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Simulation and software details9

Standard Mendelian Randomization (MR) methods (IVW [1], Egger [2], Median [3], and Mode10

[4]) were run using the MendelianRandomization R package [5, 6] version 0.5.1. For all the MR11

methods, unless specified, we used the default options provided by the software. All regressions12

in the simulations were performed with the R lm function. For real data analysis, the Genome-13

Wide Association Study (GWAS) statistics were calculated using the PLINK software [7], version14

v1.90b6.6. We implemented MR-Twin in both R and Python; the Python version was used to15

generate the results in the paper except for the running time analysis (see below). We implemented16

the trio method from Brumpton et al [8] in R (referred to as “Brumpton” below). Brumpton and17

MR-Twin can use any summary-level MR statistic; we used IVW by default. R version 4.0.2 was18

used.19

By default, the experiments of each simulation setting were run across 100 different seeds, and20

under each seed, 10 replicates were simulated, so in total, 1000 replicates were generated for each21

setting. For runtime analysis (Figure S3), Xeon(R) CPU E5-2670 compute nodes were used. For22
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consistency with all the other MR methods implemented in R, we conducted the time complexity23

analysis using the R version of MR-Twin.24

Replication instructions and details are available at https://github.com/nlapier2/MRTwin-25

replication.26

UK Biobank data preprocessing and analysis27

We first isolated the genetic trios from the UK Biobank data [9]. We filtered the data to only include28

people with self-reported white British ancestry who were not closely related, (e.g. no first, second,29

or third degree relatives), as defined by pairs of individuals who had a kinship coefficient < (1/2)(9/2)30

(following Hou and Burch et al [10]), leaving 291,274 people. We used the KING software [11] to31

estimate kinship coefficients for each pair of White British individuals in the dataset. Following the32

inference criteria set out by Manichaikul et al [11], we isolated pairs of individuals whose kinship33

coefficients (φ) were within ( 1
23/2

, 1
25/2

) – these were the inferred parent-offspring pairs.34

When an individual was involved in two or more parent-offspring pairs, we used the following35

procedure to identify trios and the children and parents for each of those trios. If an individual36

was found to be involved in multiple parent-offspring pairs, we considered this a family. Unrelated37

individuals within the family (as determined by the kinship coefficient) were considered parents.38

If more than two such parents were identified, the family was discarded. The family was also39

discarded if there were more than one children, if the parents had the same sex, or if the age gap40

between the parents and the child was less than 10. The remaining data yielded 955 trios, similar41

to previously-reported amounts [9].42

We next performed MR analysis using Inverse Variance Weighting (IVW), Egger regression [2],43

the Weighted Median Estimator [3], the trio-based method introduced by Brumpton et al [8], and44

MR-Twin on 144 pairwise combinations of 12 traits (Table S1) in the UK Biobank [9]. To gather45

genetic instruments for each of the twelve traits, we performed a Genome-Wide Association Study46

(GWAS). First, we selected individuals with self-reported White British ancestry whose pairwise47

kinship values were all less than 0.54.5, indicating no first, second, or third degree relatives were48

in the dataset. These individuals did not overlap with any of the individuals in the trio dataset.49

Phenotype values were standardized to have zero mean and unit variance. We then used PLINK50
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[7] to run linear regression on the unrelated White British individuals for these 12 traits, including51

the top 20 principal components (PCs), age, and sex as covariates.52

For each exposure trait, we performed filtering of the SNPs as follows in order to select genetic53

instruments. We first removed all SNPs that did not reach genome-wide significance for the trait54

(p-value < 5.0 × 10−8). We then performed linkage disequilibrium (LD) pruning: for any pair55

of SNPs with r2 > 0.1, the SNP with the less significant p-value was removed. The remaining56

SNPs were used as genetic instruments. The Townsend Deprivation Index (TDI) did not yield any57

significant instruments, so it was not used as an exposure trait. The remaining traits had 46 to58

1502 genetic instruments, with 10 of the 12 having between 96 and 339 instruments (Table S1).59

Ignoring the degenerate cases where the exposure and outcome were the same trait or where there60

were no significant SNPs for the exposure trait (as was the case for TDI), there were 121 usable61

trait pairs.62

As in the simulations, we first applied Brumpton with all variants with association statistic63

F < 10 with the exposure in the trio data filtered out. However, this yielded zero remaining variants64

for 10 of the 12 exposure traits, so very few significant trait pairs were found. Consequently, we65

applied a p-value filter of p > 0.05 instead; the results for this setting are the results discussed66

in the main text. We also ran an “unfiltered” version of Brumpton without the marginal p-67

value filter, using all SNPs that were significant in the regressions on unrelated individuals. This68

method returned 66 significant trait pairs. However, since most of the significant trait pairs became69

insignificant when filtering out SNPs with p > 0.05 in the trio data, it is possible that weak70

instrument bias partially explains many of these associations. The results for all three filter settings71

are given in Supplementary Table S2. All other methods were run with default parameters. Results72

are shown in Supplementary Table S2 and are discussed in the main text.73

Probabilistic approach to generating digital siblings74

As discussed in the Methods section, we evaluated two approaches for generating digital twins75

for sibling data. We found that the haplotype-shuffling approach (Methods) was much faster and76

controlled false positive rate better than the probabilistic approach (Figure S4). Because the77

probabilistic approach may still be useful as a starting point for further research, we describe it78
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here.79

First, we re-introduce the notation described in the Methods. Let (Dn) be the (N ×M) matrix80

of digital twin genotypes we will sample, corresponding to the true “offspring” genotypes in (Xn).81

Further, let n index some family and j index some SNP, such that P1nj (for example) is the82

genotype for one parent in family n at SNP j. In the sibling setting, instead of having a single83

(N ×M) genotype matrix (Xn), we have a vector of such matrices, one for each of the k siblings:84

S := ((Xn)1, (Xn)2, ..., (Xn)k) (1)

We define Snj as the vector of genotypes for all siblings in family n at SNP j:85

Snj := (X1
nj ,X

2
nj , ...,X

k
nj) (2)

For each family n and SNP j, we want to infer86

P (Dnj | P1nj ,P2nj) (3)

where P1nj and P2nj are the parental genotypes for family n at SNP j. Because we do not87

observe the parental genotypes, we cannot condition on them. However, we can take advantage of88

the fact that89

D ⊥⊥ S | P1,P2 (4)

to manipulate this probability such that we do not need to condition on the parents, as follows:90

P (Dnj | P1nj ,P2nj) = P (Dnj | P1nj ,P2nj ,Snj) (5)

= P (Dnj ,P1nj ,P2nj | Snj)÷ P (P1nj ,P2nj | Snj) (6)

= P (P1nj ,P2nj | Dnj ,Snj)× P (Dnj | Snj)÷ P (P1nj ,P2nj | Snj) (7)
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All of these expressions can be inferred from the data. We first discuss P (Dnj | Snj). To specify91

this quantity, we sum over the possible parental genotypes as follows:92

P (Dnj |Snj) =
∑
g1,g2

P (Dnj ,P1nj = g1,P2nj = g2|Snj) (8)

=
∑
g1,g2

P (Dnj |P1nj = g1,P2nj = g2,Snj)P (P1nj = g1,P2nj = g2|Snj) (9)

=
∑
g1,g2

P (Dnj |P1nj = g1,P2nj = g2)P (P1nj = g1,P2nj = g2|Snj) (10)

where g1 and g2 are the three possible genotypes of P1nj and P2nj (nine possible pairs). The93

last step above follows from the fact that D is independent of S given that the parent genotypes94

are known. As stated in the previous subsection,95

Dnj ∼ Bern(P1nj/2) +Bern(P2nj/2) (11)

so we need to compute P (P1nj = g1,P2nj = g2|Snj). We can compute this via Bayes’ formula:96

P (P1nj = g1,P2nj = g2|Snj) =
P (Snj |P1nj = g1,P2nj = g2)P (P1nj = g1,P2nj = g2)

P (Snj)
(12)

We assume that all parental genotypes have equal prior probability, so97

P (P1nj = g1,P2nj = g2|Snj) ∝ P (Snj |P1nj = g1,P2nj = g2) (13)

We assume that there are no maternal twins among the siblings, so they are independent samples98

from the parents. Thus,99

P (Snj |P1nj = g1,P2nj = g2) =
∏
k

P (Xk
nj |P1nj = g1,P2nj = g2) (14)

Similarly to before,100

P (Xq
nj |P1nj = g1,P2nj = g2) ∼ Bern(P1nj/2) +Bern(P2nj/2) (15)
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Finally, we note that the quantities P (P1nj ,P2nj |Dnj ,Snj) and P (P1nj ,P2nj |Snj) can be101

inferred in the same manner as discussed in Equations 12 through 15. This completes the model102

specification. We can use this model to simulate digital siblings from P (Dnj |Snj).103
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(A) (B)

Figure S1: Power comparison between various methods with different numbers of simulated families.
The axes are power (y-axis) and number of simulated families (x-axis), and the methods compared
are (A) standard MR methods, Brumpton, and the trio mode of MR-Twin; (B) the trio, duo,
and sibling modes of MR-Twin. “MR-sib (likelihood)” is a sibling-based approach where digital
siblings are drawn based on a weighted average over the possible parental genotypes, while “MR-sib
(shuffling)” generates the digital siblings by randomly shuffling the haplotypes of the true offspring.
Results are averaged over 1000 simulation replicates.



(A) (B)

(C) (D)

Figure S2: False Positive Rate (FPR) comparison on simulated data with different amounts of
population structure. False positive rate (y-axis) under varying levels of confounding due to popu-
lation stratification (PS), with the x-axis describing the magnitude of the effect of the effect of the
population labels on the exposure and outcome trait. The subplots show results with the FST set
to (A) 0.01; (B) 0.05; (C) 0.1; (D) 0.2. Results are averaged over 1000 simulation replicates.



(A) (B)

Figure S3: Time complexity analysis. Run time (y-axis) comparison between MR-Twin and Brump-
ton for (A) different numbers of families; (B) different numbers of SNPs (x-axis). Other MR meth-
ods had similar running time to Brumpton and are excluded for simplicity. Results are averaged
over 10 simulation replicates. MR-Twin results use 100 digital twins. MR-Twin digital twins were
simulated serially, not in parallel.



(A) (B)

Figure S4: False Positive Rate (FPR) and Power comparison between the trio, duo, and sibling
modes of MR-Twin run on simulated data. (A) False positive rate (y-axis) under varying levels
of confounding due to population stratification, with the x-axis describing the magnitude of the
effect between the population labels and the exposure and outcome trait. (B) Power (y-axis) with
various causal effect sizes (x-axis). Results are averaged over 1000 simulation replicates.



(A) (B)

(C) (D)

(E) (F)

Figure S5: Receiver Operating Characteristic (ROC) curve comparing various methods run on
simulated trio data. From left to right, the causal effects of the power simulation are 0.1 and 0.3,
respectively. From top to bottom, the confounding effects imposed in null settings are 0, 0.4, and
0.8, respectively. Both power and calibration settings have 1000 replicates in each setting, and
there is no confounding effect in any of the power simulations.



(A) (B)

(C) (D)

(E) (F)

Figure S6: Receiver Operating Characteristic (ROC) curve comparing various methods run on
simulated trio data. Similar to Fig S5, except that IVW, Egger, Median, and Mode are run on
the offspring of the trio dataset instead of the large “external” group of unrelated individuals, such
that all methods have the same sample size.



(A) (B)

(C) (D)

Figure S7: False positive rate (y-axis) under varying levels of confounding due to population strat-
ification (PS), with the x-axis describing the magnitude of the confounding effect of population
labels on the exposure and outcome trait, run on simulated data in settings with very few SNPs or
very low heritability. (A) and (B) are similar to Figure 2a, except that for (A), the total number
of SNPs is 10 (8 of them are causal); for (B), the heritability h2 = 0.02. (C) and (D) are similar to
Figure 3a, except that for (C), the total number of SNPs is 10 (8 of them are causal); for (D), the
heritability h2 = 0.02.



(A) (B)

(C) (D)

Figure S8: Power (y-axis) as a function of the magnitude of the causal effect of the exposure on
the outcome trait (x-axis) in a setting with no confounding, run on simulated data in settings with
very few SNPs or very low heritability. (A) and (B) are similar to Figure 2b, except that for (A),
the total number of SNPs is 10 (8 of them are causal); for (B), the heritability h2 = 0.02. (C) and
(D) are similar to Figure 3b, except that for (C), the total number of SNPs is 10 (8 of them are
causal); for (D), the heritability h2 = 0.02.



(A) (B)

Figure S9: MR-Twin p-value stability and time complexity for different numbers of simulated
digital twins. (A) A stable “baseline” MR-Twin p-value was computed on simulated data using a
very large number of digital twins (5000). MR-Twin was then run 1000 times for several different
numbers of digital twins (x-axis), and the difference between each run’s p-value and the baseline
was computed (y-axis). No confounding effect was simulated; parameter settings were otherwise
the same as the False Positive Rate experiments. (B) Running time (y-axis) averaged over 10 runs
of MR-Twin for different numbers of digital twins (x-axis).



(A) (B)

Figure S10: Calibration and power analysis of MR-Twin and Brumpton with confidence intervals.
(A) False positive rate (y-axis) under varying levels of confounding due to population stratification
(PS), with the x-axis describing the magnitude of the confounding effect of population labels on
the exposure and outcome trait. (B) Power (y-axis) as a function of the magnitude of the causal
effect of the exposure on the outcome trait (x-axis) in a setting with no confounding. Results are
averaged over 1000 simulation replicates. The 95% confidence intervals are computed for MR-Twin
and Brumpton by bootstrapping the original test statistics 1000 times with replacement.



(A) (B)

Figure S11: False positive rate (FPR) comparison with no SNP filtering. False positive rate (y-
axis) under varying levels of confounding due to population stratification (PS), with the x-axis
describing the magnitude of the effect of the effect of the population labels on the exposure and
outcome trait. Unlike the main text figures, no SNPs were filtered out via the external dataset, so
many instruments are expected to be weak. The total number of SNPs are (A) 100; and (B) 1000,
respectively.



(A) (B)

Figure S12: Power analysis of MR-Twin with and without SNP filtering. Here MRTwin represents
the standard usage of MR-Twin with the same p-value filtering procedure via the external data
as described in the main text. MRTwin-m200 and MRTwin-m1000 represent running MR-Twin
without any SNP filtering via the external data with 200 or 1000 SNPs, respectively, so that many
instruments are expected to be weak.
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Trait Name UK Biobank Field ID Num. of Genetic Instruments

(Heel) Bone Mineral Density 78 321
Body Mass Index 21001 260

Body Fat (Percentage) 23099 203
(Total) Cholesterol 30690 290

Diastolic Blood Pressure 4079 96
Glucose 30740 46

(Standing) Height 50 1502
LDL Cholesterol 30780 257

Systolic Blood Pressure 4080 110
Townsend Deprivation Index 189 0

Triglycerides 30870 307
Weight 21002 339

Table S1: List of traits used in the UK Biobank analysis, along with the number of genetic instru-
ments (SNPs) identified according to the filtering procedures described in the text (genome-wide
significance and linkage disequilibrium pruning).


