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Supplemental Figure S1: Our hybrid EBL model outperforms the original EBL model. The original

EBL models uses an uninformed prior p(x) estimated from training data MAFs for those individuals and

eQTLs where expression values are not extreme (circle). Using a hybrid approach enables a best-of-both-

worlds scenario, in which eQTLs not associated to extreme expression values are still given an informative,

non-uniform, posterior probability (triangle). The hybrid approach collapses to the GNB model for such

eQTLs. Note that the original EBL model uses a sparse set of SNPs across the whole genome, which enables

them to achieve high accuracy by using few highly informative SNPs. However, on a single chromosome

there are unlikely to be a sufficient number of highly informative SNPs.
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Supplemental Figure S2: DSM model-based p-values are lower than GNB and EBL on expanded

GOT2D dataset. When including the expanded set of mismatching GOT2D genotypes for the matching

score null distribution, we observe that DSM is able to consistently generate lower p-values than both previous

approaches for all but a few individuals.
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Supplemental Figure S3: DSM links a greater fraction of individuals on massive candidate geno-

type sets. On chromosomes 19, 21, and 22, we observed that DSM linked a substantially larger fraction

of individuals when including ∼22k additional genotypes from HRC. This gap is largest in Chromosome 19,

where DSM links >45% more individuals than EBL and GNB. The results for Chromosome 20 and for all

four chomosomes combined are included in Figure 4.
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Supplemental Figure S4: Memory requirement of DSM scales linearly in window and reference

panel sizes. Our haplotype-level factor approximation enables us to use a far larger reference panel without

quadratic memory requirements (top). We also enable linear scaling in memory in the size of windows

considered (bottom). In practice, we used a reference panel of 1000 haplotypes and window size of 750

eQTLs, which allowed us to train the DSM with a practical memory requirement of ∼75GB. These are

notably larger numbers than those required for GNB and EBL, which can each be done on the order of

minutes for a full chromosome with less than 5GB memory. However, note that it is reasonable to consider

an adversary with sufficient computational resources for the purpose of assessing the risk of linking attacks.
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Supplemental Figure S5: Filtering to remove correlated eQTLs helps GNB and EBL models. EBL

and GNB both assume some level of pairwise independence between eQTLs, as including all eQTLs can

lead to miscalibrated matching score probabilities. For both these models, the linking accuracy pre-filtering

(circle) is worse than the linking accuracy post-filtering (triangle). The SNP set is greedily pruned until no

two SNPs have pairwise correlation greater than 0.1.
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Supplemental Figure S6: Graphical representation of DSM. Solid edges indicate factors in the condi-

tional distribution p(x|e), including transition, emission, and QTL factors. h corresponds to the haplotype,

of which there are two (together denoted x, indicated by dotted lines), while e corresponds to the expres-

sion levels of individual genes. The ϕ factors, some of which involve multiple genes (dotted lines), relate

predictive signals in the gene expression data to the genotypes (pairs of alleles). To enable the use of large

reference panels, we predict the haplotype allele and copy this prediction twice (gray foldout). The τ and ϵ

factors respectively correspond to the recombination and emission probabilities in the standard Li-Stephens

model. zm and zp index into the reference panel of haplotypes, whose posteriors, conditioned on observed

gene expression values, are updated via the forward-backward algorithm.
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Chromosome MetaXcan (Pearson) MetaXcan (Spearman’s) DSM

19 114 (39.0%) 51 (17.5%) 291 (99.7%)

20 15 (5.1%) 6 (2.0%) 240 (82.2%)

21 3 (1.0%) 4 (1.4%) 157 (53.8%)

22 24 (8.2%) 13 (4.5%) 263 (90.0%)

All 4 combined 171 (58.6%) 97 (33.2%) 291/292 (99.7%)

Supplemental Table 1: DSM’s reverse linking is more accurate than linking based on predicted

gene expression. We report DSM’s accuracy in linking genotype profiles to matching expression profiles

(i.e., in the reverse direction from our primary evaluation setting), compared to an alternative approach based

on a state-of-the-art gene expression prediction method, MetaXcan [Barbeira et al., Nature Communications,

2018]. The evaluations are performed on the FUSION dataset. We used the pretrained MetaXcan model on

GTEx v8 muscle-skeletal tissue dataset, the same dataset used to train DSM. Both Pearson and Spearman’s

correlation coefficients between the predicted and observed expression profiles are considered as the match

score for MetaXcan. DSM leads to more accurate linking than matching based on the predicted gene

expression levels from MetaXcan.
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Supplemental Note 1: Model-based estimation of p-values

Let M = [M1, · · · ,MN ] be a sorted vector of match scores calculated for a particular individual, and let M∗ be the

score for the true match. When the true match score is the largest match M∗ = MN , then the individual is correctly

linked. In this case, we wish to calculate a measure of how strong this identifying signal is based on the relative

magnitude of M∗ compared to the rest of the match scores in M. We achieve this by estimating a p-value based on

a parameterized null distribution that is fit to the non-matching samples in M. We use a Gaussian distribution to

model the null distribution, after empirically observing the approximate normality of the null distributions.

For robust estimation of the model parameters, we trim both tails of the empirical distribution (also excluding

the true match) before estimating the mean and the variance of the distribution. For instance, the mean is estimated

as

µtrimmed =
1

N − 2k − 1

N−k∑
i=k+1

Mi · 1{Mi ̸= M∗},

where 1{·} is an indicator function, and k determines the amount of trimming (k/N = 0.2 in our experiments). The

standard deviation σtrimmed is similarly estimated using this trimmed distribution, then scaled to obtain an unbiased

estimator using the theoretical quantity from the corresponding truncated Gaussian distribution.

The z-score of our true match M∗ is thus

z∗ =
M∗ − µtrimmed

σtrimmed
.

The p-value is calculated by first taking the tail probability of z∗ in the standard normal distribution. We then

re-weight the p-value obtained from the z-score by multiplying by a weight w, defined as

w =
2

N − 1

N∑
i=1

1{Mi > µtrimmed} · 1{Mi ̸= M∗}.

This represents two times the proportion of match scores that lie above the trimmed mean, which corrects for potential

asymmetry in the null distribution below and above the mean. Empirically, we observe that our above approach leads

to accurate model-based p-values that are consistent with permutation-based, empirical p-values (see Fig. 4C).
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Supplemental Note 2: Evaluation metrics for linking with match

score thresholds

To investigate an attack scenario in which the attacker must make a decision about whether the proposed match is

a true match, we evaluated the full range of match score thresholds for each of the three methods with respect to a

number of standard metrics for binary classification. We extended these metrics to the setting of linking attacks. The

key difference in our setting is that some data instances may never be linked correctly regardless of the threshold, if

an incorrect match with a higher match score exists.

For each trial of our holdout experiment, we randomly split the individuals in our test dataset (FUSION) into

two halves, which we term Set 1 and Set 2. We keep the genotype profiles of Set 1 individuals in the target genotype

set, while excluding them for Set 2 individuals in order to assess the rate of false matches for individuals who are not

present in the target set. For each choice of the match score threshold, we compute precision, recall (true positive

rate), and false positive rate as follows.

Let n1 and n2 be the number of individuals in Set 1 and Set 2, respectively. For Set 1, let TP1 (“true positives”)

or FP1 (“false positives”) be the number of individuals who are correctly or incorrectly linked, respectively, with

a match score above the threshold. For Set 2, let FP2 (“false positives”) be the number of individuals who were

incorrectly linked with a match score above the threshold. Note that all individuals in Set 1 are technically considered

“positives” since there exists a true match in the target set. Individuals represented by FP1 are an exception, who

are positives that are converted to negatives due to problematic match scores. All individuals in Set 2 are considered

“negatives” since a true match does not exist. Given these terms, we calculate

Precision =
TP1

TP1 + FP1 + FP2
,

Recall or True Positive Rate (TPR) =
TP1

n1
,

False Positive Rate (FPR) =
FP2

n2
.

For FPR, we do not consider FP2 to keep the denominator of n2 fixed across different methods.

The receiver-operating-characteristic (ROC) and precision-recall (PR) curves based on the metrics above are

reported in Fig. 5. For each split and method, we interpolate PR curves from 0 to the maximum recall on the x-axis

for that particular split. The ROC curve is similarly interpolated by considering all FPRs from 0 to 0.99.
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We note that our modified metrics for linking performance result in ROC and PR curves that do not end at the

typical end points, i.e., (1,1) and (1,0), respectively. This is because there are certain individuals (FP1) who are

incorrectly classified regardless of the decision threshold since the score for the true match is less than the score for

the top match for these individuals.

The AUPRC and AUROC metrics reported for each curve considers an x-axis threshold α up to which the area

under the curve (AUC) is computed and then rescaled by 1
α
. We adopt this truncation approach to equalize the

comparisons across methods, given that the location of the end point of each curve (corresponding to a decision

threshold that obtains the maximum recall) is different across methods due to the FP1 issue describe above. For

AUROC, we chose α = 0.97 as the FPR threshold and for AUPRC, we chose α = 0.85 as the recall threshold, based

on the lowest end point of the curves.

11



Supplemental Note 3: Forward-backward algorithm for DSM

Recall that during inference, we wish to calculate

M(x, e) := pDSM(x|e).

Our haplotype-level approximation factorizes this term as:

pDSM(x = (hm,hp) | e) ≈ pDSM(h
m|e)pDSM(h

p|e),

where

pDSM(h
m|e) ∝

∑
zm

p̃QTL(h
m, e)p̃HMM(h

m, zm),

and analogously for p̃DSM(h
p|e). Note that p̃QTL represents (unnormalized) probabilistic factors capturing eQTL

associations, and p̃HMM represents HMM factors—i.e., transition and emission probabilities over the genotypes and

hidden states only.

Here we describe a forward-backward algorithm for computing p̃DSM(h
m|e), which is the same as that for hp.

First, note that

pDSM(h
m|e) =

V∏
j=1

pDSM(h
m
j |hm

<j , e)

by chain rule, where hm
<j denotes all genotypes that precede the j-th position. Each term can be computed using the

following relation based on the independence structure of DSM:

pDSM(h
m
j |hm

<j , e) =
∑
zmj

pDSM(h
m
j , zmj |hm

<j , e) ∝
∑
zmj

p̃HMM(z
m
j |hm

<j)p̃HMM(h
m
j |zmj )p̃QTL(h

m
j , eQ(j))p̃DSM(eQ(>j)|zmj ).

We denote the set of eGenes associated the j-th eQTL as eQ(j) and those associated with any of the subsequent

eQTLs as eQ(>i). Our modification of the standard forward-backward algorithm therefore calculates the “forward”

probability, i.e., p̃DSM(z
m
j |hm

<j), and the “backward” probability, i.e., p̃DSM(e>j |zmj ), for all j via dynamic program-

ming. The forward term is analogous to the Li-Stephens model, whereas the backward term newly incorporates

information from the observed gene expression. Once these terms are computed, the above equation can be used to

compute the full conditional likelihood pDSM(h
m|e) as desired.

More detailed computational steps of the forward-backward algorithm are as follows. We begin by defining a

dynamic programming matrix α ∈ [0, 1]V ×R, where V is the number of eQTLs and R is the number of reference

haplotypes, that stores the (unnormalized) forward probabilities of zmj for each eQTL j. Our initial belief over zm1 ,
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the hidden state for the first eQTL, is uniformly initialized:

α(1, z) = 1

for all z ∈ {1, . . . , R}. Then, sequentially for each j ∈ {2, . . . , V }, we compute

α(j, z) =
∑

z′∈{1,...,R}

α(j − 1, z′) · τ(z|z′) · ϵ(hm
j−1|z).

Here, τ and ϵ indicates the transition and emission probabilities of the HMM component of DSM, respectively. After

each step, we rescale α(j, z) to prevent an underflow.

For backward probabilities, we define a dynamic programming matrix β ∈ [0, 1]V ×R that stores probabilities over

zmj for each eQTL j. Specifically, we begin by setting β(V, z) = 1 for all z ∈ {1, . . . , R}. Then, for all j ∈ {V −1, . . . , 1},

we set:

β(j, z) =
∑

z′∈{1,...,R}

β(j + 1, z′) · τ(z′|z) ·
[
ϕj(h

m
j , eQ(j)) · ϵ(hm

j |z) + ϕj(1− hm
j , eQ(j)) · ϵ(1− hm

j |z)
]
,

where ϕj indicates the eQTL factor at position j, which we introduced to model the association between each eQTL

and a corresponding set of eGenes.

We also note that while the transition factor τ(z|z′) is näıvely quadratic in the number of reference haplotypes,

τ(z|z′) has a structured matrix form:

τ(z|z′) =


1− ρ+ ρ

R
, if z = z′,

ρ
R
, if z ̸= z′,

where ρ is the recombination rate between the two eQTLs. Thus, the matrix is symmetric and constant everywhere

but the diagonal, which enables an efficient multiplication with the transition matrix, linear in the number of reference

haplotypes.

The computational cost of the above computation is O(R) for each of V eQTLs, resulting in the overall complexity

of O(V R). Our memory requirement also has the same complexity, since the sizes of α and β are both O(V R). Thus,

our runtime and memory grow linearly in both the number of eQTLs (window size) and the number of reference

haplotypes. We provide empirical results illustrating the linear memory scaling of our model in Supplemental Fig. S4.
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