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A Empirical study of gamma fits

To empirically examine how well a gamma distribution fits conditional posteriors, we con-

ducted a simulation study. We simulated a single diploid genome (length of 108 basepairs,

µ = 10�8 and r = 10�8). We computed the forward pass of MSMC2 and recorded the forward

conditional distributions. Then, for each one, we fit a gamma distribution by finding an (↵,�)

pair the minimizes the L2 distance. We observed a very good fit for most positions; we show 4

representative examples in Figure S1.

B The Sequentially Markovian Coalescent (SMC) model

We begin by describing the SMC. For a detailed overview, see e.g, the Supplement of (Wang

et al., 2020). We denote by µ the unscaled mutation rate, in units of mutations per basepair per

generation; byNe the e↵ective population size, in diploids; by ✓ = 4Neµ the scaled mutation rate;

by r the unscaled recombination rate, in units of recombinations per basepair per generation;

by ⇢ = 4Ner the scaled recombination rate; and by N the sequence length.

Hidden states and observations

An observation Yi (i = 1, . . . , N) at position i in the genome for a pair of haplotypes, can

take a value from Yi = yi 2 {�1, 0, 1}, where -1 denotes missing data in either of the two

haplotypes (not called, or masked out; see below), 0 denotes a site where both haplotypes have

the same allele (i.e. a homozygous genotype in case of a single diploid genome), 1 denotes a

mismatch between the alleles of the two haplotypes (i.e. a heterozygote genotype in case of a

single diploid genome). Denote by Y1:i the vector of random variables (Y1, . . . , Yi), and by y1:i

the vector of values they take (y1, . . . , yi).

The hidden states {Xi}Ni=1 are the TMRCAs between the two alleles at position i. Each

Xi = xi is given in units of coalescence time - where unit time corresponds to 2Ne generations.

Similarly, denote X1:i = (X1, . . . , Xi) and x1:i = (x1, . . . , xi).

22



Emission probability function

We use di↵erent emission probability functions conditional on the missingness patterns of the

data. In positions where there is a missing observation, we skip the emission step, or equivalently

define:

Pr(Yi = �1 |Xi = s) = 1

Otherwise, the emission probabilities for a given coalescence time s follow a Poisson distribution,

with rate � = ✓s. To see why, note that a coalescence time of s means there were 2Nes

generations until the coalescence of the two chains of ancestors. A mutation on either chain will

lead to a het, so this is a Binomial distribution with n = 2 ·2Nes and p = µ. Since n� 1, p⌧ 1,

it can be well approximated with a Poisson distribution of rate � = np = 4Nesµ = ✓s:

Pr(Yi = 0 |Xi = s) = e�✓s

Pr(Yi = 1 |Xi = s) = (✓s) · e�✓s

We assume ✓ ⌧ 1, so that the probability of recurrent mutations is negligible.

Transition density function

The transition probability is derived from the SMC’ model (Marjoram and Wall, 2006). A

recombination event, which takes place at position i, detaches the chain of ancestors, which then

coalesces back, either onto itself or onto the other branch, at time t. We note the SMC’ model

is a modification of the SMC model by McVean and Cardin (McVean and Cardin, 2005), that

accounts for the case of the detached lineage coalescing back onto itself.

Formally, define:

q(t|s) := Pr(Xi+1 = t|Xi = s,Ri)

where Ri denotes the event of having a recombination event between position i and i+ 1.

We assume a demographic model of a constant population size Ne. In this case, the prob-

ability of coalescing back onto the same branch is given by (Carmi et al., 2014), Eq (6), to

be (2t + e�2t � 1)/4t. The probability distribution of t assuming the detached lineage did not

coalesce back onto itself is also given by (Carmi et al., 2014) to be

qdi↵(t|s) =

8
<

:

1�e�2t

2s t  s,

e�(t�s)�e�(t+s)

2s t > s.

This is combined together to give:

q(t|s) = qdi↵(t|s) + �(t� s) · 2t+ e�2t � 1

4t
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where � is Dirac’s delta function:

�(t� s) =

8
<

:
1 t = s,

0 t 6= s.

Also marginalizing on the event of recombination, we get

p(t|s) :=Pr(Xi+1 = t|Xi = s)

=Pr(Xi+1 = t|Xi = s,Ri) · P (Ri|Xi = s) + �(t� s) · P (R̄i|Xi = s)

The probability of recombination can again be modelled as a Poisson with rate � = ⇢s with

a similar argument. Again, we assume ⇢ ⌧ 1, so we can neglect the event of more than one

recombination. In this case, we choose to make an additional approximation and write:

Pr(Ri|Xi = s) = ⇢s

Pr(R̄i|Xi = s) = 1� ⇢s.

as this will simplify our calculations later.

C Posterior density in continuous-state HMMs (CS-HMMs)

The forward algorithm

The forward algorithm in the context of a CS-HMMs (Ainsleigh, 2001) is an iterative pro-

cedure which tracks the probability density (forward density) of a hidden state at a position i,

given the observations until that position. We use the scaled variant (Bishop, Christopher M

and Nasrabadi, Nasser M, 2006). Let X̂i := Xi|(Y1:i = y1:i). The forward densities are defined

by:

↵̂(xi) := Pr(X̂i = xi) = Pr(Xi = xi|Y1:i = y1:i)

with the recursion

↵̂(xi) =
1

ci
· Pr(yi|xi)

Z 1

0
Pr(xi|xi�1)↵̂(xi�1)dxi�1.

with ci a scaling factor that assures we get a normalized density function. We begin with an

exponential prior �(1, 1), as this is the stationary distribution of the SMC’ Markov chain.

Posterior state density

We use a slightly di↵erent alternative to the backward algorithm, which is easier to work

with. Denote by
 �
↵̂ (xi) the result of running the scaled forward algorithm on the reversed
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sequence; that is,

 �
↵̂ (xi+1) := Pr(Xi+1 = xi+1|Yi+1:N = yi+1:N )

Taking this one step back, we get:

Pr(Xi = xi|Yi+1:N = yi+1:N ) =

Z 1

0
Pr(xi|xi+1)

 �
↵̂ (xi+1)dxi+1

Then, we have:

Pr(xi|y1:N ) =
Pr(y1:N |xi) Pr(xi)

Pr(y1:N )

=
Pr(yi+1:N |xi) Pr(y1:i|xi) Pr(xi)

Pr(y1:N )

=
Pr(yi+1:N |xi) Pr(xi|y1:i) Pr(y1:i)

Pr(y1:N )

= ↵̂(xi) ·
Pr(yi+1:N |xi) Pr(y1:i)

Pr(y1:N )

= ↵̂(xi) ·
Pr(xi|yi+1:N ) Pr(yi+1:N ) Pr(y1:i)

Pr(xi) Pr(y1:N )

= ↵̂(xi) ·
Z 1

0
Pr(xi|xi+1)

 �
↵̂ (xi+1)dxi+1 ·

1

Pr(xi)
· Pr(yi+1:N ) Pr(y1:i)

Pr(y1:N )| {z }
Constant

Namely, the posterior density of the TMRCA at a position i can be obtained by: (i) running

the forward algorithm until step i; (ii) running the forward algorithm on the reversed sequence

until step i + 1; (iii) evaluating the integral one step back, to step i; (iv) dividing by the prior

density of xi; (v) scaling to obtain a legal density function.

D Gamma approximation

As mentioned above, assuming a standard coalescent process, with a constant population

size, the coalescence time has an exponential prior; that is, Xi ⇠ Exp(1) = �(1, 1). Now, assume

X̂i ⇠ �(↵,�). We describe how to approximate X̂i+1 (or, more accurately, ↵̂(xi+1)).

Transition step

We give a closed-form expression for the coalescence time at the next step. We first use the

approximation, assuming the recombination rate is small:

Pr(Ri|Xi = s) = ⇢s

Let f↵,�(x) be the probability density function (pdf) of the gamma function �(↵,�). Assume

that X̂i ⇠ �(↵,�); then we define p↵,�(t) to be the compound distribution defined by the tran-
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sition distribution conditional on X̂i:

p↵,�(t) =

Z
p(t|s) · f↵,�(s)ds

Our goal is to approximate p↵,�(t) with a gamma distribution. We observe that empirically,

with a small recombination rate, p↵,� is very close to f↵,� . We therefore wish to find new gamma

parameters (↵0 and �0) that are small perturbations of the previous parameters (↵ and �):

↵0 = ↵+ u · ⇢

�0 = � + v · ⇢

Therefore, our goal is to find u, v that approximate p↵,� well. To this end, we wish to express

p↵,� as a first-order Taylor approximation of f↵,� in terms of ⇢. For this, we get:

�
p↵,�(t)� f↵,�(t)

�
/⇢

= e�t · (t�)↵

�(↵+ 1)
(M(↵,↵+ 1,�(� � 1)t)�M(↵,↵+ 1,�(� + 1)t))

+
2t+ e�2t � 1

2
· f↵,�(t) + (1� e�2t) · �(↵,�t)

�(↵)
� 2t · f↵,�(t)

where M is Kummer’s confluent hypergeometric function, also denoted 1F1. The derivation is

given in ”Gamma-SMC transition step derivation” below.

PDE approach to gamma approximation

We can treat this last expression as the linear pertubration in the gamma pdf caused by

a possible recombination. As such, it is natural to express it as a linear combination of the

perburtations of f↵,� in its parameters ↵ and �:

u · @f↵,�(x)
@↵

+ v · @f↵,�(x)
@�

⇡ (p� f)/⇢

Note that u, v vary with ↵,�. Then, we approximate

p↵,�(x) ⇠ �(↵+ ⇢u,� + ⇢v).

To find u and v, we first calculate the partial derivatives,

@f↵,�(x)

@↵
= f↵,�(x) · (� (0)(↵) + log(�) + log(x))

@f↵,�(x)

@�
= f↵,�(x) · (↵/� � x)
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where  (0) is the digamma function. We would like to solve the least squares problem:

argmin
u,v

||u · @f↵,�(x)
@↵

+ v · @f↵,�(x)
@�

� (p(x)� f(x))/⇢||2.

To do so, we evaluate the partial derivatives, as well as (p � f), over a grid of 2,000 values of

x-s, placed to cover the main range of f↵,� ; then we solve:

argmin
u,v

2000X

i=1

✓
u · @f↵,�(xi)

@↵
+ v · @f↵,�(xi)

@�
� (p(xi)� f(xi))/⇢

◆2

.

We note that the last equation is in fact independent of all model parameters ✓, ⇢, Ne, and

therefore this minimization problem can be performed once, independently of any specific pa-

rameters.

Log-coordinates

To better operate across scale, it is better to use coordinates specified in log-scale. If we use

log10(↵), log10(�) as our coordinates, by the chain rule, we get

@f↵,�(x)

@ log10(↵)
=
@f↵,�(x)

@↵
· @↵

@ log10(↵)
=
@f↵,�(x)

@↵
· ↵

log10(e)

@f↵,�(x)

@ log10(↵)
=
@f↵,�(x)

@�
· �

log10(e)

Further, for improved interpretability and choice of grid boundaries, we wish to actually

use the coordinates log10(µ), log10(Cv), where µ = ↵/�, Cv = 1/
p
↵. It follows that log10(µ) =

log10(↵)� log10(�) and log10(Cv) = �0.5 · log10(↵). However, it turns out that those coordinates

are not good for a Taylor expansion, so that it is not true that perturbation of gamma in these

coordinates is approximately equal to a linear combination of the partial derivatives. Instead,

to get the respective change in log10(µ), log10(Cv), we use log10(↵), log10(�) and, using linearity,

simply write that

� log10(µ) = � log10(↵)�� log10(�)

� log10(Cv) = �0.5� log10(↵) .

Emission step

Suppose we know (or approximate)

Xi+1|(Y1:i = y1:i) ⇠ �(↵,�)

27



Recall we use a Poisson emission model:

Yi+1|(Xi+1 = t) ⇠ Pois(✓ · t)

Then, using the Markov property and Bayes rule,

Pr(Xi+1 = t|Y1:i+1 = y1:i+1)

= Pr(Xi+1 = t|Y1:i = y1:i, Yi+1 = yi+1)

=
Pr(Yi+1 = yi+1|Y1:i = y1:i, Xi+1 = t) · Pr(Xi+1 = t|Y1:i = y1:i)

Pr(Yi+1 = yi+1|Y1:i = y1:i)

=
Pr(Yi+1 = yi+1|Xi+1 = t) · Pr(Xi+1 = t|Y1:i = y1:i)

Pr(Yi+1 = yi+1|Y1:i = y1:i)

In the numerator, Pr(Yi+1 = yi+1|Xi+1 = t) follows the Poisson distribution described above,

and Pr(Xi+1 = t|Y1:i = y1:i) follows �(↵,�). The denominator is constant. Therefore,

Pr(Xi+1 = t|Y1:i+1 = y1:i+1)

/ (✓t)yi+1 · e�✓t · �↵

�(↵)
· t↵�1e��t

/ t↵+yi+1�1 · e�(✓+�)t

and since this distribution must be normalized, we have that

Pr(Xi+1 = t|Y1:i+1 = y1:i+1) ⇠ �(↵+ yi+1,� + ✓).

That is:

Xi+1|Y1:i+1 = y1:i+1 ⇠ �(↵,� + ✓)

if Yi+1 = 0 (is homozygous), and

Xi+1|Y1:i+1 = y1:i+1 ⇠ �(↵+ 1,� + ✓)

if it is heterozygous. If Yi+1 is missing, we perform no updating.

Combining forward and backward passes

We have shown above that

Pr(xi|y1:N ) / ↵̂(xi) ·
Z 1

0
Pr(xi|xi+1)

 �
↵̂ (xi+1)dxi+1 ·

1

Pr(xi)
.

We wish to combine gamma approximations from both the forward and backward passes to

obtain a gamma approximation to the full posterior. First, we run the forward pass with the
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gamma approximation. This results in a gamma approximation to the forward density at each

step, so that at position i we have ↵̂(xi) ⇠ �(a, b).

Second, we run the forward pass with the gamma approximation on the reversed sequence,

so that at position i + 1 we have
 �
↵̂ (xi+1) ⇠ �(a00, b00). Then, we apply the flow field once, to

represent the change in uncertainty after taking a single transition step (from i+ 1 to i). This

results in a new approximation,
R1
0 Pr(xi|xi+1)

 �
↵̂ (xi+1)dxi+1 ⇠ �(a0, b0). We then have, at each

step i, a gamma approximation for both Xi|Y1:i and Xi|Yi+1:N . Then we get

Pr(xi|y1:N ) / ↵̂(xi) ·
Z 1

0
Pr(xi|xi+1)

 �
↵̂ (xi+1)dxi+1 ·

1

Pr(xi)

/xa�1e�bx · xa0�1e�b0x/e�x

=x(a+a0�1)�1e�(b+b0�1).

As this function must normalize to a proper density function, it follows that (based on the

previous gamma approximations)

Xi|Y1:N ⇠�(a+ a0 � 1, b+ b0 � 1)

So, to combine both steps, we simply sum the ↵ and � parameters, and subtract 1.

E Gamma-SMC transition step derivation

In this section we derive an explicit expression for p↵,�(t) � f↵,�(t)
�
/⇢. Recall that we

approximate the probability of recombination, given a coalescene time of s, as:

Pr(Ri|Xi = s) ⇡ ⇢s

With this, the distribution of the next step is

p↵,�(t) =

Z 1

s=0
(Pr(Xi+1 = t|s,Ri) Pr(Ri|s) + Pr(Xi+1 = t|s, R̄i) Pr(R̄i|s)) Pr(Xi = s) ds

⇡
Z 1

s=0
[q(t|s) · 2⇢s + �(t� s) · (1� 2⇢s)] f↵,�(s) ds

=

Z 1

s=0
q(t|s) · 2⇢s · f↵,�(s) ds + (1� 2⇢t)f↵,�(t)
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where we have used the property of Dirac’s delta function that
R
�(x)f(x)dx = f(0). We get

that the di↵erence between consecutive positions is:

p↵,�(t)� f↵,�(t) ⇡
Z 1

s=0
q(t|s) · 2⇢s · f↵,�(s) ds + (1� 2⇢t)f↵,�(t)� f↵,�(t)

= ⇢

2

6664

Z 1

s=0
q(t|s) · 2s · f↵,�(s) ds

| {z }
(⇤)

�2t · f↵,�(t)

3

7775

We proceed to develop (⇤). We need to recall the following facts about the lower and upper

incomplete gamma functions.

Fact 1 For all t,↵,� > 0,

f↵,�(x) :=
�↵

�(↵)
x↵�1e��x

�(s, x) :=

Z x

0
ts�1e�tdt

�(s, x) :=

Z 1

x
ts�1e�tdt

Z t

0
f↵,�(x)dx =

�(↵,�t)

�(↵)
Z 1

t
f↵,�(x)dx =

�(↵,�t)

�(↵)

Fact 2 For all � (including non-positive) and for all t,↵ > 0,

Z t

0
x↵�1e��xdx =

t↵

↵
·M(↵,↵+ 1,��t),

where M is Kummer’s confluent hypergeometric function, also denoted 1F1. This generalizes

the lower incomplete gamma function.

We evaluate the integral separately at s < t, s = t and s > t. For s < t,

Z t

s=0
q(t|s) · 2s · f↵,�(s) ds =

Z t

s=0

e�(t�s) � e�(t+s)

2s
· 2s · f↵,�(s) ds

= e�t

Z t

s=0
(es � e�s) · f↵,�(s) ds

= e�t · (t�)↵

�(↵+ 1)
(M(↵,↵+ 1,�(� � 1)t)�M(↵,↵+ 1,�(� + 1)t))
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For s = t, and using Dirac’s delta function to indicate a point mass,

�(0) · q(t|t) · 2t · f↵,�(t) = �(0) · 2t+ e�2t � 1

4t
· 2t · f↵,�(t)

= �(0) · 2t+ e�2t � 1

2
· f↵,�(t)

For s > t,

Z 1

s=t
q(t|s) · 2s · f↵,�(s) ds =

Z 1

s=t

1� e�2t

2s
· 2s · f↵,�(s) ds

=

Z 1

s=t
(1� e�2t) · f↵,�(s) ds

= (1� e�2t) · �(↵,�t)
�(↵)

To summarize,

�
p↵,�(t)� f↵,�(t)

�
/⇢

⇡ e�t · (t�)↵

�(↵+ 1)
(M(↵,↵+ 1,�(� � 1)t)�M(↵,↵+ 1,�(� + 1)t))

+
2t+ e�2t � 1

2
· f↵,�(t) + (1� e�2t) · �(↵,�t)

�(↵)
� 2t · f↵,�(t).

F Entropy clipping

Entropy limits

For random variablesX,Y , it is known thatH(X|Y )  H(X), whereH is Shannon’s entropy.

In the context of the HMM underlying the SMC framework, an example of this principle is that

a sequence of observations reduces our uncertainty about an unobserved TMRCA:

H(Xi|Y1:N = y1:N )  H(Xi).

Here, H(Xi) is the entropy of the TMRCA at position i, prior to seeing any observations - this

is the prior, here taken to be the exponential; and H(Xi|Y1:N = y1:N ) is the entropy of this

TMRCA given the diploid sequence. This princple also holds, for example, for the sequence of

observations only up until position i - so that the forward distributions will have less entropy

than the prior.

However, the update rules used for the transition step of Gamma-SMC are approximate,

and therefore do not mathematically guarantee a reduction in entropy. To avoid inconsistency

in inference, we need to explictly enforce this. We do so by setting an upper bound on the

di↵erential entropy of the gamma distributions used in Gamma-SMC.

31



The di↵erential entropy of the gamma distribution is:

h(↵,�) := ↵� ln� + ln�(↵) + (1� ↵) (↵)

where  is the digamma function. For the exponential prior Exp(1) = �(1, 1), this entropy

is h(1, 1) = 1, which we therefore require as an upper bound for entropy. This in turn also

translates into a constraint of the coordinates we actually use, log10(µ), log10(Cv).

When this bound is violated, we can get nonsensical results. Consider for example, when com-

bining the forward and backward passes as described above, we would have obtained �(1, 1/3)

from both passes. While this is a legitimate distribution on its own, when combining both, we

get �(1,�1/3) which is outside the defined parameter range of � > 0. This inconsistency stems

from �(1, 1/3) having an entropy larger than 1, which should not have happened.

We now prove that this is avoided. We can show that the gamma di↵erential entropy is

monotone increasing in ↵, for positive ↵ values. To see that:

@

@↵
h(↵,�) =

@

@↵
(↵� ln� + ln�(↵) + (1� ↵) (↵))

= 1 +
@

@↵
ln�(↵) + (1� ↵) @

@↵
 (↵)�  (↵)

= 1 +  (↵) + (1� ↵) (1)(↵)�  (↵)

= 1 + (1� ↵) (1)(↵)

It can be proven (not shown here) that this derivative is always positive, as required. Now,

recall that we require ↵ � 1; therefore, using the monotonicty and assuming the required

entropy bound,

1� ln� = h(1,�)  h(↵,�)  1) 1  �

To conclude, we have shown that if the di↵erential entropy of a gamma distribution is below

the threshold of 1; and ↵ � 1 as we enforce already; then � � 1 as well, which guarantees that

combining the forward and backward passes will result in a legal gamma distribution.

Implementing clipping

To make sure the di↵erential entropy remains below 1, we clip values to be in the legitimate

range. We choose to fix the mean of the gamma distribution while reducing the CV su�ciently.

If we recast h in terms of lµ, lC , then it can be shown that for a fixed lµ and for lC  1,

h(lµ, lC) is monotone increasing in lC . We therefore wish to find the maximal lC for which

h(lµ, lC) = 1. Unfortunately, we don’t have a closed-form expression for that. Instead, we

perform the following: (i) over a grid of lµ values, find the maximal lC for which h(lµ, lC) = 1

using bisection; (ii) interpolate over the grid for new values.
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Supplemental Figures

Figure S1: Fitting gamma distributions. Examples of best fit gamma distributions to
forward conditional distributions, for four representive positions along a simulated genome.

Figure S2: Inference accuracy of ASMC-seq, MSMC2, XSMC and Gamma-SMC for
out-of-Africa model. A comparison of the true TMRCA vs. the estimated TMRCA (posterior
mean) across a genome according to an out-of-Africa model. Pearson’s r2 and the mean absolute
error (MAE, in generations) are shown.
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Figure S3: Selection study. A comparison of Gamma-SMC to alternative methods, with
selection coe�cient s = 0.001 and sample allele frequency 0.9.
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