
SUPPLEMENTAL METHODS
for

A fast and scalable method for inferring phylogenetic networks from trees by
aligning lineage taxon strings

by Zhang et al.

A. Correctness of Algorithm A - - - - - - - - - - - - Page 2

B. Reduction for a reducible tree set - - - - - - - - - - - - Page 11

C. Computing the branch weights of the inferred tree-child network - - - - - - - - - - - Page 12

D. A phylogenetic network for hominin relationships - - - - - - - - - - - Page 14

1

A. Correctness of Algorithm A

A1. Concepts and notation

Directed graphs

A directed graph G consists of a set V of nodes and a set E of directed edges that are ordered pairs
of distinct nodes. Let e = (u, v) ∈ E. We call e an outgoing edge of u and an incoming edge of v.
For a node v ∈ V , its outdegree and indegree are defined as the number of outgoing and incoming
edges of v, respectively.

For a graph, subdividing an edge (u, v) involves replacing it with a directed path from u to v that
passes one or more new nodes. Conversely, an edge contraction at a node v of indegree one and
outdegree one is to remove v and replace the path u → v → w with an edge (u,w), where (u, v)
and (v, w) are the unique incoming and outgoing edge of v, respectively.

Phylogenetic networks

A phylogenetic network on a set X of taxa is a rooted, directed acyclic graph in which (i) all the
edges are oriented away from the root, which is of indegree 0 and outdegree 1; (ii) the nodes of
indegree 1 and outdegree 0, called leaves, are uniquely labeled with the taxa; and (iii) all the non-
root and non-leaf nodes are either tree nodes that are of indegree 1 and outdegree 2 or reticulate
nodes that are of indegree more than 1 and outdegree 1. Reticulate nodes represent evolutionary
reticulation events. A phylogenetic network is said to be binary if the indegree of every reticulate
node is exactly 2 (Figure A1).

Let N be a phylogenetic network. We use V(N) and E(N) to denote the node and edge set of
N , respectively. We also use R(N) to denote the set of reticulate nodes, and use T (N) to denote
the set of all non-reticulate nodes, including the root, tree nodes and leaves. Let u, v ∈ V(N). The
node v is a child of u if (u, v) is an edge; v is a descendant of u if there is a directed path from u
to v. If v is a descendant of u, v is said to be below u.

A phylogenetic network N is a tree-child network if every non-leaf node has a child that is not
reticulate. Equivalently, N is a tree-child network if and only if for every non-leaf node, there
is a path from that node to some leaf that passes only tree nodes. Figure A1 presents a binary
tree-child network (left) and two non-tree-child networks.

Consider a tree-child network N with k reticulate nodes. Let the root be r0 and let the reticulate
nodes be r1, r2, · · · , rk. After the removal of the incoming edges of every ri, N becomes the union
of k + 1 subtrees, which are rooted at r0, r1, · · · , rk, respectively, and have network leaves as their
leaves (see Figure A1). These subtrees are called the tree-node components of N . Tree-node
decomposition is a useful technique in the study of phylogenetic networks.

2

Figure A1: A binary tree-child network (left) in which there are four tree-node components (shaded grey)
and two non-tree-child networks (middle) and (right). In the middle network, the child of the top reticulate
node is also reticulate. In the right network, the children of a tree node in the middle are both reticulate.

Phylogenetic trees

A phylogenetic tree on X is a phylogenetic network with no reticulate nodes. In fact, a tree is
a tree-child network. Let T be a phylogenetic tree on X and u ∈ V (T). The node cluster of
u, denoted as C(u), is the subset of taxa that are represented by the leaves below u. Clearly,
C(u) ∩ C(v) ∈ {C(u), C(v), ∅} for any two nodes u and v. The node u and its descendants induce
a unique subtree on C(u). We use Tu or T (C(u)) to denote the subtree.

Let S be a set of binary phylogenetic trees on X. A common cluster of S is a subset of X that is
a node cluster in every tree of S. Obviously, each single taxon is common cluster of S, and so is X.
Any other common clusters of S are called non-trivial common clusters. S is a reducible tree set if
there is a non-trivial common cluster for S, and it is irreducible otherwise. A non-trivial common
cluster C of S is maximal if any subset C ′ such that C ⊂ C ′ ⊂ X is not a common cluster of S.
Clearly, for any two maximal common cluster C1 and C2 of S, C1 ∩ C2 = ∅; and any non-trivial
common cluster X ′ of S must be contained in a unique maximal cluster of S if X ′ is not maximal.

Tree display and network inference problems

Let T be a binary phylogenetic tree on X and let N be a tree-child network with k reticulate nodes
on X. T is displayed by N if T can be obtained from N by applying edge contraction from N
after the removal of all but one incoming edge for each reticulation node (Figure 1). For any set
of binary phylogenetic trees over X, there is always a tree-child network that displays all the trees
[19]. However, such a solution network may not be binary.

Let P by a phylogenetic network. Its reticulate number is defined as the number of reticulate
nodes. Its HN, denoted as H(P), is defined as the sum over all the reticulate nodes of the difference
between the indegree and the outdegree of that reticulate node. If P is binary, H(P) is equal
to the reticulate number. Here, we studied the following minimum tree-child network inference
problem:

3

Input: A set of phylogenetic trees on X.
Output: A parsimonious tree-child network P on X (with the smallest H(P)) that
displays all input trees.

The SCS problem

Let s and t be two sequences in an alphabet. The sequence s is said to be a supersequence of t if t
can be obtained from s by the deletion of one or more letters. The SCS problem is, given a set of
sequences, to find the shortest sequence that is a supersequence of every given sequence.

The SCS problem can be solved in a quadratic time for two sequences. However, it is NP-hard
in general.

Total ordering

Let X be a set of taxa. A (total) ordering R on X is a binary relation on X such that (i) R is
anti-symmetric, i.e. if x1Rx2, then x2 �R x1. (ii) R is transitive, i.e., if x1Rx2 and x2Rx3, then
x1Rx3. (iii) For any x1, x2, x1Rx2 or x2Rx1. For convention, we write x <R y if x is related y
under R or even x < y if R is clear.

Any non-empty subsetX ′ ofX whose elements are ordered according to R has a unique minimum
(resp. maximum) element. We use minR X ′ (resp. maxR X ′) to denote the minimum (resp.
maximum) element of X ′.
Let X = {x1, x2, · · · , xn}. We use π = π1π2 · · ·πn on {1, 2, .., n} to denote the following ordering:

xπ1 < xπ2 < · · · < xπn .

A2. Proof of Propositions

We use the following algorithm to derive another representation of a phylogenetic tree on |X|
given an ordering on X.

Labeling

Input A tree T on X and an ordering π of X

1. Label the degree-1 root of T by minπ(X).
2. Label each internal node u with two children v and w with

maxπ{minπ(C(v)),minπ(C(w))}, where C(v) consists of all taxa below v in T .

For each taxon τ , a unique internal node w is labeled with τ by applying the Labeling

algorithm. The node w is an ancestor of the leaf τ . Let Zwτ be the directed path from w to the

4

leaf τ in the tree. The sequence of the labels of the nodes appearing between w and the leaf in the
path Zwτ is called the lineage taxon string (LTS) of τ .

Proposition 1. Let π be an ordering of X, |X| > 1. For a phylogenetic tree T on X,
the LTS sπ(t) of each taxon t obtained w.r..t π by applying the Labeling algorithm in T has the
following properties:

(i) sπ(π1) is always not empty;

(ii) sπ(πn) is always empty;

(iii) for each 1 < i ≤ n, πi appears in the LTS of πj for a unique j such that j < i;

(iv) the smallest taxon π1 does not appear in any LTS.

Proof. Let the degree-1 root of T be ρ. Let the ancestors of Leaf π1 be:

ρ = u0, u1, u2, · · · , uk

and uk+1 = π1, where ui is the parent of ui+1 for 0 ≤ i ≤ k. Recall that each non-leaf, non-root
node has two children. We let u′i+1 be another child of ui for 0 ≤ i ≤ k.

(i) Since |X| > 1, k ≥ 1. Clearly, minπ C(ui) = π1 for each i ≤ k. Since π1 is the smallest
taxon, in Step 2 of the Labeling algorithm, ui is labeled with maxπ{minπ(ui+1),minπ(u

′
i+1)} =

minπ(u
′
i+1) for i = 1, 2, · · · , k. Therefore, that k ≥ 1 implies that sπ(π1) contains at least one

taxon.

(ii) Let the parent and sibling of Leaf πn be v and v′. In Step 2 of the Labeling algorithm, v
is labeled with maxπ{minπ(v

′), πn} = πn. Since there is no node between v and Leaf πn, sπ(πn) is
empty.

(iii) and (iv) We prove the statement by mathematical induction. If |X| = 2, clearly, the root
ρT is labeled with π1 and the other internal node is labeled with π2. In this case, sπ(1) contains
only π2 and sπ(2) is empty. Thus, the fact is true.

For |X| > 2, from the proof of Part (i), we have that ui is labeled with the minimum taxon
appearing in C(u′i+1) for i = 1, 2, · · · , k. Moreover, the internal nodes in each subtree T ′i rooted at
u′i are labeled with the taxa of C(u′i) \ { minπ C(u′i) } according to the algorithm. Since each T ′i is
a proper subtree of Ti, by induction, the fact holds. �

Remark. The LTSs of the taxa obtained according to an ordering on X determine a
unique phylogenetic tree T . This can be generalized to an algorithm to reconstruct a tree-child
network using the LTSs of taxa.

5

Tree-Child Network Construction

1. (Vertical edges) For each βi, define a path Pi with |βi|+ 2 nodes:
hi, vi1, vi2, · · · , vi|βi|, �πi , where βn is the empty sequence.

2. (Left–right edges) Arrange the n paths from left to right as P1, P2, · · · , Pn. If the
m-th letter of βi is πj , we add an edge (vim, hj) for each m and each i.

3. Contract each hi (i > 1) if it is of indegree 1 and outdegree 1.

Proposition 2. Let Ti (1 ≤ i ≤ k) be k trees on X such that |X| = n and π be an or-
dering on X. Let αij = βTi,π(πj), the LTS of πj with respect to π in Ti for each j, 1 ≤ j ≤ n− 1.
If βj is a common supersequence of α1j , α2j , · · · , αkj for each j, the Tree-Child Network

Construction algorithm outputs a tree-child network that displays the k trees.

Proof. Let N be the directed network constructed by applying the algorithm to β1, β2, · · · , βk.
First, N is acyclic due to the two facts: (i) the edges of each path Pi are oriented downwards, and
(ii) the so-called left–right edges (u, v) are oriented from a node u in a path defined for πi to a
node v in a path defined for πj such that i < j.

Second, N is tree-child. This is because all the nodes of each Pi are tree nodes except hi for each
i > 1 (see Figure 3 in main text). The node h1 is the network root. For i > 1, hi may or may not
be a reticulation node. Therefore, every non-leaf node has a child that is not reticulate.

Lastly, we prove that Ti is displayed by N as follows. By assumption, βj is a supersequence of
{αij | i = 1, 2, · · · , k} for each j = 1, 2, · · · , n− 1. Following the notation used in the Tree-Child

Network Construction algorithm, we let:

βj = βj1βj2 · · ·βjtj , tj ≥ 1,

where tj is the length of βj . Since αij is a subsequence of βj , there is an increasing subsequence
1 ≤ m1 < m2 < · · · < m�j ≤ tj such that

αij = βim1βim2 · · ·βim�j

and �j = |αij | ≥ 1.

According to Step 1 of the algorithm, in N , each taxon βjx of βj corresponds one-to-one a node
vjx in the path Pj ; and there is a (left-right) edge from vjx to the first node hy(x) of the path Py(x)

that ends with the taxon πy(x) = βjx, where y(x) ≥ j.

Conversely, after removing the edge (vjx, hy(x)) for each x �= m1,m2, · · · ,m�j , we obtain a
subtree T ′i of N . This is because each taxon πt appears exactly once in αi1, αi2, · · · , αi(n−1) and
thus the node ht is of indegree 1 in the resulting subgraph, where t = 2, 3, · · · , n. It is not hard to
see that after contracting degree-2 nodes of T ′i , the resulting subtree T ′′i has the same LTS as Ti

for each πj . Thus T
′′
i is equal to Ti. �

6

Definition 1. Let P be a phylogenetic network on X, where |X| > 1 and π be an order-
ing on X. P is said to be compatible with π if for each reticulate edge (s, r) of P , the minimum
taxon below s in the tree-node component Cs is less than the minimum taxon in the tree-node
component Cr.

Remark. For a tree-child network P , we can construct a compatible ordering π as fol-
lows. We first compute a topological sorting on the vertices of P . Assume the reticulate nodes
and the network root ρ appear in the sorted list as: r0 = ρ, r1, r2, · · · , rk. We construct a desired
ordering by listing the taxa in the tree-node component Cri before the taxa in the tree-node
component Cri+1 for every i ≤ k − 1.

Let π be an ordering on X and P be a tree-child network on X that is compatible with π.
The compatibility property implies that the smallest taxon is in the tree-node component Cρ that
is rooted at the network root ρ. We use the following generalized Labelling algorithm to label
all the tree nodes of P , which is identical to Labelling when P is a phylogenetic tree.

Generalized Labelling

S1: For every reticulate node r, label all parents of r with the smallest taxon in
the tree-node component Cr. Similarly, the network root ρ is labeled with
the smallest taxon in Cρ.

S2: For each tree node z that is not a parent of any reticulate node, label x with
maxπ(minπ(C(x)),minπ(C(y)), where x and y are the two children of z, and
C(x) and C(y) are the set of taxa below x and y in the tree-node component
where they belong to.

Proposition 3. Let T1, T2, · · · , Tk be k trees on X and P be a tree-child network on X
with the smallest H(P), compared with those displaying all Ti. For any ordering Π of X such
that P is compatible with it, if we label the tree nodes of P using the Generalized Labelling

algorithm, the LTS βP,Π(x) obtained for each taxon x is a shortest common supersequence of
{βTi,Π(x) | i = 1, 2, · · · , k}. Moreover, applying the Tree-child Construction algorithm to the
obtained supersequences βP,Π(x) produces the same network as P .

The proof of Proposition 3 is divided into several lemmas.

Lemma 1. Let π be an ordering on X and let T1, T2, · · · , Tk be k phylogenetic trees on X. For
each x ∈ X and each Ti, we use βx(Ti, π) to denote the LTS of x obtained w.r.t. π using the Label-
ing algorithm in Ti. Assume βx is a common supersequence of {βx(T1, π), βx(T2, π), · · · , βx(Tk, π)}

7

for each x ∈ X. For the tree-child network P constructed from {βx | x ∈ X} by using the
Tree-Child Network Construction algorithm, H(P) =

∑
x∈X |βx| − |X|+ 1.

Proof. Since only the first node hi of each path can be a reticulate node and that each node in

the middle of each path is a parent of some hi, H(P) =
∑|X|

i=2(din(hi)− 1) =
∑

x∈X |βx| − |X|+ 1,
where din(hi) is the indegree of hi. �

Figure A2: Illustration of the Generalized Labelling algorithm and the proof of Lemma 3. (a)
A tree-child network on the taxa from 1 to 9, which has two tree-node components each containing
at least two taxa. (b) Labelling all the tree nodes in a tree-child network using the increasing order
of taxa: i < i + 1, i = 1, 2, ..., 8, which is compatible. The labels of the parents of a reticulation
node are in blue; while the labels of other tree-nodes are in red. (c) the resulting network after the
removal of the left incoming edge of the reticulation node r, in which the tree-nodes are labeled
identically if the same ordering is used.

8

Lemma 2. Let C be a tree-node component of P and let it contain t taxa x1, x2, · · · , xt in P .
All t − 1 tree nodes that are not a parent of any reticulate node are uniquely labeled with some
xj �= minπ{xi | 1 ≤ i ≤ t} (red labels in Figure A2b).

Proof. This can be proved using the same mathematical induction as in Prop. 1.iii. �

Definition 2. Let π be an ordering on X and N be a tree-child network on X that is
compatible with π. Assume the tree nodes of N are labeled by using the Generalized La-

belling algorithm. The LTS of a taxon x obtained according to π is defined to be the sequence of
the labels of the x’s ancestors that are a tree node in Cx, if x is the smallest taxon in C; it is the
sequence of the labels of the x’s ancestors that are a tree-node below the unique tree node labeled
with x in Cx otherwise. The LTS of x obtained in this way is denoted by βN,π(x).

Definition 3. Let P be a tree-child network on X and let (s, r) be a reticulate edge.
P − (s, r) is defined to be the tree-child network obtained through the removal of (s, r) and
contraction of s (and also r if r is of indegree 2 in N).

Lemma 3. Let π be an ordering on X and P be a tree-child network on X such that
H(P) ≥ 1 and P is compatible with π. For any reticulate node r and each parent s of r, the
tree-child network P − (s, r) has the following properties:

1. P − (s, r) is also compatible with π;

2. For each taxon x, βP,π(x) is a supersequence of βP−(s,r),π(x).

Proof. These properties are illustrated in Figure A2. Let (s, r) be a reticulate edge. We have that
s is a tree node, and r is a reticulate node. Recall that CN (z) denotes the tree-node component
containing z for each node z and for N = P , or P − (s, r). We consider the two cases.

Case 1. The r is of indegree 3 or more.
In this case, after (s, r) is removed, s will be contracted and all the other nodes remains the same

in P − (s, r). Moreover, P − (s, r) has the same tree-nodes components as P and also has the same
labelling as P . For any reticulate edge (s′, r′), CP−(s,r)(s′) = CP (s

′) and CP−(s,r)(r′) = CP (r
′). As

such, the constraint is also satisfied for (s′, r′) in P − (s, r). Therefore, the first fact holds.
Let x be a taxon. If βP,π(x) contains the label y of s, say βP,π(x) = β1yβ2, then,

βP−(s,r),π(x) = β1β2. If βP,π(x) does not contain the label of s, βP−(s,r),π(x) = βP,π(x).
This concludes that βP,π(x) is a supersequence of βP−(s,r),π(x). Therefore the second fact is true.

Case 2. The r is of indegree 2.
This case is illustrated in Figure A2b. Let s′ be another parent of r. After (s, r) is removed, the

r becomes a node of indegree 1 and outdegree 1 and thus is contracted, together with s. All the

9

other nodes remains in P − (s, r). Therefore, s′ becomes a tree node in P − (s, r). The tree-node
component CP−(s,r)(s′) is the merge of CP (s

′) and CP (r). Assume (s′′, r′) be a reticulate edge of
P − (s, r).

If CP−(s,r)(s′′) �= CP−(s,r)(s′) and CP−(s,r)(r′) �= CP−(s,r)(s′), then, CP−(s,r)(s′′) = CP (s
′′) and

CP−(s,r)(r′) = CP (r
′). The constraint is satisfied for (s′′, r′).

If CP−(s,r)(s′′) �= CP−(s,r)(s′) and CP−(s,r)(r′) = CP−(s,r)(s′), the constraint is satisfied for s′′, r′

because of the fact that minπ CP−(s,r)(r′) = minπ CP (r
′).

If CP−(s,r)(s′′) = CP−(s,r)(s′) and CP−(s,r)(r′) �= CP−(s,r)(s′), then the minimum taxon below s′′

in CP−(s,r)(s′′) is equal to that in CP (s
′′), the constraint is satisfied for (s′′, r′).

We have proved the first statement. We prove the second statement as follows. To this end, we
use cP (r) to denote the unique child of r in P .

Recall that after (s, r) was removed, s and r were contracted to obtain P − (s, r). Note that in
P − (s, r), s′ becomes the parent of cP (r). Since P is compatible with π, the minimum taxon y
below cP (r) is larger than the minimum taxon below s′ in π. This implies that s′ is labeled with
y, as s′ is not a parent of any reticulate node in P − (s, r). Therefore, for any taxon x ∈ X, if
βP,π(x) contains the label y of s, say βP,π(x) = β1yβ2, then, βP−(s,r),π(x) = β1β2. If βP,π(x) does
not contain the label of s, βP−(s,r),π(x) = βP,π(x). This concludes that βP,π(x) is a supersequence
of βP−(s,r),π(x) for each x ∈ X. �

Proof of Proposition 3. Let P be a tree-child network on X with the smallest H(P),
compared with those displaying all Ti. For each i, Ti can be obtained from P by deleting all
but one incoming edge for each reticulate node. For convention, we assume that all removed
reticulate edges are (sj , rj), 1 ≤ j ≤ H(P). Let x be a taxon. By Lemma 3, βP,Π(x) is a
supersequence of βP−(s1,r1),Π(x) and β

P−∑j
t=1(st,rt),Π

(x) is a supersequence of β
P−∑j+1

t=1 (st,rt),Π
(x)

for each j = 1, .., H(P) − 1. Therefore, for any x, βP,Π(x) is a supersequence of βTi,π(x) for each

Ti, as Ti = P −∑H(P)
j=1 (sj , rj).

Let P contain m reticulate nodes. P has m+1 tree-node components. In a tree-node component
C, there are |X(C)| − 1 tree nodes that are not the parents of any reticulation nodes, where X(C)
is the set of taxa in C. Hence

∑
x∈X

|βP,Π(x)|

=
∑
C

(|X(C)| − 1) +
∑

r∈R(P)

din(r)

= |X| − (m+ 1) +H(P) +m

= |X| − 1 +H(P).

This implies that H(P) =
∑

x∈X |βP,Π(x)| − |X|+ 1.

Assume βP,Π(x) is not a shortest supersequence of βTi,Π(x) (i = 1, 2, · · · , k) for some x. Let βx

10

Figure A3: A. Two input trees over taxa 1–9 that contain an identical node cluster: (1, 6, 7). B.
A tree-child network that display both input trees, which is a merge of two tree-child networks.

be a shortest supersequence of βTi,Π(x) (i = 1, 2, · · · , k). Then, |βx| < |βP,Π(x)|. By Lemma 1,
we can use the Tree-Child Network Construction algorithm to obtain a tree-child network
with the HN smaller than H(P), a contradiction.

It is obvious that the we obtain P if the Tree-Child Network Construction algorithm is
applied to the LTSs βP,Π(x) of the taxa x. �

B. Reduction for a reducible tree set

A set of multiple trees is reducible if there is a non-trivial node cluster that appears in every tree
and is irreducible otherwise. ON way for improving the scalability is to decompose the input tree
set into irreducible sets of trees if the input trees are reducible.

Let S be a reducible set of k trees on X, which are ordered as: 〈T1, T2, · · ·Tk〉. We assume
that C1, C2, · · · , Ct are all the maximal common clusters of S. We introduce t new taxa yi and
let Y = {y1, y2, · · · , yt}. By replacing Ti(Cj) with yj in Ti for each i and j, we obtain a set S′

of k trees T ′i on Y ∪
[
X \

(
∪t
i=1Ci

)]
. In this way, we decompose S into an irreducible tree set

S′ = 〈T ′1, T ′2, · · · , T ′k〉 and t ordered sets of trees S′i = 〈T1(Ci), T2(Ci), · · · , Tk(Ci)〉, 1 ≤ i ≤ t.
Combining the tree-child networks constructed from S′ and all of S′i gives tree-child networks that
display all the trees of S, as shown in Figure A3.

11

C. Computing the branch weights of the inferred tree-child network

A phylogenetic network is weighted if every branch has a non-negative value, which represents
time or other evolutionary measures. A weighted phylogenetic tree T is said to be displayed in a
weighted network N if the tree is displayed in the network when the branch weights are ignored. For

a display T ′ of T in N , its fitness score ||T −T ′||2 is defined as
√∑

e∈E(T) |wT (e)− wT ′(P (u′, v′))|2,
where wT (e) is the weight of e = (u, v) in T and wT ′(P (u′, v′)) is the weight of the unique path
between the images u′ and v′ of u and v under the display mapping, respectively.

Recall that a tree can be displayed multiple times in a network. The score of the display of T in
N is the smallest fitness score which a display of T in N can have, denoted d(T,N). If d(T,N) = 0,
we say that N perfectly displays T .

If the input trees are weighted, we will first compute tree-child networks that each display all
the trees. We then use branch weights of trees and the information on how the trees are displayed
in a tree-child network to compute the weights of the network branches.

We model the branch weight assignment problem as an optimization problem with the following
assumption on the inferred tree-child network N that displays all the trees:

For any reticulate edge e, the tree-child network P − e obtained after removal of e fails to
display one input tree at least.

By ordering the edges of N on X, we may assume

E(N) = {e1, e2, · · · , em}.

Let S = {T1, T2, · · · , Ts}, where |S| = s. We further assume that T ′k is a display of Tk in N . Then,
each edge e′i of Tk is mapped to a path P ′i of T ′k, where 1 ≤ i ≤ 2|X| − 2. Since N displays Ti, we
derive the following linear equation system from the display of Tk:

∑
1≤j≤m

aijw(ej) = w(e′i), i = 1, 2, · · · , 2|X| − 2, (1)

where

aij =

{
1 ej ∈ E(P ′i);
0 ej �∈ E(P ′i).

Let the coefficient matrix of Eqn. (1) be Ak = (aij), which is a (2|X| − 2)×m matrix, and let:

Wk =

⎛
⎜⎜⎜⎜⎝

w(e′1)
w(e′2)

...

w
(
e′2|X|−2

)

⎞
⎟⎟⎟⎟⎠ .

12

Figure A4: An illustration of how to derive linear equations from a tree display. (A) The list of
the edges of a tree-child network. (B) A display of the tree in C. (C) a phylogenetic tree on six
taxa (1 to 6). (D) the list of the edges of the tree in C.

Since N displays every tree of S, we then determine the edge weights of N by solving the following
linear equation system:

⎛
⎜⎜⎜⎝

A1

A2
...
As

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

W1

W2
...

Ws

⎞
⎟⎟⎟⎠ (2)

Note that Eqn. (2) is a linear equation system that contains 2s(|X| − 1) equations and at most
5|X| − 4 variable, as each Ti contains 2|X| − 2 edges and N contains 3r + 2|X| − 1, where r is the
number of reticulations, which is at most |X| − 1.

Example 1. The edge list of a tree-child network is given in Figure A4A, where the full network
is not given here. Figure A4B presents a particular display of the tree in Figure A4C, whose edges
are listed in Figure A4D. In the display of the tree, the edge e′2 is mapped to the path from the
node 10 to the node 14, which consists of three edges e2, e6, e16 (Figure A4B). From e′2 and its
image, we obtain the following equation in the linear equation system Eqn. (2):

x2 + x4 + x16 = w(e′2).

In general, N may not perfectly display every T when branch weights are considered. Therefore,

13

let us set:

A =

⎛
⎜⎜⎜⎝

A1

A2
...
As

⎞
⎟⎟⎟⎠ (3)

W =

⎛
⎜⎜⎜⎝

W1

W2
...
Ws

⎞
⎟⎟⎟⎠ . (4)

Noticing that
s∑

i=1

||T ′i − Ti||22 = ||AX −W ||22,

we determine the branch weights of N by solving the following quadratic optimization problem:

min ||AX −W ||22 (5)

subject to:

xj ≥ 0, 1 ≤ j ≤ m. (6)

Remark. Let r be a reticulation node that has incoming e1, e2, · · · , ed and the outgoing ed+1. For
each input tree Ti, there is exactly one of edge pairs (e1, ed+1), (e2, ed+1), · · · , (ed, ed+1) appearing
in the display of Ti. Thus, solving the above optimization problem can only determine the value
of w(ei) + w(ed+1) for i ≤ d.

C. A phylogenetic network for hominin relationships

We analysed the morphological data in Dembo et al. (Proc Royal Soc B: Biol. Sci., vol. 282,
2015) by sampling 500 phylogenetic trees from a posterior collection of trees estimated from the
morphological data. We computed the distance between each pair of trees using the rooted tree
metric described in Kendall and Colijn (Mol. Biol. Evol., vol. 33, 2016). Briefly, this metric is
the Euclidean distance between two vectors (one for each tree). The vector captures the amount
of shared ancestry between each pair of tips, as well as each tip’s distance from its parent. We
used the tree topology only (λ = 0 in the tree metric in the ‘treespace’ function in the ‘treespace‘
package in R (Jombart et al., Mol. Ecol. Resour., vol. 17, 2017)). The amount of shared ancestry
is the length of the path (in a phylogeny) between the root and the most recent common ancestor
of a pair of tips. Having found pairwise distances between all pairs of trees in our sample of 500,
we clustered the trees into five clusters using Ward clustering. We chose two trees uniformly at

14

random from each of the five clusters, as input for the analysis presented here.
Hominins’ phylogenetic relationships are not fully established. Due to the nature of the mor-

phological data, the trees were discordant, and no single tree captures a highly-supported pattern
of ancestry among the taxa. This motivates using a network to illustrate the complex ancestral
relationships among these data. Using ALTS, we reconstructed a network model (Figure A5) for
hominin species using the 10 phylogenetic trees.

The resulting network model contains 12 reticulation events. The top tree-node component
contains the two outgroup species G. gorilla and P. troglodytes, as well as the oldest hominin species,
S. tchadensis. The three earliest members of the genus Homo (African H. erectus, H. rudolfensis
and H. habilis), together with Au. africanus, appear in a tree-node component, whereas four recent
members of the genus Homo (H. heidelbergensis, H. neanderthalensis, H. sapiens and H. naledi)
compose another tree-node component. The three members of the genus Paranthropus, together
with Au. garhi, compose a tree-node component. The model also reflects the high uncertainty
about the phylogenetic position of H. floresiensis, who lived in the island of Flores, Indonesia
(Argue et al., J Human Evol., vol. 57, 2009).

Figure A5: A network model of hominin relationships. 1: G. gorilla; 2: P. troglodytes; 3: H. floresiensis;
4: Ar. ramidus; 5: Au. anamensis; 6: Au. afarensis; 7: K. platyops; 8: Au. africanus; 9: Au. sediba; 10:
African H. erectus; 11: Asian H. erectus; 12: H. heidelbergensis; 13: H. neanderthalensis; 14: H. sapiens; 15:
H. naledi; 16: H. antecessor; 17: Georgian H. erectus; 18: H. rudolfensis; 19: H. habilis; 20: Au. garhi; 21:
P. robustus; 22: P. boisei; 23: P. aethiopicus; 24: S. tchadensis.

15

