALE to calorie restriction rat data.
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Figure S22. Generalizing SCALE to calorie restriction rat data.
(A) SCALE score of cells in brown adipose tissue of young, old, and calorie 
restriction rats.

(B) SCALE score of muscle cells of young, old, and calorie restriction rats.

Data are presented as the mean ± s.d. p-values were calculated using two-sided 
unpaired Student’s t-tests.



Figure S23. Correlation between SCALE Score and chronological age in 
different cell types 
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Figure S23. Correlation between the SCALE score and chronological age for 
different cell types
Related to Figure 4H. The size of the circle show the Pearson's correlation coefficient. 

p-values were calculated using a permutation-based test. Orange indicates that the 
coefficient is significantly larger, and blue indicates that the coefficient is significantly 
smaller (p-value < 0.05).



Figure S24. Comparison between SCALE and models trained with random 
initial genes

●

●

●

1.2e−06

0%

20%

40%

60%

80%

Random initial genes SCALE
Aging gene sources

O
ve

rla
p 

ra
te

 w
ith

 A
gi

ng
 M

ap
 (%

)

● ●

0.0054

0

10

20

30

40

50

Old

Old Heterochronic

Conditions

S
C

A
LE

 s
co

re

SCALE

● ●

0.011

0

10

20

30

40

Old

Old Heterochronic

Conditions

S
co

re

Random initial genesA CB



Figure S24. Comparison between SCALE and models trained with random 
initial genes
(A) Overlap between genes in Aging Map and aging genes selected by random 
initialization and SCALE's guided forward selection approach. p-values using a 

two-sided unpaired Student’s t-test.

(B) SCALE scores of kidney cells from parabiosis mice, calculated using different 
gene sets. p-values using a two-sided unpaired Student’s t-test are shown.

(C) SCALE scores of kidney cells from parabiosis mice, calculated using different 
gene sets. p-values using a two-sided unpaired Student’s t-test are shown.
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Figure S25. Interpolation of SCALE scores XsiQJ optimal transport�
($) Depiction of the interpolation in the sampling interval.
(B) Interpolation of SCALE scores between 18- and 30-month-old groups in marrow.
We computed the barycenter of the 18- and 30-month-old groups by optimal
transport and compared the distribution to the actuall\ obserYed 24-month-old group.




