Extended methods

Biological samples

Peripheral blood mononuclear cells (PBMCs) used in this study were collected from children aged between
10 and 16 years old as part of the longitudinal study Asthma in the Life of Families Today (ALOFT, recruited
from November 2010 to July 2018, Wayne State University Institutional Review Board approval #0412110B3F)
(Resztak et al. (2021)), which was established to explore the effects of family environments on childhood asthma.
The 96 samples included in the current study were randomly selected from a pool of 136 samples passing the fol-
lowing criteria: donor’s age 10-16 years old, donor’s race self-reported as Black, availability of at least 3.5 million
cryopreserved PBMCs, and to ensure a 50:50 ratio between female and male participants. For each participant
multiple samples were collected longitudinally, but we included in this study only the earliest sample passing the
filtering criteria. PBMC:s collected into two BD Vacutainer™Glass Mononuclear Cell Preparation Tubes (Becton
Dickinson and Co., East Rutherford, NJ) were extracted using a previously-published Ficoll centrifugation proto-
col ( Weckle et al. (2015)), cryopreserved in freezing media (70% RPMI, 20% CS-FBS, 10% DMSO; 3 — 8 x 10°
cells/ml) and stored in liquid nitrogen until the day of the experiment.

Cell culture and single-cell preparation

Cells were processed in batches of 16. For each batch, PBMCs were removed from liquid nitrogen storage and
quickly thawed in 37°C water bath before diluting with 6 ml of warm starvation media (90% RPMI 1640, 10% CS-
FBS, 0.1% Gentamycin) and counting using Trypan blue staining on Countess II (Life Technologies Corporation,
Bothell, WA). Cells were subsequently centrifuged at 400 x g for 10 minutes and resuspended in culture medium
at 2 x 10° cells/ml. 500 ul of cell suspension was plated in each of 5 wells of a 96-well round-bottom cell culture
plate for each sample. Cells were incubated in starvation media overnight (approx. 16 hours) at 37°C and 5% CO..
The following morning each of the five wells for each individuals were treated with either: 1 pg/ml LPS ( Barreiro
et al. (2010)) + 1 uM dexamethasone ( Moyerbrailean et al. (2016)), 1 pg/ml LPS + vehicle control alone, 2.5
pg/ml PHA ( Moyerbrailean et al. (2016)) + 1 uM dexamethasone, 2.5 pg/ml PHA + vehicle control alone, or
vehicle control alone (control). Note that the vehicle control used was 1ul of ethanol in 10 ml of media, so that
the effect of the vehicle control was negligible. After six hours, cells were pooled across individuals for a total of
five treatment-specific pools. The pools were centrifuged at 300 rcf for 5 min at 4°C, washed with 5 ml ice-cold
PBS + 1% BSA and centrifuged again. Each pool was resuspended in 2 ml ice-cold PBS + 1% BSA and filtered
through a 40 pm Flow-Mi™strainer (SP Scienceware, Warminster, PA). Cell concentration was determined using
Trypan blue staining on Countess II, and adjusted to 0.7 x 10° cells/ml to 1.2 x 10° cells/ml. Each pool was loaded
onto a separate channel of 10x Genomics® Chromium machine (10x Genomics, Pleasanton, CA), according to
the manufacturer’s protocol, with batches 4, 5 and 6 loaded on two separate Chromium Chips for a total of 2
wells per treatment pool. Batches 1-4 and one chip of batch 5 were processed using v2 chemistry, and the other
chip of batch 5 and batch 6 were processed using v3 chemistry. Library preparation was done according to the
manufacturer’s protocol.

Sequencing

Sequencing of the single-cell libraries was performed in the Luca/Pique-Regi lab using the Illumina NextSeq
500 and 75 cycles High Output Kit with 58 cycles for R2, 26 for R1, and 8 for I1.

Genotype data

All individuals in this study were genotyped from low-coverage (~0.4X) whole-genome sequencing and im-
puted to 37.5 million variants using the 1000 Genomes database by Gencove (New York, NY). These data were
used for all genetic analyses and to calculate PCs of genotypes to be used as covariates in downstream statis-
tical analyses. Genotype PCA was run on all biallelic autosomal SNPs with cohort MAF<= 0.1 using library
SNPRelate ( Zheng et al. (2012)) in R 4.0 ( R Core Team (2020)).

10



single-cell RNA-seq raw data processing (Alignment and demultiplexing)

The raw FASTQ files were mapped to the GRCh38.p12 human reference genome using the kb tool (a wrapper
of kallisto and bustools) with the argument of workflow setting to be 1amanno ( Melsted et al. (2021)).
Two procedures were performed in the kb tool. First, we used kallisto to pseudo align reads to the reference
genome and quantify abundances of transcripts ( Bray et al. (2016)). Second, we transformed the kallisto
outputs into BUS (Barcode, UMI, Set) single cell format using bustools ( Melsted et al. (2019)). A total of 45
pooled libraries were generated in our experiment. Among 45 libraries and 6 batches, 3 experiments (LPS+DEX,
PHA and PHA+DEX) in batch 2 and 3 experiments (LPS+DEX, PHA and PHA+DEX) in batch 3, were excluded
because of failure of the 10x Genomics instrument resulting in broken emulsions, for a total of 39 libraries
remaining for all subsequent analyses. We removed debris-contaminated droplets using the DTEM R package
( Alvarez et al. (2020)). With this procedure, we obtained a count matrix of 301,637 cells with 116,734 genes
features (including spliced and unspliced) across 39 library pools. The aligned counts matrix were transformed
into a Seurat object for the subsequent functional analysis. To demultiplex the 16 individuals pooled together for
each batch, we used the popscle pipeline (dsc—pileup followed by demux1et) with the default parameters
( Kang et al. (2018)). Two input files are required to provide for dsc-pileup, a BAM file and VCF file. The
BAM files were generated by running cellranger (v2.1.1) count function aligned to the GRCh37 human
reference genome (downloaded from 10x Genomics, 3.0.0). The VCF file obtained from DNA genotype data (see
above) was filtered to remove any SNP that was not covered by scRNA-seq reads. The resulting VCF contained
935,634 SNPs after removing SNPs with MAF less than 0.05. After assigning the identity to each cell, we
removed mismatching barcodes between individual identity and batch. A total of 292,394 cells with 116,734
genes (including spliced and unspliced) were entered into the downstream analysis. For 96 Individuals, we had
both control and LPS conditions, while the other three conditions (LPS+DEX, PHA, PHA+DEX) were assayed
for 64 individuals because of instrument channel failure in batches 2 and 3 for those experimental conditions.
This clean dataset had a median of 7,994 cells (Supplemental Fig. S48), a median of 4,251 UMI counts, and
1,810 genes measured on average in each cell across 39 experiments (Supplemental Fig. S49). In terms of spliced
reads, we detected a median of 2,705 UMIs and 892 genes for each cell across all 39 experiments (Supplemental
Fig. S50).

Clustering, UMAP and cell type annotation

Seurat(V3) was employed for preprocessing, clustering, and visualizing the scRNA-seq data ( Stuart et al.
(2019)). We performed log-normalization on all the data using NormalizeData with default parameters and
selected 2,000 highly variable genes using FindVariableFeatures with variance-stabilizing transformation
(vst) followed by standardization of these highly variable genes for downstream analysis using ScaleData.
Linear dimensionality reduction was carried out by RunPCA on scaled data with 100 principal components (PCs).
We ran RunHarmony with chemistry as covariates to correct chemistry effects (V2 and V3), which is scalable
to a large number of cells and robust Korsunsky et al. (2019). The Harmony-adjusted PCs were then used to
construct a Shared Nearest Neighbor (SNN) graph using FindNeighbors (dims=1:50) and cell clustering
was subsequently implemented by running FindClusters with the resolution set to 0.15. Finally, Uniform
Manifold Approximation and Projection (UMAP) was applied to visualize the clustering results using the top
50 Harmony-adjusted PCs. Cells from different chemistries, batches, and treatments shared similar clustering
patterns (Supplemental Fig. S51, Supplemental Fig. S52, Supplemental Fig. S53).

We identified 13 clusters and then annotated cell clusters based on the following canonical immune cell type
marker genes (Supplemental Fig. S2 and S55), B cells (MS4A 1 or CD79A), Monocytes (CD14 or MS4A7), natural
killer (NK)) cells (GNLY or NKG7) and T cells (CD3D or CD8A). Clusters 0, 4, 5, and 7-12 were annotated as
T cells with 183,289 cells, clusters 3 and 6 were annotated as monocytes (30,393), cluster 1 was defined as NK
cells (47,824) and cluster 2 as B cells (30,888). We also explored to break the T cell group into the two major
sub-clusters (Cluster 0) which is CD4-like T cell and Cluster 4 (CD8-like cytotoxic T cell); yet we only found
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a limited number of differences for Cluster 4 in the genes responding to the treatments (Supplemental Fig. S55).
This is likely because we would need to profile a larger number of cells to explore in depth differences in these
subtypes of T lymphocytes.

Aggregation of single-cell-level data for differential gene expression and genetic analyses

We generated pseudo-bulk RNA-seq data by summing the spliced counts from kallisto for each gene and
each sample across all cells belonging to each of the four cell types (B cell, Monocyte, NK cell and T cell),
separately. This generated a data matrix of 42,554 genes from autosomes (rows) and 1,536 combinations of cell
type+treatment+individual (columns). The number of cells in each combination displayed a similar distribution
between treatments for most cell types (Supplemental Fig. S54 and Supplemental Table S2, S24). B cells have the
smallest number of cells for each combination while T cells have the most number of cells for each combination
(Supplemental Fig. S54), which is consistent with the cell type compositions in PBMCs. Next, we focused on
protein coding genes and filtered out genes with less than 20 reads across cells and removed combinations with
less than 20 cells. This last filtering step resulted in a data matrix of 15,770 protein coding genes (rows) and 1,419
combinations (columns), which were used for all subsequent differential expression and genetic analyses.

Differential gene expression analysis

We carried out differential gene expression analysis for each of the five batches separately using R DESeg2
package ( Love et al. (2014)) and then combined the results across five batches using meta-analysis. For each
batch, we estimated gene expression effects of the treatments using four contrasts: (1) LPS, LPS vs CTRL; (2)
LPS+DEX, LPS+DEX vs LPS; (3) PHA, PHA vs CTRL; (4) PHA+DEX, PHA+DEX vs PHA. We found that
compared to adding a batch covariate in DESeq2, our approach of dividing the analysis by batch produced more
robust results in our data , likely because the overdispersion parameter of DESeq2 was estimated for each batch
separately. In the meta-analysis procedure, we first extracted the summary statistics, including estimated effects
(8;) and standard error (s;). Based on the fixed-effects model of meta-analysis, the weighted average effects are

calculated by = Zzlfi 2

the test statistics z = 7 which follows a normal distribution under the null hypothesis. To correct for multiple
hypothesis testing, we used the gvalue function in R 4.0 to estimate false discovery rate (FDR) from a list of
p-values from the above z test statistics for each condition, separately. Differentially expressed genes (DEG) were
defined as those with FDR less than 0.1 and absolute estimated log, fold change larger than 0.5. We carried out
Gene Ontology (GO) enrichment analysis [i.e., Biological process (BP), molecular function (MF), and cellular
component (CC)], for these DEGs identified across conditions using R ClusterProfiler package (V3.16.1)
(Yu et al. (2012)).

Estimation of gene expression mean and dispersion

Using the single-cell data generated from Fluidigm experiment Sarkar et.al proposed a zero-inflated negative
binomial (ZINB) distribution to estimate gene expression variance ( Sarkar ef al. (2019)). Some literature demon-
strated that it is not necessary to consider the zero inflation term in the model for droplet-based single-cell RNA
data ( Svensson (2020)). Based on the computational framework that was established by Sarkar et.al, we adapted
a negative binomial (NB) distribution to model the count data for each gene j, using two main parameters for the
mean(y+;) and dispersion(¢;) in our scRNA data. Then, we derived the variance of gene expression by ﬂj2gz§j. The
details on NB model are described as follows,

and its estimated variance can be expressed by o = (3 1/s2)~". We then constructed

i, ~ Poisson(.; Ri\ji) o

Where 1, is the number of molecules for £ cell, j gene; R}, is a size factor of each cell, equal to total reads in
each cell divided by median reads across cells, to account for difference in cellular sequencing depth; A is a
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latent variable, representing gene abundance and further is assumed to be Gamma distribution with mean value p,
variance p”¢. By integrating the latent variable )., we derived density function for each observation as follows,

S Tik - , -1, -1\¢; '
Pr(r;i) z/ (RieAji) 7+ exp” A (=5 7)% (o711
0
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Then, we estimated parameters of y; and ¢; by minimizing the negative log likelihood using the opt im func-
tion in R 4.0 using the "L-BFGS-B” algorithm. Two filters were applied prior to estimation of gene expression
parameters (mean and dispersion): (1) removing genes with less than 20 reads across cells (with a total of 30,972
autosomal genes remaining for the analysis); (2) removing the combinations (cell type+treatment+individual)
with less than 20 cells (with a total of 1,419 combinations across all our data). To guarantee robust parameter
estimation, we focused on genes with more than 15 reads that are expressed across at least 15 cells for each cell
type/treatment combination.

Similar to what reported in previous studies ( Eling ef al. (2019b,a); Fan et al. (2016); Fair et al. (2020)), we ob-
served that both gene variance or dispersion linearly depended on mean parameters (Supplemental Fig. S11A,B).
To further correct the dependence between dispersion and mean, we defined a residual dispersion, capturing the
departure from the global trend. The residual dispersion was calculated by removing the part of dispersion that
could be predicted by the overall trend of gene mean across genes in each cell type separately. This adjusted
dispersion was uncorrelated with the gene mean value (Supplemental Fig. S11C) across genes.

The well established method (regression BASiCS model) were proposed to perform differential test for gene
expression variability, which can correct the mean confounder by fitting a global linear trend of mean and disper-
sion across genes in a bayesian hierarchical framework ( Eling et al. (2018)). In analogy to the BASiCS model,
we quantified gene expression variability that was not confounded by mean expression by the two discrete stages
(1) Use a negative binomial model to obtain the estimation of the parameters mean and dispersion similar to Sakar
et al. approach; (2) Fit a linear model between mean and dispersion across genes to remove the part of dispersion
that can be predicted by mean expression. We always used the adjusted values unless otherwise stated.

Calculation of pathway specific score

We calculated the score of a specific GO term or pathway using the transcriptional matrices (mean and dis-
persion) patterns of genes involved in that term/pathway across all the conditions as follows: (1) extracted the
subset of differentially expressed genes in at least one condition belonging to a specific GO term or pathway; (2)
scaled mean-centered gene matrices values (mean and dispersion) for each gene across individuals for each cell
type and batch separately; (3) subtracted gene expression values of individuals in the CTRL condition to calculate
relative expression changes; and, (4) calculated the average values as a specific pathway score across genes for
each individual.

Differential gene variability analysis

We focused on 15,770 protein-coding genes for differential gene variability analysis. To account for the noise
from the batch, we implemented the same strategy for differential gene expression analysis for differential gene
variability and differential gene mean analyses via fitting models by batch separately and we meta-analyzed the
summary statistics. We first took the log, transformation of residual dispersion and mean, then fitted models using
linear regression where treatments were considered for each batch, separately. To obtain more robust estimation
of the gene expression parameters for statistical inference, we only focused on genes that had at least 3 individuals
in the treatment and 3 individuals in the control condition that was being contrasted. The differentially variable
genes (DVG) and differential mean genes (DEG) were defined as those with FDR less than 0.1 and absolute value
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of log, fold change greater than 0.5. We alsoused ClusterProfiler inR to carry out GO enrichment analysis
for these identified DVGs.

DLDA response pseudotime method

We developed a new pseudotime method based on diagonal linear discriminant analysis (DLDA) to charac-
terize the degree to which single cells respond to immune treatments. A key difference compared to previous
methods ( Qiu ef al. (2017); Haghverdi et al. (2016)) is that DLDA is supervised and estimates a straight line
trajectory between two endpoints which should be particularly suitable for a short time treatment. Basically, the
trajectory is a one dimensional line connecting the two centroids of a treatment and control conditions for each
cell type. In DLDA only a subset of genes that are highly differentially expressed between the two conditions are
used based on the following formula ( Pique-Regi et al. (2005)):

g(z)4 = zp: (ﬂA(l’i) ;iﬂB(%‘)) (l’z —&/?(l’i)) » )

i=1 v

Where the subscripts of A and B represent the two conditions considered in each contrast, respectively; ji; denoting
mean gene expression of the iy, gene for A, B or across groups and ¢; meaning standard deviation of the ;;, gene
across conditions. In this application of DLDA we only used the DEGs that were differentially expressed in
the corresponding condition (10%FDR by DESeq2) by introducing an indicator variable (v;, assigning to 1 if
the 7;, gene is a significant DEG in the contrast of A versus B or 0 otherwise. This is equivalent to denoising
by hard thresholding instead of the soft thresholding that a method like nearest shrunken centroids would use.
Note that the left term of the summation is a weight that is exactly a standardized effect size, and the right term
evaluates for a given gene how far it is from the midpoint between all the cells. By ignoring the off-diagonal
terms and only considering genes that are differentially expressed, DLDA achieves a more robust classification
performance when the number of samples available for training is relatively limited. While this approach assumes
the shortest Euclidean distance alignment between the centroids of the treated and untreated cells, it should be
a reasonable assumption for short time-periods (here 6 hours), compared to learning a complex curved one-
dimensional manifold in a high dimensional space. This assumption provides a more robust and stable trajectory
followed by the cells from the control to the treated state when we iteratively repeat the procedure resampling the
data, compared to more complex nonlinear trajectory methods.

Four kinds of DLDA axes were calculated by the following contrasts for each cell type separately, (1) DLDA
axis of LPS was estimated in the CTRL and LPS conditions to infer the response pseudotime to LPS; (2) DLDA
axis of LPS+DEX was computed in the LPS and LPS+DEX conditions to calibrate the response pseudotime
to DEX; (3) DLDA axis of PHA was estimated in the CTRL and PHA conditions to characterize the response
pseudotime to PHA stimuli ; and, (4) DLDA axis of PHA+DEX was estimated in the PHA and PHA+DEX
conditions to characterize the response pseudotime to DEX. To achieve this, we excluded the data from batches
2 and 3, resulting in 264,545 cells. Next, to correct chemistry effects, we performed standard log-normalization
for each subset (split by chemistry) followed by integrating datasets together using Seurat (V3) for each cell
type, separately. After the DLDA representing the trajectory pseudotime is calculated for each cell type and
treatment, we use a sliding window approach (10% cells in each window, sliding along the defined pseudotime
with a step of 0.1% cells), we analyzed gene expression dynamic changes along the response pseudotime within
each treatment for each cell type separately and identified different dynamic patterns of gene expression using the
k-means algorithm

Validation of the accuracy of DLDA in response pseudotime

We performed resampling analysis to demonstrate the robustness and stability of the DLDA compared to two
existing methods: Monocle 3 ( Qiu et al. (2017)) and SCANPY ( Wolf et al. (2018)). For the simplification
of the analysis, we focused on the T -cells treated with PHA+DEX or PHA that were measured using 10x Ge-
nomics chemistry V3, including 29,157 cells and 6,571 DEGs. To validate the effectiveness of the novel approach
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(DLDA), we randomly re-sampled half the dataset for 50 replications. In each replication, we applied our novel
approach DLDA and the two other methods to compute response pseudotime. We do not have the underlying
ground truth on how the cells should be exactly ordered according to response pseudotime; yet, we can still assess
how expression for each of the responding genes correlates with the estimated pseudotime in each iteration across
all cells. Ideally, the cells would be sorted similarly in each iteration, and the correlation of the gene expression
with the pseudotime would stay constant. For each iteration, we calculated the Pearson correlation of the pseu-
dotime and each gene expression in cells. Two indexes were employed to assess the performance of the three
methods, (1) variance of correlation coefficients for each gene across replications; (2). Jaccard index of the top
20 highly correlated genes between 1,225 pairwise replications.

Data normalization for genetic analyses

For downstream genetic analyses, we first removed all lowly-expressed genes, defined as having less than 0.1
CPM in more than 20% of the samples in each condition, separately. We quantile-normalized the count data using
the voom function in the 1imma v3.44.3 package ( Ritchie et al. (2015)) in R 4.0 and regressed out the following
confounding factors: experimental batch, sex, age, and top three principal components of genotypes in each cell
type-treatment combination, separately.

For gene expression variability, for each gene-treatment-cell type combination, we discarded data from batches
represented by less than 3 individuals. We considered genes with gene expression variability measures available
for at least 20% of remaining individuals in each treatment-cell type combination. We quantile-normalized the
data using the voom function in the 1imma v3.44.3 package ( Ritchie ef al. (2015)) in R 4.0. We regressed
out the following confounding factors on the subset of genes with no missing data across all individuals in each
condition: experimental batch, sex, age, and top three principal components of genotypes processing each cell
type-condition combination and performed PCA on variability residuals to use as covariates in variability-eQTL
mapping. Mean gene expression estimates were processed using the same pipeline as gene expression variability
data.
cis-eQTL mapping

We used FastQTL v2.076 ( Ongen et al. (2016)) to perform eQTL mapping on gene expression residuals
calculated for each cell type and condition as outlined above. For each gene, we tested all genetic variants within
50 kb of the transcription start site (T'SS) and with cohort minor allele frequency (MAF)> 0.1. We optimized the
number of gene expression PCs in the model to maximize the number of eGenes across all conditions combined.
The model that yielded the largest number of eGenes included 4 gene expression PCs. eQTL discovery for mean
and variability data was performed similarly, except we modelled quantile-normalized data and regressed out the
effects of experimental batch, sex, age, and top three principal components of genotypes and PCs of residuals in
the FastQTL model. The model that yielded the largest number of significant genes at 10% FDR included 5 PCs
of residuals for variability and 7 PCs of residuals for mean data.

Multivariate adaptive shrinkage

To improve power of eQTL discovery by taking advantage of parallel measures of genetic effects across many
cell types and conditions, we employed the multivariate adaptive shrinkage (mash) method using the mashzr
package v.0.2.40 in R v4.0 ( Urbut et al. (2019)). As input, we provided the genetic effect size estimates from
FastQTL analysis in each cell type-treatment combination, and their corresponding standard errors calculated
as absolute effect size estimates divided by its z-score. We kept the gene-variant pairs with estimates across all
cell types and conditions and eliminated the two genes causing a singular matrix. We fitted mash across all 20
cell type-condition combinations on a random subset of 200,000 gene-SNP pairs providing both canonical and
data-driven covariance matrices (the latter estimated using mashr in-built cov_ed function on strong eQTLs from
full data set, defined as those with ashr local false sign rate (LFSR)< 0.05).The LFSR refers to the probability
that we incorrectly inferred the sign of genetic effects size (8;), LF'SR; = min {Pr (5; > 0|D),Pr(5; <0|D)}
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( Stephens (2017)). We considered gene-variant pairs with posterior LFSR< 0.1 to be eQTLs. To analyze sharing
of genetic effects across all conditions, we considered the direction of genetic effect across all conditions. Genetic
effects are shared across conditions if they have the same sign and are significant in at least one of the conditions
considered. To analyze treatment- or cell type—specificity, we focused on pairwise comparisons of genetic effect
sizes. An eQTL is specific to a condition if it is significant at LEFSR< 0.1 in either condition and either the
direction of effect differs or the difference in the magnitude of the genetic effects is at least two-fold. A gene is
considered shared/specific if at least one eQTL for that gene is shared/specific across the given set of conditions.
To discover response eQTLs (reQTLs) we considered the pair-wise union of significant eQTLs in each of the
16 treatment-control combinations. We defined reQTLs as genetic variants whose effect size on gene expression
differed by at least two-fold between treatment and control conditions. Mash analyses on mean and variability
estimates were conducted following this pipeline.

DLDA-eQTL mapping

For mapping dynamic eQTLs that have genetic effects on gene expression interacting with pseudotime, we
first equally divided cells in one immune treatment into three tertiles of the corresponding DLDA pseudotime. The
three tertiles denoted 1, 2 and 3, represent early, middle and latter response pseudotime, respectively. Then, we
mapped eQTLs interacting with these representative tertiles as dynamic eQTLs across cell types in the correspond-
ing immune treatments as follows:(1) eQTLs interacting with LPS pseudotime were identified in cells treated
with LPS; (2) eQTLs interacting with LPS+DEX pseudotime were identified in cells treated with LPS+DEX;
(3) eQTLs interacting with PHA pseudotime were identified in cells treated with PHA; and (4) eQTLs interacting
with PHA+DEX pseudotime were identified in cells treated with PHA+DEX. To do this, we summed gene expres-
sion data in each of the three DLDA bins for individuals with at least two bins containing at least 5 cells for each
treatment. We considered genes with >0.1 CPM for at least 20% of remaining individuals in each treatment-cell
type combination. We quantile-normalized the data followed by regressing out the following confounding factors:
experimental batch, sex, age, and top three principal components of genotypes processing each cell type-condition
combination separately. To identify genetic variants interacting with each DLDA, we fitted a linear model using
the 1m function in R 4.0 that included both the genotype dosage and the DLDA bin (numerically encoded as 1-
3), as well as their interaction: Expression ~ dosage + DLDA bin + dosage X DLDA_binineach
condition separately. Using the same cis-regions to the above analysis, we perform the interaction analysis for all
genetic variants within 50 kb of the transcription start site (TSS) in the genes. We then applied Storey’s g-value
method on the p-values for the interaction term using a stratified FDR approach on significant and non-significant
eGenes (from the FastQTL analysis, Supplemental Fig. S45).
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Extended results

Comparison between genetic effects on gene expression mean and variability

To compare eQTLs and vQTLs, we considered the genetic effects on mean and variability estimated from
the same model (Supplemental Fig. S34B, Supplemental Table S20, Table S8, Table S21, and Table S22). We
identified three distinct patterns (Figure 6F, Supplemental Fig. S40): genetic variants affecting gene expression
levels only (7,155-11,314 gene-SNP pairs), genetic variants affecting gene expression variability only (1,709-
2,128 gene-SNP pairs), and genetic variants affecting both gene expression levels and variability (669-1,207
gene-SNP pairs). Genetic effects in this last category were negatively correlated with opposite signs for eQTLs
and vQTLs (Pearson correlation —0.25 - —0.8, p-value< 0.05).

For example, rs2071464 is an eQTL for the PSMB9 gene in B cells stimulated with LPS+DEX, but we found
no genetic effect of this variant on gene expression variability (Figure 6G, Supplemental Fig. S41). The PSMB9
located in the MHC class II region encodes a member of the proteasome B-type family, which is a 20S core beta
subunit of the proteasome. Several studies indicated the proteasome plays a critical role in cardiovascular diseases
( Sandri and Robbins (2014); Wang and Hill (2015)), inflammatory response and autoimmune diseases ( Karin
and Delhase (2000)). The subunit of proteasome encoded by PSMB9 was found to be involved in the process
of infectious diseases ( Silva et al. (2013)), autoimmune diseases ( Khuder et al. (2015)) and oncology ( Wang
et al. (2014)). Previous TWAS study revealed that expression of PSMB9 has also been implicated in a number
of autoimmune disorders including asthma ( Zhang et al. (2020)). We found the C allele at the genomic position
rs1197452483 to increase the gene expression variability of RPS/8 gene in monocytes treated with PHA+DEX,
without any effect on mean gene expression levels (Figure 6H, Supplemental Fig. S42). This gene encodes a
ribosomal protein that is a component of the 40S subunit, and its expression has been implicated in rheumatoid
arthritis, multiple sclerosis, and psoriasis ( Zhang et al. (2020)). In vitro silencing of this gene leads to decreased
rate of viral infection ( Tai et al. (2009); Sivan et al. (2013)). Genetic polymorphism at rs400063 confers effects
on both gene expression mean and variability of the RNASET2 gene in the T cells treated with PHA+DEX, but
in opposite directions (Figure 61, Supplemental Fig. S43). RNASET?2 plays a crucial role in innate immune
response by recognizing and degrading RNAs from microbial pathogens that are sensed by TLRS ( Greulich
et al. (2019)). Expression of RNASET2 has been implicated in Crohn’s disease, inflammatory bowel disease,
and rheumatoid arthritis ( Zhang et al. (2020)) via TWAS. eQTLs were likely to be also vQTLs (OR=10.45, p-
value< 2.2 x 1071%); however, for the majority of vQTLs, we did not detect significant genetic effects on gene
expression levels. vGenes were significantly enriched for genes with differential mean expression for six of the
16 conditions considered (LPS, LPS+DEX and PHA in B cells and T cells, Fisher’s exact test p-value< 0.05,
Supplemental Table S9). vGenes were also enriched for genes with differential variability for seven contrasts
(LPS and PHA in B cells and T cells; LPS and PHA+DEX in NK cells; and PHA+DEX in Monocytes; Fisher’s
exact test p-value < 0.05).
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Supplementary Figures
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Figure S1: Violin plots of summary statistics per individual across five conditions (A) number of measured cells per individual for
each treatment. (B) average UMIs per cell from one individual for each treatment. (C) average number of detected genes per cell from
one individual for each treatment.
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Figure S2: Canonical immune cell type-specific markers expressed on UMAP: (A and E) represent B cell-specific gene expres-
sions (MS4A1 and CD79A) on UMAP; (B and F) represent Monocyte-specific gene expressions (MS4A7 and CD14) on UMAP; (C and
G) represent NK cell-specific gene expressions (GNLY and NKG7) on UMAP; (D and H) represent T cell specific gene expressions
(CD3D and CDS8A) on UMAP.
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cells while yellow color indicates lower density.
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Figure S6: Cell type sharing of DEGs in four contrast conditions, 1=DEGs detected in only a single cell type and 4=DEGs
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Figure S10: Examples of the enriched pathways for DEGs: (A-D)represents the enrichment results of the four example pathways
across cell types and conditions,, response to lipopolysaccharide, cytokine-mediated signaling pathway, innate immune response and
cellular response to glucocorticoid stimulus, respectively.
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Figure S11: Both variance and dispersion of gene expression strongly depend on mean gene expression while mean-corrected
dispersion is relatively independent on mean expression value: (A) Scatter plots of log,, mean gene expression (x axis) against log;
variance of gene expression. (B) Scatter plots of log;, mean gene expression (x axis) against log;, dispersion of gene expression. (C)
Scatter plots of log;, mean gene expression (x axis) against log,, mean-corrected dispersion of gene expression, eventually used for
measuring gene expression variability.
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|logy FoldChange| being 0.5, the cutoff value that is used for defining differentially variable genes (DVGs)
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(FDR<10% and |LF'C| > 0.5)
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Figure S14: Dexamethasone (DEX) reverses effect of activation by immune stimuli on gene variability A Scatterplots of LPS
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Figure S18: Examples of shared enrichment pathways for DEG and DVG: (A and B) represent enrichment results in the type I
interferon signaling pathway for DEG and DVG, respectively, (C and D) represent enrichment results in the cytokine-mediated signaling
pathway for DEG and DVG, respectively, and (E and F) represent enrichment results in innate immune response for DEG and DVG,

respectively.
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Figure S19: Examples of the pathways that are only enriched in DVGs: (A-F) represent enrichment results in ribosome, translation,
mRNA catabolic process, protein localization to endoplasmic reticulum, protein targeting to membrane and protein targeting to ER,

respectively.
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Figure S20: footnotesize Validation of effectiveness and robustness of the treatment pseudotime trajectory
using resampling (A) Violin plot of the variance of correlation coefficients for each gene across 50 resamplings
from Monocle, SCANPY and DLDA. (B-D) Heatmaps of the correlation coefficients of top 20 ranking pseudotime
driving genes across resampling. Each row represents the same gene and each column a resampling iteration with
the color representing the magnitude of the correlation between gene expression and the derived pseudo-time
variable; ideally we would like to see that correlation be approximately constant. The resamplings are from (B)
Monocle, (C) SCANPYand (D)DLDA, respectively. (E) Violin plot of jaccard index of the stability of the top
20 pseudotime correlated genes for each pair of resamplings across 1,225 pairwise comparisons from Monocle,
SCANPY and DLDA.

38



Bcell Monocvte NKcell Tcell

. I\

7
r

A
1504 . 150 4
100
200 4 o
< 1007 < < < 1007
T T T T
o o a o
G 504 5 01 % k) k)
5 § § 8
- - - -
9 -200 4
04" ]
20 40 0 10 20 30 200 100 0 100 200 0 0 10 20 do 0 10 20 30 * CTRL
LDA of LPS LDA of LPS LDA of LPS LDA of LPS LPS
e LPS+DEX
PHA
f o PHA+DEX
: Foo e~ o : H
Pad - 50
504
> > > % >
w w1007 w w
a a a o o >
T T T 04 T
< 0 < < <
T T T 4 T
o [ . o [
5 5 ‘ 5 50 s
g g 4 g g
_100 -1007 % " -100
-100
T T T T T T T T T T T T T T T
30 0 3 60 -100 0 100 200 -50 0 50 30 0 30 60
LDA of LPS+DEX LDA of LPS+DEX LDA of LPS+DEX LDA of LPS+DEX

Figure S21: Low dimensional manifold plots from DLDA across cell types: (A-D) represent the scatter plots of the DLDA from
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Figure S22: Gene Ontology enrichment results for four dynamic patterns DEGs respectively
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Figure S24: Correlations between genetic effect sizes assessed in single-cell data and in bulk RNA-seq Resztak et al. (2021)A
Spearman’s correlations for significant genetic effect sizes assessed by condition-by-condition analysis (FDR< 0.1) B Spearman’s cor-
relations for significant genetic effect sizes assessed by multivariate adaptive shrinkage analysis (LFSR< 0.1). Color denotes treatment:
grey — control, light blue — PHA, dark blue — PHA+DEX, pink — LPS, red — LPS+DEX. All values are significant (p-value< 0.05).
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Figure S27: eGene sharing by sign across all conditions. Upset plot represents the number of eGenes with eQTLs shared by sign
(i.e., with genetic effects in the same direction) for each unique set of conditions with intersection size of at least 5.
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Figure S28: eGene differences in the direction of effect across all pairs of conditions. Heatmap represents proportion of eGenes
significant in either of the two conditions which have at least one eQTL significant in either of the two conditions with opposite sign of
genetic effect size estimated by multivariate adaptive shrinkage.
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Figure S29: eGene differences across all pairs of conditions. Heatmap represents proportion of eGenes significant in either of the
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size estimated by multivariate adaptive shrinkage.
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types within each treatment. All values are significant (p-value< 0.05).
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Figure S32: Genetic effect of rs1031486 on gene expression of SEC61G. Boxplots represent normalized expressions of the SEC61G
gene (y axis) across the three genotype classes of rs1031486 (x axis) across all conditions.
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Figure S33: Genetic effect of rs142470489 on gene expression of RBMS1. Boxplots represent normalized expressions of the RBMS1
gene (y axis) across the three genotype classes of rs142470489 (x axis) across all conditions.
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Figure S35: Cell type- and treatment-specificity of genetic effects on gene expression and gene expression variability. Scat-
terplots represent pairwise Spearman’s correlations between significant genetic effects (LFSR< 0.1) on gene expression (x axis), and
gene expression variability (y axis) across all treatment conditions within each cell type (left panel) and across all cell types within each
treatment condition (right panel).
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Figure S37: vGene differences in the direction of effect across all pairs of conditions. Heatmap represents proportion of vGenes
significant in either of the two conditions which have at least one vQTL significant in either of the two conditions with opposite sign of
genetic effect size estimated by multivariate adaptive shrinkage.

54



AT ce
A EE B BN W eE amw e e treatment

0.35 cell
0.3 Bcell
o5 Monocyte
0. NKcell
0.2 Teell
0.15 treatment
0.1 CTRL
0.05 LPS
LPS+DEX
0 PHA
B PHA+DE>

WP w=====2z22Z2222=—-2-4-4 -
O O O O O O O O O O
oo 00 3 8888233383328 22 00 @
|_|_|_|_|_88883‘2‘2‘2‘2‘2|_|_|_|_I_
O - W O — - OC - U™
ATTIIéééééorrﬂﬂﬁﬁﬂII
TONSSPPPPE® IO ODTTITO®O>S>
~ s ¥ OCC WU I®V®®NS > + ¥
R EEE EE - R
x < & ¥ > F m m > X
O O X P
m m
> P4

Figure S38: vGene differences across all pairs of conditions. Heatmap represents the proportion of vGenes not shared by magnitude

(i.e., with at least 2-fold difference between genetic effects in each condition) over the union of all significant vGenes in each pair-wise
comparison.
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Figure S39: Genetic effect of rs7296418 on gene expression of ARL6IP4. A Boxplots represent normalized mean expression of the
ARLG6IP4 gene (y axis) across the three genotype classes of 1s7296418 (x axis) across all conditions B Boxplots represent normalized
gene expression variability of the ARL6IP4 gene (y axis) across the three genotype classes of rs7296418 (x axis) across all conditions.
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Figure S41: Genetic effect of rs2071464 on gene expression of PSMB9. A Boxplots represent normalized mean expression of the
PSMB9 gene (y axis) across the three genotype classes of rs2071464 (x axis) across all conditions B Boxplots represent normalized gene
expression variability of the PSMB9 gene (y axis) across the three genotype classes of rs2071464 (x axis) across all conditions.
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Figure S42: Genetic effect of the SNP at 6:33226163 on gene expression of RPS18. A Boxplots represent normalized mean
expression of the RPS18 gene (y axis) across the three genotype classes of the SNP at 6:33226163 (x axis) across all conditions B
Boxplots represent normalized gene expression variability of the RPS18 gene (y axis) across the three genotype classes of the SNP at
6:33226163 (x axis) across all conditions.
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Figure S43: Genetic effect of rs12507413 on gene expression of RNASET2. A Boxplots represent normalized mean expression of
the RNASET? gene (y axis) across the three genotype classes of rs400063 (x axis) across all conditions B Boxplots represent normalized
gene expression variability of the RNASET2 gene (y axis) across the three genotype classes of rs400063 (x axis) across all conditions.
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Figure S44: QQplots of p-values from DLDA-interacting eQTL mapping across the 16 conditions.
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Figure S45: Q-Qplots of p-values from DLDA-interacting eQTL mapping across the 16 conditions stratified by eQTL or not,
green colors representing the tested genetic variants are eQTLs that were detected in any condition.
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Figure S46: Q-Qplots of p-values from DLDA-interacting eQTL mapping across the 16 conditions stratified by reQTL or not,
green colors representing the tested genetic variants are reQTLs that were detected in any condition.
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Figure S51: UMAP of cells split by chemistry
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Figure S52: UMAP of cells split by BATCH
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Figure S54: Violin plots of number of cells in each combination (cell type+treatment+individual) A-D represents the distribution
of the number of cells in each combination across individuals in different treatments for B cells, monocytes, NK cells and T cells.
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Figure S55: Dot plots of cell type marker genes expressed in the Seurat clusters. Red color represents high average expression
values across cells in the cluster while the size of dots representing the proportion of cells expressed the marker gene in the cluster
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Figure S56: Venn diagrams of overlapping DEGs in response to treatments between the overall T cells, and two major T cell
sub-clusters (Cluster 0 and 4) : A-D representing LPS, PHA, LPS+DEX and PHA+DEX respectively
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Supplementary Tables

Table S1: Summary statistics of single-cell data for each treatment. Column 2, number of individuals for
each treatment; Column 3, median values of number of cells per individual across individuals in each treatment;
Column 4, median values of average UMISs per cell from the same individual across individuals in each treatment,
Column 5, median values of average detection genes per cell from the same individual across individuals in each
treatment

#Individuals # Cells per indi- #UMIs per cell #Genes per cell

vidual (median) (median) (median)
CTRL 96 586 2,588 859
LPS 96 658 2,451 818
LPS+DEX 64 821 2,672 852
PHA 64 714 2,981 944
PHA+DEX 64 858 2,618 852

Table S2: Summary cell type composition of individuals for each treatment. Column 2-5, number of cells
from B-cells, Monocyte, NK-cell and T cells of the individual for each treatment (median value). The full table
detailing the number of cells in each cell type/treatment/individual combination can be found in Table S24.

T #Monocyte #NK-cell #T cell
#B-cell per individual o e o oo
(median) per 1nd1y1dual per 1nd1y1dual per 1nd1y1dua1
(median) (median) (median)
CTRL 52 86 116 356
LPS-EtOH 65 67.5 114 396
LPS-DEX 69 108 128 514
PHA-EtOH 82.5 56 114 442
PHA-DEX 80 106 140 492
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Table S3: eQTL mapping results. Number of significant eQTLs and eGenes based on FastQTL results (FDR<O0.1,
columns 2 and 3), and multivariate adaptive shrinkage results (LFSR<0.1), columns 4 and 5.

FastQTL FDR<0.1 = mash LFSR<O0.1
eQTLs eGenes eQTLs  eGenes

Bcell CTRL 5378 291 110276 2649
Bceell LPS+DEX 4465 262 109921 2656
Bcell LPS 8135 396 109869 2650
Bcell PHA+DEX 3671 217 113168 2652
Bceell PHA 4347 268 109853 2678
Monocyte CTRL 4186 253 106399 2603
Monocyte LPS+DEX 4720 300 103217 2559
Monocyte LPS 5518 340 101642 2586
Monocyte PHA+DEX 4019 271 104661 2547
Monocyte PHA 2407 167 101235 2590
NKecell CTRL 5986 364 113162 2624
NKcell LPS+DEX 1566 122 103316 2592
NKcell LPS 5379 366 110434 2462
NKcell PHA+DEX 1427 97 104507 2602
NKcell PHA 1621 135 110859 2477
Tcell CTRL 20187 1297 109130 2605
Tcell LPS+DEX 15636 1052 114176 2642
Tcell LPS 22603 1386 112189 2684
Tcell PHA+DEX 14568 967 115410 2666
Tcell PHA 13279 884 112915 2712
Total Unique 62694 5190 129539 2984
Total Tested 4163269 13876 2,095,831 9556
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Table S4: Overlap of eGenes with differentially expressed genes (DEGs, FDR<0.1) and differentially variable
genes (DVGs, FDR<0.1). Columns represent: 1 — condition, 2 — number of eGenes which are also DEGs for the
condition against its paired control, 3 — odds ratio of the overlap in column 2, 4 — p-value of the Fisher’s exact
test for enrichment of eGenes in DEGs, 5 - number of eGenes which are also DVGs for the condition against its
paired control, 6 — odds ratio of the overlap in column 5, 7 — p-value of the Fisher’s exact test for enrichment of
eGenes in DVGs.

Condition eGenes that are DEGs eGenes that are DVGs

Overlap OR p-value overlap OR p-value

Beell LPS 111 2.19 5.1E-09 8 1.25 8.0E-01
Bceell LPS+DEX 297 1.61 1.5E-09 33 190 3.2E-02
Bcell PHA 406 1.46 1.8E-08 52 3.27 3.2E-06
Bcell PHA+DEX 355 1.58 2.2E-10 41 198 6.3E-03
Monocyte LPS 382 1.15 3.7E-02 199 233 2.1E-13
Monocyte LPS+DEX 368 1.19 1.2E-02 131 2.63 3.2E-11
Monocyte PHA 660 1.20 6.4E-04 292 278 3.5E-25
Monocyte PHA+DEX 400 1.27 2.9E-04 178 2.00 3.4E-09
NKcell LPS 104 1.99 3.0E-07 27 1.73  9.4E-02
NKcell LPS+DEX 410 1.61 1.2E-12 54 2.02 4.0E-03
NKcell PHA 376 1.54 7.4E-10 49 333 8.1E-06
NKcell PHA+DEX 493 1.60 4.2E-14 36 2.24 5.5E-03
Tcell LPS 79 198 9.1E-06 57 3.22 4.4E-08
Tcell LPS+DEX 347 1.43 5.5E-07 66 2.58 7.9E-07
Tcell PHA 282 1.48 7.9E-07 89 3.88 2.2E-14
Tcell PHA+DEX 408 1.50 1.7E-09 100 2.31 3.8E-08
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Table S5: Overlap of reGenes with differentially expressed genes (DEGs, FDR<0.1) and differentially variable
genes (DVGs, FDR<0.1). Columns represent: 1 — condition, 2 — number of reGenes which are also DEGs for the
condition against its paired control, 3 — odds ratio of the overlap in column 2, 4 — p-value of the Fisher’s exact
test for enrichment of reGenes in DEGs, 5 - number of reGenes which are also DVGs for the condition against its
paired control, 6 — odds ratio of the overlap in column 5, 7 — p-value of the Fisher’s exact test for enrichment of
reGenes in DVGs.

Condition reGenes that are DEGs reGenes that are DVGs

Overlap OR  p-value overlap OR  p-value

Beell LPS 2 195 2.8E-01 1 14.80 7.3E-02
Bceell LPS+DEX 11 3.12 24E-03 3 744 1.1E-02
Bcell PHA+DEX 10 1.76  1.3E-01 2 333 1.3E-01
Bcell PHA 3 072 7.9E-01 1 351 2.6E-01
Monocyte LPS 14 1.28 4.2E-01 8 221 5.8E-02
Monocyte LPS+DEX 5 057 2.7E-01 2 1.10 7.1E-01
Monocyte PHA+DEX 11 156 1.7E-01 7 3.08 14E-02
Monocyte PHA 16 1.01 1.0E+00 6 139 4.5E-01
NKcell LPS 3 356 6.1E-02 0 NA NA

NKcell LPS+DEX 13 1.84 5.6E-02 1 097 1.0E+00
NKcell PHA 3 1.09 7.5E-01 0 NA NA

NKcell PHA+DEX 12 144  2.7E-01 4 6.14 6.2E-03
Tcell LPS 0 NA NA 1 2.07 3.9E-01
Tcell LPS+DEX 7 121  6.6E-01 0 NA NA

Tcell PHA+DEX 6 1.09 8.2E-01 1 094 1.0E+00
Tcell PHA 3 0.61 6.3E-01 3 332 7.0E-02

Table S6: Overlap with previously known dexamethasone reGenes. Table lists dexamethasone reGenes significant
in this study and in a previous study conducted in immortalized B cells Maranville ez al. (2011).

condition reGenes shared with Maranville, 2011

Bcell LPS-DEX BIRC3, RETREGI1
Bcell PHA-DEX BIRC3
Monocyte_LPS-DEX RETREGI

NKcell LPS-DEX MS4A7

Tcell LPS-DEX RETREGI1, MS4A7
Tcell PHA-DEX BIRC3
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Table S7: vQTL mapping results. Number of significant vQTLs and vGenes based on FastQTL results (FDR<O0.1,
columns 2 and 3), and multivariate adaptive shrinkage results (LFSR<0.1), columns 4 and 5.

FastQTL FDR<0.1 mash LFSR<O0.1
vQTLs vGenes VvQTLs vGenes

Bcell CTRL 37 6 3086 96
Bceell LPS+DEX 9 4 3042 98
Bcell LPS 0 0 2638 104
Bcell PHA+DEX 2 1 2728 100
Bceell PHA 0 0 2866 99
Monocyte CTRL 2 2 2816 101
Monocyte LPS+DEX 86 12 2827 96
Monocyte LPS 67 12 2573 100
Monocyte PHA+DEX 20 7 2937 100
Monocyte PHA 50 9 2856 103
NKecell CTRL 0 0 3211 99
NKcell LPS+DEX 0 0 2632 91
NKcell LPS 16 7 3010 82
NKcell PHA+DEX 0 0 2941 87
NKcell PHA 19 3 2819 90
Tcell CTRL 188 24 3052 106
Tcell LPS+DEX 23 4 3230 98
Tcell LPS 154 22 2989 107
Tcell PHA+DEX 17 3 3151 106
Tcell PHA 0 0 3089 101
Total unique 545 102 3563 123
Total tested 1549665 7055 242,494 1086
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Table S8: Mean-eQTL mapping results. Number of significant mean-eQTLs and mean-eGenes based on FastQTL
results (FDR<0.1, columns 2 and 3), and multivariate adaptive shrinkage results (LFSR<0.1), columns 4 and 5.

FastQTL FDR<0.1 mash LFSR<0.1

mean-eQTLs mean-eGenes mean-eQTLs mean-eGenes
Bceell CTRL 604 50 9420 222
Bcell LPS+DEX 1068 73 10252 238
Bcell LPS 4075 225 10882 232
Bcell PHA+DEX 812 54 11098 228
Bcell PHA 2018 125 10313 249
Monocyte CTRL 56 12 8616 203
Monocyte LPS+DEX 1 1 7995 187
Monocyte LPS 401 39 7925 187
Monocyte PHA+DEX 410 59 8294 200
Monocyte PHA 15 1 8239 186
NKcell CTRL 783 71 10929 245
NKcell LPS+DEX 104 14 11250 214
NKcell LPS 1089 94 8635 254
NKcell PHA+DEX 617 64 11446 202
NKcell PHA 702 56 7891 256
Tcell CTRL 11912 792 12404 285
Tcell LPS+DEX 9226 653 12463 286
Tcell LPS 11744 781 12465 302
Tcell PHA+DEX 7515 562 12156 288
Tcell PHA 6477 506 12441 287
Total unique 30493 2430 13164 366
Total tested 1549634 7055 241568 1084
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Table S9: Overlap of vGenes with differentially expressed genes (DEGs, FDR<0.1) and differentially variable
genes (DVGs, FDR<0.1). Columns represent: 1 — condition, 2 — number of vGenes which are also DEGs for the
condition against its paired control, 3 — odds ratio of the overlap in column 2, 4 — p-value of the Fisher’s exact
test for enrichment of vGenes in DEGs, 5 - number of vGenes which are also DVGs for the condition against its
paired control, 6 — odds ratio of the overlap in column 5, 7 — p-value of the Fisher’s exact test for enrichment of
vGenes in DVGs.

Condition vGenes that are DEGs vGenes that are DVGs

Overlap OR  p-value overlap OR  p-value

Beell LPS 7 6.81 5.5E-04 4 694 8.6E-03
Bceell LPS+DEX 10 2.27 3.1E-02 3 159 44E-01
Bcell PHA 18 270 1.1E-03 15 649 8.9E-07
Bcell PHA+DEX 12 1.81 7.5E-02 6 248 5.5E-02
Monocyte LPS 5 045 1.1E-01 7 0.89 1.0E+00
Monocyte LPS+DEX 3 045 2.7E-01 7 132 49E-01
Monocyte PHA 14 0.75 4.1E-01 16 128 4.4E-01
Monocyte PHA+DEX 9 125 5.5E-01 16 255 3.0E-03
NKcell LPS 5 235 8.8E-02 7 5.08 1.9E-03
NKcell LPS+DEX 9 1.11 7.0E-01 11 538 6.9E-05
NKcell PHA 8 1.21 5.4E-01 6 217 1.2E-01
NKcell PHA+DEX 13 1.21 5.1E-01 2 1.17 6.9E-01
Tcell LPS 6 453 6.3E-03 11 3.65 1.1E-03
Tcell LPS+DEX 13 1.69 1.3E-01 6 1.88 1.6E-01
Tcell PHA 16 3.04 6.2E-04 20 451 1.8E-06
Tcell PHA+DEX 18 2.13 1.3E-02 7 097 1.0E+00
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Table S10: Summary of DLDA dynamic eQTL mapping and overlap with eGenes, and and immune diseases-
associated genes identified from PTWAS

Cell type DLDA treatment eQTLs(FDR<0.1) eGenes PTWAS Genes

Beell LPS 139 32 2
Bcel LPS+DEX 0 0 0
Bcell PHA 114 40 7
Bcell PHA+DEX 27 2 0
Monocyte LPS 35 3 0
Monocyte LPS+DEX 37 3 1
Monocyte PHA 0 0 0
Monocyte PHA+DEX 0 0 0
NKcell LPS 4 3 0
NKcell LPS+DEX 2 2 0
NKcell PHA 6 4 1
NKcell PHA+DEX 3 2 0
Tcell LPS 2073 244 45
Tcell LPS+DEX 269 18 5
Tcell PHA 1329 225 39
Tcel PHA+DEX 1298 54 9
Total unique 3899 588 101

Table S11: Results of differential expressed genes (DEGs) using DESeq2 pseudo bulk aggregated data.
Columns 1-7 are: 1) Cell type; 2) Treatment; 3) Ensembl gene ID; 4) log, fold change of gene expression; 5)
Standard error; 6) P-value; 7) FDR

https://zenodo.org/record/7851053/files/Supplemental_Table_S11.txt.gz

Table S12: Results of differential gene expression variability (DGV). Columns 1-7 are: 1) Cell type; 2) Treat-
ment; 3) Ensembl gene ID; 4) log, fold change of gene variability; 5) Standard error; 6) P-value; 7) FDR

https://zenodo.org/record/7851053/files/Supplemental_Table_S12.txt.gz

Table S13: FastQTL eQTL mapping results. Results of eQTL mapping across the 20 conditions. Columns are:
1 - ENSEMBL gene name; 2 - genetic variant coordinates (GRCh37); major and minor alleles and dbSNP ID; 3 -
genetic variant distance from the TSS of the gene; 4 - p-value of the effect of the genetic variant on expression of
the gene; 5 - effect size of the genetic variant on expression of the gene; 6 - condition.

https://zenodo.org/record/7851053/files/Supplemental_Table_S13.txt.gz

Table S14: mash eQTL effect estimates. Multivariate adaptive shrinkage estimates of genetic effects on gene
expression. Columns 1-20 are the conditions; rows are the tested gene-SNP pairs.

https://zenodo.org/record/7851053/files/Supplemental_Table_Sl4.txt.gz
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Table S15: mash eQTL significance. Multivariate adaptive shrinkage significance (LFSR) of genetic effects on
gene expression. Columns 1-20 are the conditions; rows are the tested gene-SNP pairs.

https://zenodo.org/record/7851053/files/Supplemental_Table_S15.txt.gz

Table S16: 61 reGenes overlapping with immune disease genes. Columns are: 1-ENSEMBL gene name;
2-SYMBOL gene name

https://zenodo.org/record/7851053/files/Supplemental_Table_S16.txt.gz

Table S17: FastQTL vQTL mapping results. Results of vQTL mapping across the 20 conditions. Columns
are: 1 - ENSEMBL gene name; 2 - genetic variant coordinates (GRCh37), major and minor alleles and dbSNP
ID; 3 - genetic variant distance from the TSS of the gene; 4 - p-value of the effect of the genetic variant on gene
expression variability of the gene; 5 - effect size of the genetic variant on gene expression variability of the gene;
6 - condition.

https://zenodo.org/record/7851053/files/Supplemental_Table_S17.txt.gz

Table S18: mash vQTL effect estimates. Multivariate adaptive shrinkage estimates of genetic effects on gene
expression variability. Columns 1-20 are the conditions, rows are the tested gene-SNP pairs.

https://zenodo.org/record/7851053/files/Supplemental_Table_S18.txt.gz

Table S19: mash vQTL significance. Multivariate adaptive shrinkage significance of genetic effects on gene
expression variability. Columns 1-20 are the conditions; rows are the tested gene-SNP pairs.

https://zenodo.org/record/7851053/files/Supplemental_Table_S19.txt.gz

Table S20: FastQTL mean-eQTL mapping results. Results of mean-eQTL mapping across the 20 conditions.
Columns are: 1 - ENSEMBL gene name; 2 - genetic variant coordinates (GRCh37), major and minor alleles and
dbSNP ID; 3 - genetic variant distance from the TSS of the gene; 4 - p-value of the effect of the genetic variant on
mean expression of the gene; 5 - effect size of the genetic variant on mean expression of the gene; 6 - condition.

https://zenodo.org/record/7851053/files/Supplemental_Table_S20.txt.gz

Table S21: mash mean-eQTL effect estimates. Multivariate adaptive shrinkage estimates of genetic effects on
gene expression mean. Columns 1-20 are the conditions, rows are the tested gene-SNP pairs.

https://zenodo.org/record/7851053/files/Supplemental_Table_S21.txt.gz

Table S22: mash mean-eQTL significance. Multivariate adaptive shrinkage significance of genetic effects on
gene expression mean. Columns 1-20 are the conditions, rows are the tested gene-SNP pairs.

https://zenodo.org/record/7851053/files/Supplemental_Table_S22.txt.gz
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Table S23: Dynamic eQTL mapping results. Results of dynamic eQTL mapping across 16 conditions, each file
representing the results of dynamic eQTL mapping in one of the four cell types (B cells, Monocytes, NK cells
and T cells) treated with LPS, LPS+DEX, PHA or PHA+DEX interacting with treatment response pseudotime.
Columns 1-6 are: 1) Ensembl gene ID; 2) genetic variant coordinates (GRCh37); major and minor alleles and
dbSNP ID; 3) genetic effect on gene expression interacting with response pseudotime; 4). Standard error of the
interaction term; 5) P-value for the interaction term; 6) The stratified FDR g-value

https://zenodo.org/record/7851053/files/Supplemental_Table_S23.txt.gz

Table S24: table of number of cells per combination (cell type+treatment+individual across 1,536 combina-
tions. Columns 1-5 are: 1) combination ID; 2) number of cells per combination; 3) cell type; 4) treatments; 5)
individual ID

https://zenodo.org/record/7851053/files/Supplemental_Table_S24.txt.gz
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