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Supplemental Fig. S1. A conceptual schematic of cell-cell similarity relationships
identification and filtering in scint. A. For each batchi, the remaining batches are
projected on the same low-dimensional space ofi, and the cluster-specific o, is identified
for each cluster p in batchi . Then the similarity between cell i  in batchi and j, in remaining
batches is computed using an exponentially measure. The top k similar cells of celli, are
retained. Further, these cells identified to be similar with the cells in batchi are projected
on the cPCA space using batchi . The cosine similarity with the threshold T (default to be
0.6) is used to filter the incorrect-connected cells between batchi and remaining batches.

B. The final batch-specific identified cell similarity relationships between batchi with its

remaining batches.
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Supplemental Fig. S2. Three kind of reference-based mapping models are available

in scInt framework. A. “Projection” model. B. “cPCA” model. C. “Global” model.
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Supplemental Fig. S3. Comparisons of cell type LISI and batch LISI specific to

each batch on simulation 1 (A) and human dendritic data (B).
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Supplemental Fig. S4. Comparisons of scint against other methods on simulation 2.

A. UMAP visualizations of the raw data and integrated data using scint and other 10

integration methods on simulation 2. Cells are colored by batch labels (the first and third

rows) and cell type labels (the second and fourth rows). B. The comparisons of the

integration results using overall metrics, including ARI, batch ASW, cell type LISI, and batch

LISI, and metrics specific to each batch, including cell type LISI (single batch) and batch

LISI (single batch).



Seurat Harmony RPCI online INMF

A —— Batch
2 k Batch1Subl
Yo" Baich1Sub2
) © BachlSub3
. v- Balchi Subd.
Balch?Subl
; H - Batch25ub2
, A Batch2Sub3
Baich25ubd
@ Batch3subl
Batch3subz
- @ Bachasubs
7 - #mf @ Bachasuba
. SN
\¥) " e Batch4Subl
- " ~ Batch4Sub2
/ . A W @ Bachasub3
.% ’ P @ Batch4Subd
I
* by - CellType
\ Groupl
@ Group?
LIGER fastMNN MNN Scangrama scMC © Group3
' — Groupd
- -
a *‘
*
]
——
~
p— ut
—
—_—
~
)’
pd
B scint@® o7 scint@
L]
08 os{ ® L]
* L
zo07{ @ 7 05 L]
3 [}
[} -
i e e S04
S 06 =
= ° g L
05 03 ®
) Methods
0z ® Raw
04 @ scint
L) Seural
0.00 0.25 Q.50 0.75 1.00 0.8 0.9 10 Harmony
ARI cell type LISI ® RPCI
@ online INMF
® LIGER
@ Scanorama
@ fastMNN
@ Conos
@ scMC
S

Supplemental Fig. S5. Comparisons of scint against other methods on simulation 3.
A. UMAP visualizations of the raw data and integrated data using scint and other 10
integration methods on simulation 3. Cells are colored by batch labels (the first and third
rows) and cell type labels (the second and fourth rows). B. The comparisons of the
integration results using overall metrics, including ARI, batch ASW, cell type LISI, and batch
LISI, and metrics specific to each batch, including cell type LISI (single batch) and batch

LISI (single batch).
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Supplemental Fig. S6. Comparisons of the label prediction accuracy (by 5-NN
classifier) of query cells in the reference-based mapping tasks. A, B. UMAP
visualizations of the joint low-dimensional embeddings of reference and query for (A)
simulation 2 and (B) human pancreas data. Reference cells are gray, and query cells are
colored by incorrect (deep pink) and correct (deep sky blue), which are predicted by the 5-

NN classifier in the joint low-dimensional embeddings of reference and query.



A scint (projection) scint (¢cPCA) c scint (projection) scint (cPCA)

acinar eta
Group4 Group? *
Group? Group1 Group1 wtg . deng
Group4 ‘ -;p - epsilon
Group6 C‘Uups endothelial gamma stellate ~ *
o C"OUP3 *immune - »
Grolp5 % P I? immune
Group: delta stellate ap
G.mupb‘ gammafll acinar duc
up2 .
¥ " (ol epsn r

b : A - W .
< . 4 A -~
.. . N
$ k ’ Y
o s ° » . N\

- . Ve %,ﬁv%
5 A W L

B scint (projection): ACC=1 F1=1 scint (cPCA): ACC=1 F1=1 D scint (projection): ACC=0.95 F1=0.93  scint (cPCA): ACC=0.96 F1=0.94
Grount acinar [
alpha

Group2 s beta 1
Groupd 05 dolia 08
. 58 duetal 08

roupd 04 endothalial 04
Grouh 02 epsilon 02

gamma
Groupt immune

stellate

Group?

elial
silan
mma

8 3 3

acinar

alpha
bef

stellate

immune

2 &

Grouat
Groun?
Groug3
Group4
Groups
Grougs
GroupT
Group?
Group?
Groug3
Groupd
Grougs
Grough
Groun?

o

g

endotheli

Supplemental Fig. S7. “Projection” and “cPCA” mapping models of scint in the
reference-based mapping tasks. A, C. UMAP visualizations of the density of integrated
reference cells (the first row), the scatters of mapped query cells (the second row), and the
label prediction accuracy (the third row) of the (A) simulation 2 and (C) human pancreas
data, using “projection” model and “cPCA” model. Cells are colored by ground-truth cell
type labels, with gray shadows representing the reference. B, D. Heatmap comparing 5-
NN predicted labels (columns) and the original labels (rows) of the query. The color bar
indicates the proportion of query cells per original cell type label that was predicted to be

of each reference label (rows sum to 1).




Raw Seurat Harmon RPCI online INMF LIGER
" N ~ -
e .‘a ‘-\\_ I S K
. % . ] P
¥ "_- ’* P s > o ‘3""_ "
- . 7 i ‘% . A
@ Wl . g‘f:» :
A, - 3 k2
AR 5
. ; \ \ %
fastMNN MNN Scanorama scMC

Supplemental Fig. S8. Comparisons of integrated results of other

mouse developing tracheal epithelial data. UMAP visualizations of the
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methods on

raw data and

corrected data by 10 integration methods on mouse developing tracheal epithelial data.

Cells are colored by time points (the first and third rows) and cell type labels (the second

and fourth rows).
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Supplemental Fig. S9. Comparisons of inferred trajectories of integrated results on

mouse developing tracheal epithelial data. UMAP visualizations of inferred trajectories

of the raw data and integrated data using scint and other 10 integration methods on mouse

developing tracheal epithelial data. Cells are colored by time points (the first and fourth

rows), cell type labels (the second and fifth rows), and pseudotime (the third and sixth

rows).

10



Raw

Seurat

Harmony

RPCI

online INMF

LIGER

£

Y
aa Lt
1, 5.
amy S
4

fastMNN

Time point
El25
E13.5

O E145
E15.5
E16.5
E185

CellType

Basal cells
Ciliated cells

Club cells

Kri7- progenitors
Krtl7+ progenitors
NE cells

Supplemental Fig. S10. PHATE visualizations of integrated results of other methods

on mouse developing tracheal epithelial data. PHATE visualizations of the raw data and

corrected data by 10 integration methods on mouse developing tracheal epithelial data

except for proliferative cells. Cells are colored by time points (the first and third rows) and

cell type labels (the second and fourth rows).
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Supplemental Fig. $11. Comparisons of integrated results of other

methods on

human DiHS/DRESS skin data. UMAP visualizations of the raw data and corrected data

by 10 integration methods on human DiHS/DRESS skin data. Cells are colored by

technologies (the first and fourth rows), batch labels (the second and fifth rows), and cell

type labels (the third and sixth rows).
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Supplemental Fig. S13. The clustering result of scint integrated COVID-19 PBMC

data.
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Supplemental Fig. S14. Percentage of cell types identified by scint in the 12 batches.

Shown are exact two-sided P values by the Wilcoxon rank-sum test.
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Supplemental Fig. S15. Percentage of clusters identified by scint in the 12 batches.

Shown are exact two-sided P values by the Wilcoxon rank-sum test.
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Supplemental Fig. S16. Comparisons of scint against other methods on variant 1 of

. e o® P

simulation 1. UMAP visualizations of the raw data and integrated data using scint and
other 10 integration methods on variant 1 of simulation 1. Cells are colored by batch labels

(the first and third rows) and cell type labels (the second and fourth rows).
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Supplemental Fig. S17. Comparisons of scint against other methods on variant 2 of
simulation 1. UMAP visualizations of the raw data and integrated data using scint and
other 10 integration methods on variant 2 of simulation 1. Cells are colored by batch labels

(the first and third rows) and cell type labels (the second and fourth rows).
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Supplemental Fig. S18. Comparisons of scint against other methods on variant 1 of

simulation 3. UMAP visualizations of the raw data and integrated data using scint and
other 10 integration methods on variant 1 of simulation 3. Cells are colored by batch labels

(the first and third rows) and cell type labels (the second and fourth rows).
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Supplemental Fig. S19. Comparisons of scint against other methods on variant 2 of

simulation 3. UMAP visualizations of the raw data and integrated data using scint and
other 10 integration methods on variant 2 of simulation 3. Cells are colored by batch labels

(the first and third rows) and cell type labels (the second and fourth rows).
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Supplemental Fig. S20. Comparisons of scint against other methods on variant 1 of

simulation 4. UMAP visualizations of the raw data and integrated data using scint and
other 10 integration methods on variant 1 of simulation 4. Cells are colored by batch labels

(the first and third rows) and cell type labels (the second and fourth rows).
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Supplemental Fig. S21. Comparisons of scint against other methods on variant 2 of

simulation 4. UMAP visualizations of the raw data and integrated data using scint and
other 10 integration methods on variant 2 of simulation 4. Cells are colored by batch labels

(the first and third rows) and cell type labels (the second and fourth rows).
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Supplemental Fig. S22. The performance of scint with the varied 1 on simulations 1-
3. A. UMAP visualizations of the corrected data of simulation 1 using scint with A varied 0.1
to 20. Cells are colored by batch label (top row) and cell type labels (bottom row). B. UMAP
visualizations of the corrected data of simulation 2 using scint with A varied 0.1 to 20. C.
UMAP visualizations of the corrected data of simulation 3 using scint with A varied 0.1 to

20.
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Supplemental Fig. $23. The performance of scint with the varied T on simulations 1-

3. A. UMAP visualizations of the corrected data of simulation 1 using scint withT varied

0.5 to 0.8. Cells are colored by batch label (top row) and cell type labels (bottom row). B.

UMAP visualizations of the corrected data of simulation 2 using scint withT varied 0.5 to

0.8. C. UMAP visualizations of the corrected data of simulation 3 using scint withT varied

0.5t0 0.8.
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Supplemental Fig. S24. The performance of scint with the varied resolution on

simulations 1-3. A. UMAP visualizations of the corrected data of simulation 1 using scint

with resolution varied 0 to 1. Cells are colored by batch label (top row) and cell type labels

(bottom row). B. UMAP visualizations of the corrected data of simulation 2 using scint with

resolution varied 0 to 1. C. UMAP visualizations of the corrected data of simulation 3 using

scint with resolution varied 0 to 1.

25



k=5 k=7 k=10 k=15 k=20

@ tarcnisusl @ narhasun
e

r
Barch25ub3 @ Batch45uba
© Barchesubs @ sechasiha

CalType

Croupl
® Group?
© croups
© Groupt

Supplemental Fig. $25. The performance of scint with the varied k on simulations 1-
3. A. UMAP visualizations of the corrected data of simulation 1 using scInt with k varied 1
to 20. Cells are colored by batch label (top row) and cell type labels (bottom row). B. UMAP
visualizations of the corrected data of simulation 2 using scint withk varied 1 to 20. C.

UMAP visualizations of the corrected data of simulation 3 using scint with k varied 1 to 20.
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Supplemental Fig. S26. UMAP visualizations of tuning results of the “eigens”

parameter of RPCI on simulation 1.
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Supplemental Fig. $S27. UMAP visualizations of tuning results of k and lambda of

online iNMF on simulation 1.
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Supplemental Table 1: Details of scRNA-seq data sets used in scint

manuscript.
Batch Total cell . Cell
Data set number number Scenario Source Batch name number
Simulation | 3 2,401 Unbalanced cell Generated by Batch_1 978
1 subpopL.JI.atlon Splatter Batch_2 599
compositions & rare | package (see
cell subpopulation Supplemental Batch_3 824
across batches Methods)
Simulation | 6 12,097 Unbalanced cell https://figshare.c | Batch_1 2908
2 subpopglgtlon om/artlcles/datg Batch_2 5422
compositions & set/Benchmarkin
reference-based g_atlas- Batch_3 2120
mapping level_data_integ Batch 4 1929
ration_in_single- _
cell_genomics_- | Batch_5 1761
_integration_tas Batch 6 957
k_datasets_Imm B
une_and_pancr
eas_/12420968
Simulation | 16 19,318 Unbalanced cell https://figshare.c | Batch1Sub1 1200
3 subpopglgtlon om/artlcles/datg Batch1Sub2 1204
compositions & set/Benchmarkin
nested batch effects | g_atlas- Batch1Sub3 1210
level_data_integ |"poycn1sups | 1192
ration_in_single-
cell_genomics_- | Batch2Sub1 1466
_integration_tas |"gatchosub2 | 1471
k_datasets_Imm
une_and_pancr Batch2Sub3 984
eas_/12420968 | Batch2Sub4 | 984
Batch3Sub1 1930
Batch3Sub2 1205
Batch3Sub3 1189
Batch3Sub4 485
Batch4Sub1 1687
Batch4Sub2 1676
Batch4Sub3 716
Batch4Sub4 719
Simulation | 4 4000 Rare cell Generated by Batch_1 1000
4 subpopulations Splatter Batch 2 1000
package (see
Supplemental Batch_3 1000
Methods) Batch_4 1000
Human 2 576 Unbalanced cell Gene Batch_1 288
dendritic subpoplljl.atlon Expr(.assmn Batch_2 288
cells compositions & Omnibus
biologically similar database
cell types
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accession code:

GSE94820
Human 8 14,456 Different SeruatData R ci1 625
pancreas sequencing package
celse 946
cells platforms & (“panc8” data) 9
reference-based celseq2 2238
mapping smartseq 2078
indrop 1 1937
indrop 2 1724
indrop 3 3605
indrop 4 1303
mouse 6 3,508 Developmental data | Gene E12.5 239
developing Expr('essmn E135 455
tracheal Omnibus
epithelial database E14.5 1232
data accession code: E15.5 931
GSE152692 '
E16.5 365
E18.5 286
Human 7 20,415 Disease and Gene DiHS/DRESS 5653
D|HS/F)RE hfaalthy condltlon§ & Expr_essmn Aavl 1 152
SS skin different sequencing | Omnibus -
data platforms database HV1_2 1917
accession code: HV2 4016
GSE132802
HV3 4923
HV4 1589
HV5 1165
Human 12 67,362 Disease and Gene 10k_1 11485
COVID-19 healthy conditions & Expr('assmn 10k_2 11996
and complex batch Omnibus
healthy correction database 20k 23837
PBMCs accession code: 500 1 705
data GSE150861;
https://support.1 | 500_2 587
Oxgenomics.co | pq_gay1-rep1 | 2591
m/single-cell-
gene- P1-day1-rep2 | 2081
expression/data | p1-day5-rep1 | 3129
sets
P1-day5-rep2 3851
P2-day1 2280
P2-day5 1488
P2-day7 3332
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Supplemental Methods

Details of Simulated data sets

Simulation 1. Simulation 1 contains three batches generated by Splatter package. Three
batches with six cell groups were generated with parameters batchCells = (1000, 1000,
1000), and group.prob = (0.03, 0.15, 0.2, 0.2, 0.4, 0.02). Then the Group6 in batch 1,
Group5 and Group6 in batch 2, Group1 and Group5 in batch 3 were removed.

Simulation 2 and Simulation 3. These two simulation data sets were downloaded from
https://figshare.com/articles/dataset/Benchmarking_atlas-
level_data_integration_in_single-cell_genomics_-
_integration_task_datasets_Immune_and_pancreas_/12420968. Detailed information can
be found in a recent benchmark study (Luecken et al. 2022).

Simulation 4. Simulation 4 contains four batches generated by Splatter package. Four
batches with six cell groups were generated with parameters batchCells = (1000, 1000,
1000, 1000), and group.prob = (0.42, 0.42, 0.04, 0.04, 0.04, 0.04).

Pathological cases

Variants of simulation 1. Simulation 1 contains three batches and six cell groups. Group5
and Group6 of these six cell groups are specific to batches 1 and 3, respectively. We
removed Group1 in batch 2 and Group2 in batches 1 and 3 from simulation 1 to get variant
1. Then, we removed Group3 in batches 1 and 2 and Group4 in batches 1 and 3 from
variant 1 to get variant 2. Thus, variants 1 and 2 contain four and six cell groups that are
only present in a single batch, respectively.

Variants of simulation 3. Simulation 3 contains 16 batches, 11 of which have more than
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one cell group. For these 11 batches, we removed all cell groups except the dominant cell
group from a batch at a time. We repeated this step 11 times and referred to the ninth and
last generated data sets as variants 1 and 2 of simulation 3, respectively. Thus, variants 1
and 2 contain 14 and 16 batches, respectively, each of which has only one cell group.
Variants of simulation 4. Simulation 4 contains four batches and four cell groups at low
proportions (Group3, Group4, Group5, and Group6). We removed Group4, Group5, and
Group6 from batch 1, and Group3, Group5, and Group6 from batch 2 of simulation 1 to get
variant 1. Then, we removed Group3, Group4, and Group6 from batch 3, and Group3,
Group4, and Group5 from batch 4 of variant 1 to get variant 2. Thus, variants 1 and 2
contain two and four rare cell groups, respectively, with each rare cell group only present
in a single batch.
cPCA can remove the technical effects between data sets
Here, we show that the technical effects between data sets can be removed by cPCA,
giving the theoretical reasonability of the “cell similarities filtering on the cPCA space” step
in the scint model.

Given two scRNA-seq data sets X e R”™andY < R”"™, with X as target dataand Y as

background data. Then, they can be formulated as:

X=WZ, +W,U, +¢&,
Y =WZ, +W, U, +¢&

whereW < R”“ represents the shared effects between the target and background data,
W, e R represents the specific effects of the target data relative to the background data,
and W, e R”* represents the specific effects of the background data relative to the target

data. It assumes that the target and background data follow the Gaussian distribution, i.e.,
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Z,Z'UV ~,, NOI) , &,,8 ~,4 NO,c°) . Without loss of generality, let
span(W UW, )Nspan(W, ) =& . Because if span(W UW, )Nspan(W,) =< , then the

above equation can be rewritten as:

X =WZ+W,, qw, U +Wy, U +éy
Y =WZ'+W, nwow, )Y + W \wiw, ¥ + &

Then the covariance matrices of the target and background data can be written as:

Cy, = XXT =WWT +W, W, + 52
C, =YY" =WWT +W W, + o7l

Cx _Cv :WXW; _WYWYT

Consider the optimization problem:

argmax__,, V' (Cy —C, v =V'W,W;v -v'W W,V

P
uni

st. ||v||§ <1

The obtained contrastive principal componentsv, 's are the directions of maximization of
target-specific variations W, W; meanwhile minimization of background-specific variations
W,W, . By our assumption, W,W, can be the background-specific variation and
background-to-target technical variation. Thus, the common dimensional reduction of the
target and background data using the matrix V € R"" of first | contrastive principal
component, L =V'[X,Y], remove the technical variations between X andY .

Selection of scint parameters
To select the optimal key parameters from sets of candidates, we propose the following
methods.

ForT , we expect 1) it big enough to preserve high reliability of retained similarities; 2)
retained similarities are sufficient to capture the technical effects. For each batchi, asT

increases, both the number of retained similarities and the number of cell identities of
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identified similar cells are non-increasing. Without loss of generality, given a set of
incremental candidate values SetT ={T, :s =1---,S}, we aim to select optimal T satisfied
1) and 2). First, we delete the T, ’s which filter out excessive similarities. For each batchi ,
we filter the identified similarities using each candidate T, and obtain the number Num}s of
retained similar cells in remaining batches. We calculate the decrease ratio ofNum}S for
each increase of T_:(Num; —Num; )/Num; . We delete allT,’s afterT, whose decrease
ratio is greater than 50%, as the biggerT, will filter out excessive similarities. We take the
intersection of the update sets of candidate T for all batches denoted by SetT *. Then, we
select optimal T which captures most similarities. As we pre-cluster each batch in the
previous section, the pre-clustered labels are also available in our pipeline. We find the
smallestT, for each batchi, which preserve the identified cell label identities using the
maximumT, inSetT *. The median of T, ’s is identified as the optimal T .

For 4, given a set of incremental candidate valuesSetA ={4, :v =1---V}, we aim to
select optimal 4 satisfied 1) big enough to remove technical effects; and 2) enable sufficient
number of cPCs. We simply select the biggest 1 inSet , while XX —1ZZ" has more than
| (default by 40) positive eigenvalues.

Selecting parameters for RPCI, LIGER, and online iNMF

We selected the optimal key parameters of RPCI, LIGER, and online iNMF. For RPCI, we
set the reference batch as the batch that contained the most cell types and selected the
optimal “eigens” parameter for each data set from 8, 10, 12, 15, 20, 25, 30, and 50. The
final “eigens” parameter was tuned to be 12, 15, 8, 8, 12, and 15 for simulation 1, simulation
2, simulation 3, dendritic, developing tracheal epithelial, and DiIHS/DRESS skin data sets,
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respectively. For LIGER and online iINMF, since they employed the same integrative

nonnegative matrix factorization model, the same key parameters k and lambda were

applied for these two methods. We selected the optimal lambda from 1, 5, and 10, and k

from 8, 10, 12, 15, 20, and 25. Finally, lambda was tuned to be 5 for all data sets, and k

was tuned to be 10, 20, 20, 15, 20, and 20 for simulation 1, simulation 2, simulation 3,

dendritic, developing tracheal epithelial, and DiIHS/DRESS skin data sets, respectively. In

particular, the UMAP visualizations of the parameter tuning results of RPCI and online

iNMF on simulation 1 were shown in Supplemental Figs. S26 and S27.
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