
Supplemental Material

Amir Joudaki1,2,⇤, Alexandru Meterez1,⇤, Harun Mustafa1,2,3,
Ragnar Groot Koerkamp1, André Kahles1,2,3,†, and Gunnar Rätsch1,2,3,4,†

1 Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
2 University Hospital Zurich, Biomedical Informatics Research, Zurich 8091, Switzerland

3 Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
4 ETH AI Center, 8092 Zurich, Switzerland
{firstname}.{lastname}@inf.ethz.ch

⇤ Equal contribution.
† To whom correspondence should be addressed.

A Formal statement and proof of Example 1

In this section, we provide a slightly more general and more formal proof for example 1. We are given a
reference sequence S consisting of N uniformly sampled elements from ⌃ := {A,C,G, T}N , and a mutation
rate 0  r  1. Given the arbitrary offset � 2 {0, . . . , N � |q|}, we create a query q by copying a substring
of the reference sequence and substituting each position independently with probability r:

for j = 1 up to |q| :

(
qj S�+j copy with 1� r probability
qj draw uniformly ⌃ \ {[S�+j]} substitute with r probability.

We define a hit as a pair of indices that correspond to matching k-mers, and a true positive hit as pairs that
are aligned to the offset:

Hits := {(i, j) 2 [N � k + 1]⇥ [|q|� k + 1] : Si...i+k�1 = qj...j+k�1} TP-Hits := {(i, j) 2 Hits : i� j = �}

We define recall as the event that there is at least one true positive Recall := Pr(|TP-Hits| > 0).

Expected number of hits

We first consider the expected number of hits due to chance. Let Ei,j denote the event where the k-mers
at indices i and j in the reference and query, respectively, are a match, i.e., Ei,j = 1[(i, j) 2 Hits], where
1 is the indicator variable. For values of i that are not in the range [� � k,� + |q| + k], the probability of
a hit takes the form |⌃|

�k, corresponding to every position matching randomly. Observe that E represents
the number of hits is the sum of these events |Hits| =

P
iN�k+1,j|q|�k+1 Ei,j , and based on linearity of

expectation and assuming N and |q| are greater than k, we have E|Hits| = ⇥
�
|q|N |⌃|

�k
�
.

Recall

In order to have recall, at least one of the k-mers in the query must remain un-mutated. Let Ei denote the
event that the k-mer starting at position i in the query sequence, qi,...,i+k�1, is not mutated. We are only
interested in i 2 {1, . . . , |q|�k+1} because indices i � |q|�k do not correspond to a valid k-mer. We can use
the union bound to upper bound the probability that any of these events occur: Recall = Pr(

W|q|�k+1
i=1 Ei) 

(|q|� k + 1)(1� r)k. This follows from the fact that the probability of any individual event is (1� r)k.

B Commands used for experiments

We use an assembled version of the base graph to evaluate GraphAligner (GA). For the vg methods, we
transform the base graph into a variant graph.

2 A. Joudaki et al.

To use the same graph in vg map and vg mpmap we “bluntify” it with the GetBlunted tool to remove
overlaps between nodes (Eizenga et al. 2021). Finally, we call vg autoindex on the blunted graph to obtain
a GCSA index used by vg.

We evaluate GA using unlimited tangle effort by enabling the parameter -C -1. While in this setting
GA uses 13GB of RAM, disabling this parameter resulted in an imperfect recall even at 0% mutation. This
is due to the heuristic used in tangled graph regions, which can drop the correct path in case the extender
starts exploring a false positive path first. This is a common case in our evaluation since our graphs have
many similar paths.

We initially generate the De Bruijn graph in MetaGraph. The graph is then assembled into unitigs and
blunted using get_blunted to accommodate for vg’s format. This removes the overlap between the nodes.
The GCSA index required by vg is generated using vg autoindex. In practice we ran the following set of
commands:

metagraph build -k 80 --parallel 20 -o graph.dbg sequence.fa
metagraph assemble --to-gfa --compacted --unitigs -o graph.gfa graph.dbg
get_blunted --input_gfa graph.gfa > blunted_graph.gfa
vg autoindex -g blunted_graph.gfa -V 2 -w map
vg convert index.xg -p > index.vg

To evaluate each baseline we use the following set of commands:

GraphAligner

GraphAligner -g blunted_graph.gfa -f input.fa
-a output.gaf -x dbg -C -1

MetaGraph Sketching

metagraph align --seeder sketch --embed-dim 14
--num-neighbours 10 --align-end-bonus 0 -i graph.dbg in.fa

MetaGraph Exact

metagraph align --seeder default --align-min-seed-length 15
--align-xdrop 15 -i graph.dbg input.fa

vg map

vg map -z 1 -o 1 -x index.xg -g index.gcsa -f input.fa --gaf

vg mpmap

vg mpmap -n DNA -F GAF -z 1 -o 1 -x index.xg -g index.gcsa
-f input.fa --gaf

To measure peak memory usage, we used the /usr/bin/time -f %M command. To evaluate vg map and
vg mpmap, we extracted the path spelling of the GAF output using vg find and vg view. To evaluate
GraphAligner, we extracted the obtained path spellings from the input GFA file.

C Proof of Tensor Embedding bound

Notation The alphabet is ⌃, of size |⌃| = �. The set of indices is I
t := {(i1, . . . , it) 2 [n]t : i1 < · · · < it}.

Given a string a1 . . . an = a 2 ⌃n, we define the I-index as aI = (ai1 , . . . , ait). We write [X] for the indicator
variable of event X, which is 1 when X holds and 0 otherwise.

Supplemental Material 3

Definition 1: Tensor Embedding Given a 2 ⌃n, the Tensor Embedding Ta is the �t tensor given by
Ta[s] =

P
I2It [AI = s] for each s 2 ⌃t.

The normalized Tensor Embedding distance dte between two sequences a and b is defined as

dte(a, b) :=
1

2

✓
n

2t� 1

◆�1

kTa � Tb||
2
2. (1)

Lemma 1: Tensor embedding preserves Hamming distance under `2 norm Let a be a uniform
random sequence of length n in ⌃n, and for a fixed mutation rate r 2 [0, 1] let b be a sequence where ai is
substituted by a new character bi 2 Unif(⌃\ai) with probability r and bi = ai otherwise. Then:

Ea,b[dte(a, b)] =
⇣
1 +O(2t�/4t�1n)

⌘
· (4/�)t�1

· r, (2)

which for DNA with � = 4 gives E[dte(a, b)] = (1 +O(n�1)) · r.

Proof of Lemma 1 By definition we have

2

✓
n

2t� 1

◆
dte(a, b) = kTa � Tb||

2
2 =

X

s2⌃t

X

I2It

[aI = s]�
X

I2It

[bI = s]

!2

(3)

=
X

s2⌃t

X

I,J2It

⇣
[aI = s][aJ = s]� [aI = s][bJ = s]� [bI = s][aJ = s] + [bI = s][bJ = s]

⌘
.

(4)

By symmetry between a and b, the first and last term, and second and third term are equal in expected
value, reducing this to

Ea,b

�
kTa � Tbk

2
2

�
= E

0

@2
X

s2⌃t

X

I,J2It

⇣
[aI = s][aJ = s]� [aI = s][bJ = s]

⌘
1

A (5)

= E

0

@2
X

I,J2It

X

s2⌃t

⇣
[aI = s ^ aJ = s]� [aI = s ^ bJ = s]

⌘
1

A (6)

= 2
X

I,J2It

E
⇣
[aI = aJ]� [aI = bJ]

⌘
. (i)

Define the overlap q as the number of positions where I and J are equal, q(I, J) := |{x 2 [t] : Ix = Jx}|.
We will show using induction on t that E[aI = bJ] = (�(1 � r))q��t. For t = 0 we have I = J = ? and
trivially E[aI = bJ] = 1. For t > 0, write I 0 and J 0 for the tuples (I1, . . . , It�1) and (J1, . . . , Jt�1). When
It = Jt, the characters aIt and bJt are independent of the earlier characters and equal with probability 1� r,
and q(I 0, J 0) = q � 1, so that

E[aI = bJ] = (1� r)E[aI0 = bJ 0] (7)

= (1� r) · (�(1� r))q�1��(t�1) (8)
= (�(1� r))q��t. (9)

When It 6= Jt, assume without loss of generality that It < Jt. Then Ix < Jt for all x 2 [t], resulting in bJt is
independent from the characters seen so far. This implies that [aIt = bJt] is independent from [aI0 = bI0].

E[aI = bJ] = E[aIt = bJt]E[aI0 = bJ 0] (10)

= (�)�1
· (�(1� r))q��(t�1) (11)

= (�(1� r))q��t. (12)

4 A. Joudaki et al.

We conclude that
Ea,b

�
[aI = aJ]� [aI = bJ]

�
= ��t+q

�
1� (1� r)q(I,J)

�
. (13)

This difference vanishes for q = 0, and thus in (i) we only have to consider (I, J) with q(I, J) � 1. The
summation can now be rewritten as

Ea,b

�
kTa � Tbk

2
2

�
= 2

tX

q=1

X

I,J2It:
q(I,J)=q

E
⇣
[aI = aJ]� [aI = bJ]

⌘
(14)

= 2
tX

q=1

X

I,J2It:
q(I,J)=q

��t+q
�
1� (1� r)q

�
(15)

= 2
tX

q=1

��t+q
�
1� (1� r)q

�
· fq, (ii)

where fq counts the number of pairs (I, J) with q(I, J) = q. Since |I \ J | � q, the total number of distinct
indices is bounded by |I [J |  2t� q. This directly implies that fq 

�
n

2t�q

�
, which for q � 2 gives

✓
n

2t� 1

◆�1✓ n

2t� q

◆
· ��t+q

�
1� (1� r)q

�
= O((2t�/n)q�1) · �1�tr. (16)

When q = 1 but |I [J | < 2t� 1 a similar argument applies, and we are left with the case where q = 1 and
|I [J | = 2t� 1. We can first choose the 2t� 1 distinct values for I [J in

�
n

2t�1

�
ways, and then assume that

I [J = [2t� 1]. The overlap can be at any odd position 2k+1 2 {1, 3, . . . , 2t� 1}, since I and J must both
have an equal number of distinct elements smaller (resp. larger) than 2k + 1. Given 2k + 1, the 2k smaller
positions can be split into two halves in

�2k
k

�
ways, and similarly for the right half, leading to the following

number of (I, J) pairs with q = 1 and |I [J | = 2t� 1:

✓
n

2t� 1

◆
·

t�1X

k=0

✓
2k

k

◆✓
2(t� 1� k)

t� 1� k

◆
=

✓
n

2t� 1

◆
· 4t�1, (17)

a well-known equality (Lyons 1998). Finally, splitting (ii) into the cases q = 1 (with |I\J | = 1 and |I\J | > 1)
and q > 2, and assuming that n� 2t�, we get:

E(dte(a, b)) = (4/�)t�1
· r +O(2t�/n) · ��tr +

tX

q=2

O((2t�/n)q�1) · �1�tr (18)

= (4/�)t�1
· r +O(2t�/n) · �1�tr (19)

=
⇣
1 +O(2t�/4t�1n)

⌘
· (4/�)t�1

· r (20)

⌅

D Implementation details for MG-Sketch

We provide an overview of the implementation of Tensor Slide Sketching.

Supplemental Material 5

Algorithm 2: TensorSlideSketch �TSS

Input : Query q 2 ⌃
k

Output : Sketch � 2 Rd k�w+1
s eD

Parameter: Dimension D 2 N+

Tuple size t 2 N+

Stride s 2 N+

Window size w 2 N+

for j 0 to d k�w+1
s e do

�j TensorSketch
�
q[js : js+ w � 1]

�

end

Return : �

