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S1 Supplemental Methods

S1.1 Implementation details of the comparison network construction methods

Since Pearson and Spearman’s correlations are commonly used metrics to quantify coexpression,
we considered both when computing correlation from SCTransform normalized data. The choice
of SCTransform was motivated by the fact that it is by far the most widely used method for nor-
malization as part of the Seurat package. Other state-of-the-art methods that we compared to
have built-in coexpression estimates. For example, Noise.Reg proposed a noise regularized expres-
sion together with Spearman’s correlation while SAVER used Pearson correlation for coexpression
estimation.

For SCT.Pearson, SCT.Spearman, and Noise.Reg, the gene expression matrix of donor cells
were normalized with SCTransform. coexpression matrix for SCT.Pearson (SCT.Spearman) was
computed through the Pearson (Spearman’s) correlation of the normalized counts in the output
data slot scale.data. The normalized expression in slot data was used for Noise.Reg as it requires
positive normalized expression. For Noise.Reg, a uniformly distributed random variable from the
interval [0, g;), where ¢; is the 1st percentile of the normalized expression of gene i, was added to
the normalized expression before computing Spearman’s correlation. The normalization for SAVER
was performed using the saver function in the R package SAVER, and the coexpression matrix was
obtained using the cor.genes function. Coexpression network for bigSCale2 was computed with
function compute.network. For MetaCell, gene expression was first normalized with Seurat, then
projected onto a low-dimensional space with UMAP. Cells were grouped into % clusters, where IV is
the total number of cells, with the k-means algorithm using the UMAP coordinates. Expression of
genes across cells in the same cluster were then aggregated into a meta cell. Coexpression network

for MetaCell was constructed by Pearson correlations of meta cell expressions.

S1.2 False discovery rates for edge estimation

We designed a data-driven permutation experiment to study the false discovery rates of network

edges. Given a gene expression matrix D1, the genes are randomly split into two disjoint equal-sized



sets, S1 and Se. A "null” dataset Dy is created by permuting the cell ordering of genes in Sy while
keeping the original cell ordering of genes in S7. This permutation keeps the overall expression
and sparsity levels of the genes the same as in Dy and disassociates genes in So from genes in Sy
in dataset Dy. As a result, the true correlation of gene pairs with one gene in S; and one gene
Sy is 0 in the permuted dataset Dy. We denote the estimated correlation matrices of gene pairs
with one gene in S and one gene in Sy computed with datasets D and Dy as C; and Cy. C7 and
(5 are thresholded to construct the coexpression networks using the 95th and 99th percentiles of
the absolute correlations in C1, resulting in 6’\1 and 6’\2 Then, the empirical false discovery rate is

computed as

f irs in C
Empirical FDR = min (1, 7# of gene pairs in 2)
# of gene pairs in C

S1.3 PPI enrichment with the STRING database

Protein-protein interaction (PPI) enrichments of the networks were assessed using the proportion
of network edges in the STRING database, i.e., the number of edges both in the coexpression
network and in the STRING database divided by the number of edges in the coexpression network.

A baseline enrichment proportion was computed as
# of edges in STRING database /[# of genes x (# of genes —1)/2].

S1.4 hTFtarget enrichment

For each transcription factor (TF) present in both the hTFtarget database and the gene coexpres-
sion network, we tested the enrichment of its targets from the hTFtarget database [12] among the
genes with edges to the TF in the constructed coexpression network with the standard hypergeo-
metric test. More specifically, for TF j with the number of edges k; in the coexpression network,
the number of known targets m; in the network, the number of correctly identified targets ¢;, and
the total number of genes n in the network, the p-value is defined as phyper(g; —1,m;,n—m;, k;,
lower.tail=F) with the R function phyper. The hypergeometric test was performed separately

for each TF and each donor. The p-values for a TF were combined with the Fisher’s combined



probability test (Fisher’s method) as the final p-value of enrichment for the TF.

S1.5 Differential feature analysis

We performed differential feature analysis on the basis of two types of features: gene expression and
gene centrality measures in coexpression networks, including degree, pagerank, betweenness, and
eigenvector centrality. Unless otherwise stated, the differential expression tests were implemented
at the single cell level using the SCTransform normalized data together with FindMarkers function
from the R package Seurat with the MAST [3] algorithm. Differential centrality tests were carried
out at the donor level using the R package Limma [9] to accommodate small sample sizes. Donor
features ”"Age” and ”Sex” were controlled for in the differential centrality test for the dataset
Morabito_2021. Multiplicity correction was performed with the Benjamini-Hochberg procedure [1]
at a false discovery rate of 0.05 unless otherwise specified.

To investigate the potential confounding of differential network centrality with the differential
expression in samples sequenced in two separate batches, we employed DESeq2 [6] to detect dif-
ferential expression. Specifically, we implemented DESeq2 through the FindMarkers function in

Seurat, specifying test.use as "DESeq2”.

S1.6 Gene set enrichment analysis.

Gene set enrichment analysis for gene modules and differential centrality genes is conducted through

package Enrichr [5].

S1.7 Evaluating the coexpression of Dozer-A3 module genes in immune oligo-

dendrocytes (ODC)

To validate the findings about the Dozer-A3 module of the Morabito_2021, we assessed whether
there was higher coexpression of genes in the Dozer-A3 module among immune ODC cells, and
whether this association was more significant in the Alzheimer’s group than in the Control group.
To address the former, for a given donor d, we estimated the probability of a donor ODC cell

expressing more than half of the genes in the Dozer-A3 module (pg). We then counted the number



of immune ODC cells from that donor (represented by mg) and the number of immune ODC cells
expressing at least half of the genes in the Dozer-A3 module (represented by z4). Using these
estimates, we assessed the likelihood of observing x4 or more immune ODC cells expressing Dozer-

A3 module genes purely by chance, with the following Binomial calculation:

mg
p-value = Z Binomial(myg, 1, pq).

r=xq

In addition, for a given donor d, the association between coexpressing Dozer-A3 module genes and
being an immune ODC cell was assessed with a 2 x 2 contingency table. Specifically, a Fisher’s
exact test on the contingency table was carried out. The testing of the differences in odds ratios
and negative log, transformed Fisher’s exact test p-values of the AD and Control diagnoses were

carried out with a Wilcoxon rank sum test.

S1.8 Associating diagnosis with module eigengene expression from the scsWGCNA

analysis.

We used a linear mixed model (S.1) implemented through R package 1mer to assess the association
between module eigengene expression and diagnosis. In equation (S.1), y; represents expression of
eigengene of metacell i. Variables ”Diagnosis”, ”Sex” and ” Age” are fixed effects. ”SamplelD” was
used as a random effect, because metacells in sScWGCNA analysis are constructed within samples

of individual donors.
y; ~ Diagnosis, + Sex; + Age; + (1|SampleID,). (S.1)

The following versions of the software were used for the analysis: R 4.1.1, SCTransform
0.3.2,S5AVER 1.1.2, Seurat 4.0.3,1limma 3.48.3, MAST 1.18.0, WGCNA 1.70-3, bigSCale 2.0,

cluster 2.1.4.



S2 Supplemental results for computational experiments

S2.1 Analytical form of the gene noise ratio and correction factor under the

Gamma-Poisson model

Under the Gamma-Poisson model, the noise ratio ?; and correction factor S;, 7 =1,--- ,G can be

expressed as functions of the cell sequencing depths {Ei}fil and the Gamma scale parameter u; as:

1
Rj = ——a—r, (S.2)
1+ 1 N'7
N Zi:l 1/&'
and
SN 11

=14 ==L o — .

S; + N X ” (S.3)

These analytical forms in equations (S.2) and (S.3) support the intuition and the empirical results
that when the sequencing depth or expression is high, R; is closer to 0 (S} is closer to 1) and the
bias of sample correlation of normalized UMI counts is expected to be small. Figure S1 displays
the noise ratio as a function of gene expression and sparsity (i.e., proportion of zero counts for a
gene) across both simulated and real datasets (Jerber_2021 and Morabito_2021) and confirms the
expected pattern of noise ratio as mean expression level and sparsity vary. We observe that for a
fixed expression level (x-axis), genes with lower sparsity tend to have higher noise ratios. While
this initially appears counter-intuitive, further calculations with this model support the observation.
Under the Gamma-Poisson model with v, u; and ¢; as gamma shape, scale parameters for gene j
and sequencing depth for cell ¢, the probability of zero count for gene j is

B(Y;; = 0) = (HZU) (5.4)

For a fixed mean expression cy, i.e., ujv; = co,



The denominator of eqn. (S.5) is a monotonically increasing function of v; for fixed cof;. As a result,
P(Yj; = 0) decreases as v; increases and, for fixed mean expression ¢y = w;v;, the sparsity level of
gene j increases as u; increases. Further utilizing eqn. (S.2), we conclude that R; decreases as u;
increases; hence, for fixed mean expression, sparser genes have lower noise ratio, which matches the

empirical observation in Figure S1.

S2.2 Bias-variance calculation of estimated correlation by Dozer

We evaluated the bias and variance of the estimated gene-gene correlations in a dataset gener-
ated through simulation setting A. The dataset consisted of 1,000 cells and an average of 1 count
per gene, mirroring the sample size and sequencing depth observed in the Morabito_ 2021 dataset.
We visualized the true vs. estimated correlation from Dozer (Figure S3) and SCT.Pearson (Fig-
ure S4, SCT.Pearson is presented since it performs closest to Dozer across all the evaluations in our
manuscript) stratified by the noise ratios of each gene in a gene pair (high, medium and low). We
observe that while SCT.Pearson estimates are biased across all settings (a smooth line through the
data points is presented in red in all the panels), Dozer provides imperfect but significant correc-
tion across all categories, and especially for gene pairs with low and medium noise ratios. Next, we
quantified the bias variance trade-off across all gene pairs stratified according to their noise ratios.
Because of the bias towards zero in Figures S3, S4, we quantified the bias as the difference between
the absolute estimated correlation and the absolute true correlation. We divided the genes into 10
groups based on their noise ratios, each group containing 300 genes. Next, we computed the bias
(absolute estimated correlation — absolute true correlation) and standard deviation for each pair
of bins by analyzing the sample of gene pairs in the strata. The resulting heatmap (Figure S5)
presents our findings. As expected, gene pairs of higher noise ratios tend to have smaller absolute

correlation than the true correlation and higher standard deviation.

S2.3 Simulation experiment with scDesign2

To evaluate robustness of Dozer to potential violations from the Poisson-Gamma setting, we lever-

aged another scRNA-seq simulation tool, scDesign2 [10], which does not solely rely on the Poisson-



Gamma setting. ScDesign2 chooses the marginal distributions of the genes adaptively among a
larger set of count distributions: Poisson, Negative Binomial, Zero-inflated Poisson, and Zero-
inflated Negative Binomial and employs a Copula model to generate gene-gene correlations. We
used the P_FPP cells of donor “HPSI0114i-eipl_1” in Jerber_2021 dataset to estimate the simulation
parameters for scDesign2. ScDesign2 parameters were set to their defaults following its vignette,
with the exception of randomizing the gene ordering for marginal distributions. This was done to
disentangle the relationships between gene correlations and marginal distributions. This yielded
33, 130, and 2,053 genes with Poisson, Zero-inflated Negative Binomial, and Negative Binomial
as estimated distributions, respectively. Overall, in this more flexible simulation setting, Dozer
performed better than the alternatives in the identification of network edges (except under the
low number of cells (less than 250 cells) settings where SAVER has a slight advantage) and high

centrality genes (Figures S11, S12 for AUPR and F1 scores, respectively).
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Figure S1: Noise ratio as a function of mean gene expression, sparsity level (average zero count pro-
portion) across all genes without filtering for high noise ratio in the Jerber_ 2021, Morabito_2021,
and simulated datasets.
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Figure S2: Comparison of the analytical and estimated correction factors Sj, j = 1,--- ,G in the
simulation study from the Gamma-Poisson base model. Three different estimators of the correction
factors are depicted by different colors. The initial plug-in estimator (eqn. 14, green) is noisy for
large values of the correction factor. The shrinkage estimator (eqn. 16, blue) steers the large scale
factors down to 1. The truncated shrinkage estimator (eqn. 17, red) reduces the variation and keeps
the monotonicity of the estimate.
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Figure S3: Scatter plot of the Dozer estimated vs. true correlations in each stratum of genes,
where genes are grouped by low, medium, and high noise ratios. The distance between the 45-
degree (black) line and the generalized additive model fit of the correlation estimation (red) line
indicates the magnitude of bias.
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Figure S4: Scatter plot of the SCT.Pearson estimated vs. true correlations in each stratum of
genes, where genes are grouped by low, medium and high noise ratio. The distance between the
45-degree (black) line and the generalized additive model fit of the correlation estimation (red) line
indicates the magnitude of bias.
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Figure S6: Oversmoothing resulting from the Spearman’s correlation computed with the SCTrans-
form normalized counts of P_FPP cells in the Jerber 2021 dataset. Genes SYNC and CEP350
both have sparse UMI counts with zero expression in 72% and 80% of the cells, respectively. Left
and right panels display the scatter plots of SCTranform normalized expression and the correspond-
ing ranks of the normalized expression of the two genes, respectively. The Pearson and Spearman’s
correlations of the two genes are -0.03 and 0.46, respectively. Cells with zero expression for both
genes are depicted in blue and lead to positive Spearman’s correlation for these two genes. This is in
contradiction with the Chi-square test which tests the independence of zero or positive expression
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Figure S7: Summary of simulation setting A results in terms of AUPR scores for high centrality gene
identification. The average AUPR scores for the identification of genes with top gene centralities
as a function of gene noise ratios, cell sample sizes, and average sequencing depths. Gene centrality
measures include pagerank, betweenness, and eigenvector centrality. The leftmost panel depicts
the average AUPR score of Dozer. The other panels highlight the performances of other methods
as quantified by the ratio of their AUPR scores over the AUPR score of Dozer.
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Figure S8: Summary of simulation setting A results in terms of F1 scores for edge and high
centrality gene identification. The average F1 scores for edge and high centrality gene identification
as a function of gene noise ratios, cell sample sizes and average sequencing depths. Gene centrality
measures include degree, pagerank, betweenness, and eigenvector centralities. The left panel shows
the average F1 score of Dozer. The other panels highlight the performances of other methods as
quantified by the ratio of their F1 scores over the F1 score of Dozer.
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Figure S9: Stratification of network edges inferred by each method with respect to expression
groups of the gene pairs: High-High: both genes in high expression group; Low-Low: both genes in
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correlation matrix in magnitude.
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Figure S11: Summary of the scDesign2 simulations in terms of AUPR scores for edge and high
centrality gene identification. The average AUPR scores for edge and high centrality gene identifi-
cation as a function of cell sample sizes and average sequencing depths. Gene centrality measures
include degree, pagerank, betweenness, and eigenvector centralities. The leftmost panel shows the
average AUPR score of Dozer. The other panels highlight the performances of other methods as
quantified by the ratio of their AUPR scores over the AUPR score of Dozer.
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Figure S12: Summary of the scDesign2 simulations in terms of F1 scores for edge and high centrality
gene identification. The average F1 scores for edge and high centrality gene identification as a
function of cell sample sizes and average sequencing depths. Gene centrality measures include
degree, pagerank, betweenness, and eigenvector centralities. The leftmost panel shows the average
F1 score of Dozer. The other panels highlight the performances of other methods as quantified by
the ratio of their F'1 scores over the F1 score of Dozer.
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Figure S13: Two-dimensional projection of the Jerber 2021 donor networks based on their gene
centrality measures with principal components (PC). Color of the data points represents phenotypic
groups, i.e., failure and success in neuronal differentiation.
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Figure S14: Comparison of differential centralities of the genes from the Dozer coexpression net-
works with their differential expression. Centrality measures include betweenness, pagerank and
eigenvector centrality. X-axis displays the signed -log;(adjusted p-value) from differential expres-
sion with positive (negative) values denoting higher (lower) expression in the Failure group. Y-axis
denotes the signed -log;,(adjusted p-value) from differential degree centrality with positive (nega-
tive) values exhibiting higher (lower) centrality in the Failure group. The differential degree genes
enriched in the KEGG term ”Pathways of neurodegeneration” (Figure S15) are labeled in the fig-
ure, demonstrating the consistency among various centrality measures.

21



Gene set enrichment for differential degree genes
KEGG

———
Overlapping gene counts 5 19 15 20 25

Higher degree in Failure Group Higher degree in Success Group

p53 signaling pathway
Salmonella infection

Human T-cell leukemia virus 1 infection
Oocyte meiosis
Progesterone-mediated oocyte maturation
Cell cycle

Coronavirus disease

Ribosome

Thyroid cancer

Pathways of neurodegeneration
Prion disease

Hepatocellular carcinoma

Wnt signaling pathway
Spliceosome

Alzheimer disease

Cardiac muscle contraction
Diabetic cardiomyopathy
Thermogenesis

Huntington disease

Oxidative phosphorylation
Non-alcoholic fatty liver disease
Amyotrophic lateral sclerosis
Parkinson disease

Term

10 20 1 2 4 10 20
—logy (adj p-value)

Figure S15: Gene set enrichment analysis of the Dozer identified differential degree genes with
KEGG pathways.
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Figure S16: Gene set enrichment analysis of the Dozer identified differential degree genes with GO
Biological Processes.
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S4 Supplemental results for the analysis of the Morabito 2021 dataset

S4.1 Validating the largest cliques in coexpression networks

To validate the personalized coexpression networks obtained for the AD and Control donors with
data from independent cohorts, we carried out a largest clique analysis. A clique (fully connected
sub-network) in the coexpression network represents a group of genes with high coexpression. We
computed the largest clique (largest fully connected sub-network) for each donor’s network and
assessed the consistency of this network structure among donors. The number of genes in largest
cliques ranges from 9 to 42. Cliques from different donors have a large proportion of overlapping
genes for methods Dozer, SAVER, SCT.Pearson and SCT.Spearman, with a mean Jaccard Index
of 0.27 to 0.31 (Figure S19). Next, for each method, we generated a clique-set by pooling genes
present in at least two donor largest-cliques. Clique-sets from Dozer, SAVER, SCT.Pearson, and
SCT.Spearman have higher proportion of gene pairs validated by the STRING PPI database com-
pared to other methods, with an average validation proportion of 0.12-0.17 (Figure S19), compared
to a baseline of 0.027 among all gene pairs in the network. Clique-set from Dozer network also
has high connectivity in an independent single cell RNA-seq of oligodendrocytes from [8], where
the average number of edges in the Dozer clique-set is 12 times (22 times) larger than the average
connectivity of the whole network for control (diagnosis) donors. Overall, the analysis of largest
cliques in donor-specific networks supports that Dozer, SAVER, SCT.Pearson, and SCT.Spearman
can consistently identify highly coexpressed gene sets in line with protein-protein interactions an-

notated in the STRING PPI database.
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Figure S18: In the Morabito_2021 dataset, 682 out of 1,252 genes were filtered out due to high
sparsity and/or high noise ratio. The hexbin plots display the distribution of sparsity levels (pro-
portion of zero counts) and noise ratios among the genes filtered out (left) and the genes retained

(right).
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Figure S19: A largest-clique is computed from each donor for each network construction method.
The reproducibility of largest-cliques among donors is evaluated using the Jaccard Index (JI) be-
tween each pair of donors. X-axis depicts the average Jaccard Index among all donor pairs. The
largest-cliques were also evaluated using the STRING database by generating a clique-set across
donors for each method. Y-axis depicts the proportion of gene pairs in the clique-set and are
validated by the STRING database. The horizontal dashed line at 0.027 represents the STRING
database validation rate for a random set of gene-pairs. The size of data points represents the
number of genes in the clique-sets, ranging from 51 to 98.

26



Control

AD

SLA -
MS4A6A -
MYOIF -
MAP3K5 -
NCK2 -
FMN1I -
ARHGAP26 -

TNFRSF1B -
RNF144B -
PLA2G4A -|
NCKAPIL -

PIK3AP1 -
SLC11A1 -
ARHGAP18 -
SLCO2B1 -
ZFP36L1 -
ARHGAPG -
TMEM163 -
SH3RF3 -
SRGAP2B -
MTHFDIL -
RASGEFIC -
MARCKSLI -
GPRC5B -

EE—
1e-03 1e-02 le-01 1e+00 le+01

Expression
Figure S20: Heatmap of the average expression (normalized expression via SCTransform) of genes
in module Dozer-A3 over cells in each donor. Rows and columns in the heatmap correspond to
donors and genes, respectively.
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Figure S21: Volcano plot from the differential expression analysis of genes in module Dozer-A3.
X-axis represents the log, fold change of expression in AD versus Control. Y-axis represents the
adjusted p-value from the differential expression test. A threshold of 0.05 for statistical significance
is indicated by a dashed line. The sparsity of the genes is indicated by the color of the data points.



Dozer-AD

IAG

MARCKSL1

Dozer-Control

MARCKSL1

RNASE1] FHASEL
RASGEF1C RASGEFIC
'DIAPH2 DIAPHZ,
[RUNX1] |[RUNX1|
MTHFDIL| IMTHFDIL
|SRGAP2B| |SRGAP2B]
ARHGAP26) ARHGAP26
FMN1 FMN1
NCK2| INCK2
SH3RF3 [SH3RF3)
[MAP3K5 IMAP3KS|
[MYO1F] [MYOIF]
(TMEM163) (TMEM163
[FYBIls |FYB1}
[UTRN _UTRN|
IARHGARG]
NHSL1 NHSL1
LRCH1 "ZL/;%‘ Expression
. ) le+01
J’%val 1e+00
(SLCO2BI] le-01
CMAHP le-02
PTPRC 1e-03
RTK] WEC%T/K Edge weight
[INFATC2) [NFATC2)] 0,0.4]
\PIK3CD) [PIK3CD| e o8]
cotr corL1 - 031
[ARHGAP18 [ARHGAP18| 8, 1]
SLC11A1] SLCLIAL]
RUBCNL
[SYKF
TLR2
[E2F3
[IRAK3
TRPM2
VAV
CHST15
ALPK1
PIK3R5

TNFRSF1B

TNFRSF1B

Figure S22: Hive plot visualization of module Dozer-A3 in AD and Control groups. Genes are
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Figure S23: Proportion of the Dozer-A3 genes expressed in each cell at the donor level. Individual
cells in each of the two cell populations, immune oligodendrocytes (ODC) and other ODC subtypes,
are evaluated with respect to the proportion of expressed Dozer-A3 genes at the donor level. The
reported p-values for each donor evaluate whether the coexpression of module Dozer-A3 in donor
immune oligodendrocytes is higher than expected by chance (details in Section S1.7).
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Figure S24: Boxplots of the odds ratios and -log;,(p-values) from Fisher’s exact tests that evaluate
the association between coexpressing Dozer-A3 module genes and being an immune ODC cell for
each donor (details in Section S1.7). Wilcoxon rank sum tests were conducted to evaluate the
differences in odds ratios and -log;,(p-values) between the two diagnosis groups (AD vs. Control).

30



Dozer (from cells excluding immune oligodendrocytes)

A

o o o

positive regulation of ossification (GO:0045778)

regulation of ossification (GO:0030278)

negative regulation of cellular process (GO:0048523)

regulation of dendritic spine development (GO:0060998)

regulation of small GTPase mediated signal transduction (GO:0051056)
protein phosphorylation (GO:0006468)

‘de novo' posttranslational protein folding (GO:0051084)

chaperone cofactor-dependent protein refolding (GO:0051085)
response to unfolded protein (GO:0006986)

positive regulation of cell projection organization (GO:0031346)

dendrite morphogenesis (GO:0048813)

6 B Dozer-Al ‘ | Dozer-A2
4 0.204 p=0.045 p=0.69
-2 0.154
> 0.104
-0.2 £ 0.05 = =N > <> >
o 8 0.00-
Modgle ) Dozer-A3 ‘ | Dozer-A4
singleton =
Dozer-Al 8 0.20+ p=0.42 p=0.072
Dozer-A2 = 0.154
Dozer-A3 0.104
Dozer-A4 0.051 S <t @D
0.00+ . . T v
Control AD Control AD
Dozer-A2 ‘ | Dozer-A3 | ‘ Dozer-A4
|
|
|
|
e Gene count
12
| 10
8
] 6
4
|
|
|
|
o o o - O [=3 o - O o o o
o o b= o O o b=l o o o b= o
o - o o o — o o o - o o
- =} =} o (I =] =} (=}

(=} =}
Adjusted p value

Figure S25: (A) Heatmap of gene modules from the Dozer ”difference network” constructed with
cells excluding immune oligodendrocytes. (B) Violin plot of module densities. (C) Top 5 significant
GO terms from gene set enrichment analysis of each module (modules with no significant terms are

excluded).
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Figure S26: Violin plots of the gene centrality measures in the AD and Control groups for the
genes with significant differential centrality at 5% FDR in the Morabito_2021 dataset. The two
grid labels indicate the coexpression network method and centrality metric.
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Figure S27: (A) Heatmap of gene modules from the SAVER ”difference network”. (B) Violin plot
of module densities. (C) Top 5 significant GO terms from gene set enrichment analysis of each
module (modules with no significant terms are excluded).
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Figure S28: (A) Heatmap of gene modules from the SCT.Pearson ”difference network”. (B) Violin
plot of module densities. (C) Top 5 significant GO terms from gene set enrichment analysis of each
module (modules with no significant terms are excluded).
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Figure S29: (A) Heatmap of gene modules from the SCT.Spearman ”difference network”. (B)
Violin plot of module densities. (C) Top 5 significant GO terms from gene set enrichment analysis
of each module (modules with no significant terms are excluded).
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Figure S30: (A) Heatmap of gene modules from the Noise.Reg ”difference network”. (B) Violin
plot of module densities. (C) Top 5 significant GO terms from gene set enrichment analysis of each
module (modules with no significant terms are excluded).
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Figure S31: (A) Heatmap of gene modules from the MetaCell ”difference network”. (B) Violin
plot of module densities. (C) Top 5 significant GO terms from gene set enrichment analysis of each
module (modules with no significant terms are excluded).
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Figure S32: (A) Heatmap of gene modules from the bigSCale2 ”difference network”. (B) Violin

plot of module densities. (C) Top 5 significant GO terms from gene set enrichment analysis of each
module (modules with no significant terms are excluded).
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Figure S33: Venn diagram of gene modules identified by Dozer, SAVER, and SCT.Pearson, whose
module densities significantly associated with the AD diagnosis.
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Figure S34: GO enrichment analysis of the genes shared between coexpression modules ”Dozer-
A37, ”SAVER-A3”, and ”SCT.Pearson-A3”.
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Figure S35: (A) Module dendrograms of scWGCNA-I. (B) P-values of the association tests between
module eigengene expression and diagnosis. (C) Top 5 significant GO terms for each gene module.
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Figure S36: (A) Module dendrograms of scWGCNA-II. (B) P-values of the association tests
between module eigengene expression and diagnosis. (C) Top 5 significant GO terms each gene
module (modules with no significant terms are excluded).
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Figure S37: Hive plot visualization of sSsWGCNA gene correlation matrices for module Dozer-A3
in Control and AD groups. Genes are ordered from high (top) to low (bottom) by their average
expression across all donors, and colored by the average expression in the corresponding diagnosis
group. The color of arcs between the genes in this linear layout depicts the absolute correlation
between genes in scWGCNA networks of AD (left) and Control (right) donors.
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S5 Additional figures
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Figure S38: Boxplots for the bias in estimated gene pair correlations induced by the normalization
procedure using total UMI counts as a global cell size factor. The data is simulated using the package
Splatter [11]. The simulation parameters are taken from the example object newSplatParams in
Splatter. In the simulation, the true correlations between gene pairs are set to zero. Gene
pair correlations are computed using expression values normalized by total UMI counts. The
estimation bias is calculated for seven different gene proportion scenarios (x-axis), ranging from
genes accounting for 10% to 0.1% of the total UMI counts.
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Figure S39: Diagnostics for cell size factor estimation. Panels A and B represent datasets from two
different donors. The leftmost panels of A and B display the density of regression slopes between
raw counts and trimmed total UMI counts in gene groups stratified by expression. The middle
(right) panels of A and B show the density of correlations between normalized expression with a
global cell size factor (with gene specific cell size factors) and trimmed total UMI counts in gene
groups stratified by expression.

S6 Data summary

Jerber_2021. scRNA-seq dataset from [4] harbored iPSC cells from multiple donors under neu-
ronal differentiation. Cells were profiled on days 11, 30, and 52 and a phenotypic trait named
differentiation efficiency score was derived for each donor. Donors were further classified into two
phenotype groups as ”"success” and ”failure” in neuronal differentiation using the differentiation
efficiency score. All the personalized gene coexpression network analyses utilized the P_FPP (Pro-
liferating Floor Plate Progenitors) cells on day 11. Donors with fewer than 500 cells, with missing
data in differentiation efficiency score, and six donors with extremely low sequencing depths (less

than 14% of the median sequencing depth among all donors) were filtered out, leaving a total of
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62 donors for the analysis. Genes with an average noise ratio among donors larger than 0.9 were
filtered out, resulting in 912 genes per network.

We employed the full Jerber_2021 dataset for personalized coexpression network analysis, and
utilized two subsets of the dataset for false discovery analysis and investigating the robustness
against sequencing depth differences. The first subset comprised of cells with a depth range between
12k to 17k total UMI counts from 20 donors, while the second subset consisted of 1,139 and 963
cells from a single donor, sequenced in batches labeled ”pool2” and ”pool3”, respectively.
Morabito_2021. snRNA-seq data of [7] were from postmortem human tissues of 11 subjects with
Alzheimer disease and and 7 age-matched control subjects. Oligodendrocytes, which accounted
for 60% of the total number of cells in the datasets (with a median number of 2,005 cells per
donor) were utilized in all the the coexpression analyses. To facilitate a direct comparison with
the coexpression network analysis conducted in the data paper (scWGCNA), the same set of 1,252
genes were used as the starting gene set and were further filtered out if they satisfied any of the
following conditions: (i) expressed in less than 2 cells in any donor; (ii) average noise ratio over
donors is larger than 0.85. This resulted in 570 genes per donor for the analysis.

Cuomo_2020. scRNA-seq data of iPSC cells from [2] were used to generate simulation parameters.
Cells in this dataset have high sequencing depths (averaging approximately 530K total counts per

cell), allowing estimation of more realistic parameters to serve as ground truth in simulations.
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