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Supplemental Fig. S1. A conceptual schematic of cell-cell similarity relationships 

identification and filtering in scInt. A. For each batch i  , the remaining batches are 

projected on the same low-dimensional space of i , and the cluster-specific p is identified 

for each cluster p in batch i . Then the similarity between cell si in batch i and tj in remaining 

batches is computed using an exponentially measure. The top k similar cells of cell si are 

retained. Further, these cells identified to be similar with the cells in batch i are projected 

on the cPCA space using batch i . The cosine similarity with the thresholdT (default to be 

0.6) is used to filter the incorrect-connected cells between batch i and remaining batches. 

B. The final batch-specific identified cell similarity relationships between batch i  with its 

remaining batches. 
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Supplemental Fig. S2. Three kind of reference-based mapping models are available 

in scInt framework. A. “Projection” model. B. “cPCA” model. C. “Global” model. 
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Supplemental Fig. S3. Comparisons of cell type LISI and batch LISI specific to 

each batch on simulation 1 (A) and human dendritic data (B). 
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Supplemental Fig. S4. Comparisons of scInt against other methods on simulation 2. 

A. UMAP visualizations of the raw data and integrated data using scInt and other 10 

integration methods on simulation 2. Cells are colored by batch labels (the first and third 

rows) and cell type labels (the second and fourth rows). B. The comparisons of the 

integration results using overall metrics, including ARI, batch ASW, cell type LISI, and batch 

LISI, and metrics specific to each batch, including cell type LISI (single batch) and batch 

LISI (single batch). 
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Supplemental Fig. S5. Comparisons of scInt against other methods on simulation 3. 

A. UMAP visualizations of the raw data and integrated data using scInt and other 10 

integration methods on simulation 3. Cells are colored by batch labels (the first and third 

rows) and cell type labels (the second and fourth rows). B. The comparisons of the 

integration results using overall metrics, including ARI, batch ASW, cell type LISI, and batch 

LISI, and metrics specific to each batch, including cell type LISI (single batch) and batch 

LISI (single batch). 
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Supplemental Fig. S6. Comparisons of the label prediction accuracy (by 5-NN 

classifier) of query cells in the reference-based mapping tasks. A, B. UMAP 

visualizations of the joint low-dimensional embeddings of reference and query for (A) 

simulation 2 and (B) human pancreas data. Reference cells are gray, and query cells are 

colored by incorrect (deep pink) and correct (deep sky blue), which are predicted by the 5-

NN classifier in the joint low-dimensional embeddings of reference and query. 
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Supplemental Fig. S7. “Projection” and “cPCA” mapping models of scInt in the 

reference-based mapping tasks. A, C. UMAP visualizations of the density of integrated 

reference cells (the first row), the scatters of mapped query cells (the second row), and the 

label prediction accuracy (the third row) of the (A) simulation 2 and (C) human pancreas 

data, using “projection” model and “cPCA” model. Cells are colored by ground-truth cell 

type labels, with gray shadows representing the reference. B, D. Heatmap comparing 5-

NN predicted labels (columns) and the original labels (rows) of the query. The color bar 

indicates the proportion of query cells per original cell type label that was predicted to be 

of each reference label (rows sum to 1). 
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Supplemental Fig. S8. Comparisons of integrated results of other methods on 

mouse developing tracheal epithelial data. UMAP visualizations of the raw data and 

corrected data by 10 integration methods on mouse developing tracheal epithelial data. 

Cells are colored by time points (the first and third rows) and cell type labels (the second 

and fourth rows). 
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Supplemental Fig. S9. Comparisons of inferred trajectories of integrated results on 

mouse developing tracheal epithelial data. UMAP visualizations of inferred trajectories 

of the raw data and integrated data using scInt and other 10 integration methods on mouse 

developing tracheal epithelial data. Cells are colored by time points (the first and fourth 

rows), cell type labels (the second and fifth rows), and pseudotime (the third and sixth 

rows). 
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Supplemental Fig. S10. PHATE visualizations of integrated results of other methods 

on mouse developing tracheal epithelial data. PHATE visualizations of the raw data and 

corrected data by 10 integration methods on mouse developing tracheal epithelial data 

except for proliferative cells. Cells are colored by time points (the first and third rows) and 

cell type labels (the second and fourth rows). 
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Supplemental Fig. S11. Comparisons of integrated results of other methods on 

human DiHS/DRESS skin data. UMAP visualizations of the raw data and corrected data 

by 10 integration methods on human DiHS/DRESS skin data. Cells are colored by 

technologies (the first and fourth rows), batch labels (the second and fifth rows), and cell 

type labels (the third and sixth rows). 
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Supplemental Fig. S12. scInt reveals condition-specific subpopulations in 

DiHS/DRESS and health human skin. A, B. The comparisons of (A) ARI and batch ASW, 

(B) cell type LISI and batch LISI for integrated results. C. The comparisons of the label F1 

and silhouette for integrated four condition-specific subpopulations. D. The top 10 enriched 

GO biological processes of the marker genes associated with the keratinocyte I and 

keratinocyte II subpopulations. 
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Supplemental Fig. S13. The clustering result of scInt integrated COVID-19 PBMC 

data. 
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Supplemental Fig. S14. Percentage of cell types identified by scInt in the 12 batches. 

Shown are exact two-sided P values by the Wilcoxon rank-sum test. 
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Supplemental Fig. S15. Percentage of clusters identified by scInt in the 12 batches. 

Shown are exact two-sided P values by the Wilcoxon rank-sum test. 
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Supplemental Fig. S16. Comparisons of scInt against other methods on variant 1 of 

simulation 1. UMAP visualizations of the raw data and integrated data using scInt and 

other 10 integration methods on variant 1 of simulation 1. Cells are colored by batch labels 

(the first and third rows) and cell type labels (the second and fourth rows). 
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Supplemental Fig. S17. Comparisons of scInt against other methods on variant 2 of 

simulation 1. UMAP visualizations of the raw data and integrated data using scInt and 

other 10 integration methods on variant 2 of simulation 1. Cells are colored by batch labels 

(the first and third rows) and cell type labels (the second and fourth rows). 
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Supplemental Fig. S18. Comparisons of scInt against other methods on variant 1 of 

simulation 3. UMAP visualizations of the raw data and integrated data using scInt and 

other 10 integration methods on variant 1 of simulation 3. Cells are colored by batch labels 

(the first and third rows) and cell type labels (the second and fourth rows). 
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Supplemental Fig. S19. Comparisons of scInt against other methods on variant 2 of 

simulation 3. UMAP visualizations of the raw data and integrated data using scInt and 

other 10 integration methods on variant 2 of simulation 3. Cells are colored by batch labels 

(the first and third rows) and cell type labels (the second and fourth rows). 
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Supplemental Fig. S20. Comparisons of scInt against other methods on variant 1 of 

simulation 4. UMAP visualizations of the raw data and integrated data using scInt and 

other 10 integration methods on variant 1 of simulation 4. Cells are colored by batch labels 

(the first and third rows) and cell type labels (the second and fourth rows). 
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Supplemental Fig. S21. Comparisons of scInt against other methods on variant 2 of 

simulation 4. UMAP visualizations of the raw data and integrated data using scInt and 

other 10 integration methods on variant 2 of simulation 4. Cells are colored by batch labels 

(the first and third rows) and cell type labels (the second and fourth rows). 
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Supplemental Fig. S22. The performance of scInt with the varied  on simulations 1-

3. A. UMAP visualizations of the corrected data of simulation 1 using scInt with  varied 0.1 

to 20. Cells are colored by batch label (top row) and cell type labels (bottom row). B. UMAP 

visualizations of the corrected data of simulation 2 using scInt with  varied 0.1 to 20. C. 

UMAP visualizations of the corrected data of simulation 3 using scInt with varied 0.1 to 

20. 
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Supplemental Fig. S23. The performance of scInt with the variedT on simulations 1-

3. A. UMAP visualizations of the corrected data of simulation 1 using scInt withT varied 

0.5 to 0.8. Cells are colored by batch label (top row) and cell type labels (bottom row). B. 

UMAP visualizations of the corrected data of simulation 2 using scInt withT varied 0.5 to 

0.8. C. UMAP visualizations of the corrected data of simulation 3 using scInt withT varied 

0.5 to 0.8. 
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Supplemental Fig. S24. The performance of scInt with the varied resolution on 

simulations 1-3. A. UMAP visualizations of the corrected data of simulation 1 using scInt 

with resolution varied 0 to 1. Cells are colored by batch label (top row) and cell type labels 

(bottom row). B. UMAP visualizations of the corrected data of simulation 2 using scInt with 

resolution varied 0 to 1. C. UMAP visualizations of the corrected data of simulation 3 using 

scInt with resolution varied 0 to 1. 
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Supplemental Fig. S25. The performance of scInt with the varied k on simulations 1-

3. A. UMAP visualizations of the corrected data of simulation 1 using scInt with k varied 1 

to 20. Cells are colored by batch label (top row) and cell type labels (bottom row). B. UMAP 

visualizations of the corrected data of simulation 2 using scInt with k varied 1 to 20. C. 

UMAP visualizations of the corrected data of simulation 3 using scInt with k varied 1 to 20. 
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Supplemental Fig. S26. UMAP visualizations of tuning results of the “eigens” 

parameter of RPCI on simulation 1. 
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Supplemental Fig. S27. UMAP visualizations of tuning results of k and lambda of 

online iNMF on simulation 1. 
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Supplemental Table 1: Details of scRNA-seq data sets used in scInt 

manuscript. 

Data set 
Batch 

number 
Total cell 

number 
Scenario Source Batch name 

Cell 

number 

Simulation 

1 

3 2,401 Unbalanced cell 

subpopulation 

compositions & rare 

cell subpopulation 

across batches 

Generated by 

Splatter 

package (see 

Supplemental 

Methods) 

Batch_1 978 

Batch_2 599 

Batch_3 824 

Simulation 

2 

6 12,097 Unbalanced cell 

subpopulation 

compositions & 

reference-based 

mapping 

https://figshare.c

om/articles/data

set/Benchmarkin

g_atlas-

level_data_integ

ration_in_single-

cell_genomics_-

_integration_tas

k_datasets_Imm

une_and_pancr

eas_/12420968 

Batch_1 2908 

Batch_2 2422 

Batch_3 2120 

Batch_4 1929 

Batch_5 1761 

Batch_6 957 

Simulation 

3 

16 19,318 Unbalanced cell 

subpopulation 

compositions & 

nested batch effects 

https://figshare.c

om/articles/data

set/Benchmarkin

g_atlas-

level_data_integ

ration_in_single-

cell_genomics_-

_integration_tas

k_datasets_Imm

une_and_pancr

eas_/12420968 

Batch1Sub1 1200 

Batch1Sub2 1204 

Batch1Sub3 1210 

Batch1Sub4 1192 

Batch2Sub1 1466 

Batch2Sub2 1471 

Batch2Sub3 984 

Batch2Sub4 984 

Batch3Sub1 1930 

Batch3Sub2 1205 

Batch3Sub3 1189 

Batch3Sub4 485 

Batch4Sub1 1687 

Batch4Sub2 1676 

Batch4Sub3 716 

Batch4Sub4 719 

Simulation 

4 

4 4000 Rare cell 

subpopulations 

Generated by 

Splatter 

package (see 

Supplemental 

Methods) 

Batch_1 1000 

Batch_2 1000 

Batch_3 1000 

Batch_4 1000 

Human 

dendritic 

cells 

2 576 Unbalanced cell 

subpopulation 

compositions & 

biologically similar 

cell types 

Gene 

Expression 

Omnibus 

database 

Batch_1 288 

Batch_2 288 
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accession code: 

GSE94820 

Human 

pancreas 

cells 

8 14,456 Different 

sequencing 

platforms & 

reference-based 

mapping 

SeruatData R 

package 

(“panc8” data) 

c1 625 

celseq 946 

celseq2 2238 

smartseq 2078 

indrop 1 1937 

indrop 2 1724 

indrop 3 3605 

indrop 4 1303 

mouse 

developing 

tracheal 

epithelial 

data 

6 3,508 Developmental data Gene 

Expression 

Omnibus 

database 

accession code: 

GSE152692 

E12.5 239 

E13.5 455 

E14.5 1232 

E15.5 931 

E16.5 365 

E18.5 286 

Human 

DiHS/DRE

SS skin 

data 

7 20,415 Disease and 

healthy conditions & 

different sequencing 

platforms 

Gene 

Expression 

Omnibus 

database 

accession code: 

GSE132802 

DiHS/DRESS 5653 

HV1_1 1152 

HV1_2 1917 

HV2 4016 

HV3 4923 

HV4 1589 

HV5 1165 

Human 

COVID-19 

and 

healthy 

PBMCs 

data 

12 67,362 Disease and 

healthy conditions & 

complex batch 

correction 

Gene 

Expression 

Omnibus 

database 

accession code: 

GSE150861; 

https://support.1

0xgenomics.co

m/single-cell-

gene-

expression/data

sets 

10k_1 11485 

10k_2 11996 

20k 23837 

500_1 705 

500_2 587 

P1-day1-rep1 2591 

P1-day1-rep2 2081 

P1-day5-rep1 3129 

P1-day5-rep2 3851 

P2-day1 2280 

P2-day5 1488 

P2-day7 3332 
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Supplemental Methods 

Details of Simulated data sets 

Simulation 1. Simulation 1 contains three batches generated by Splatter package. Three 

batches with six cell groups were generated with parameters batchCells = (1000, 1000, 

1000), and group.prob = (0.03, 0.15, 0.2, 0.2, 0.4, 0.02). Then the Group6 in batch 1, 

Group5 and Group6 in batch 2, Group1 and Group5 in batch 3 were removed. 

Simulation 2 and Simulation 3. These two simulation data sets were downloaded from 

https://figshare.com/articles/dataset/Benchmarking_atlas-

level_data_integration_in_single-cell_genomics_-

_integration_task_datasets_Immune_and_pancreas_/12420968. Detailed information can 

be found in a recent benchmark study (Luecken et al. 2022). 

Simulation 4. Simulation 4 contains four batches generated by Splatter package. Four 

batches with six cell groups were generated with parameters batchCells = (1000, 1000, 

1000, 1000), and group.prob = (0.42, 0.42, 0.04, 0.04, 0.04, 0.04). 

Pathological cases 

Variants of simulation 1. Simulation 1 contains three batches and six cell groups. Group5 

and Group6 of these six cell groups are specific to batches 1 and 3, respectively. We 

removed Group1 in batch 2 and Group2 in batches 1 and 3 from simulation 1 to get variant 

1. Then, we removed Group3 in batches 1 and 2 and Group4 in batches 1 and 3 from 

variant 1 to get variant 2. Thus, variants 1 and 2 contain four and six cell groups that are 

only present in a single batch, respectively. 

Variants of simulation 3. Simulation 3 contains 16 batches, 11 of which have more than 
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one cell group. For these 11 batches, we removed all cell groups except the dominant cell 

group from a batch at a time. We repeated this step 11 times and referred to the ninth and 

last generated data sets as variants 1 and 2 of simulation 3, respectively. Thus, variants 1 

and 2 contain 14 and 16 batches, respectively, each of which has only one cell group. 

Variants of simulation 4. Simulation 4 contains four batches and four cell groups at low 

proportions (Group3, Group4, Group5, and Group6). We removed Group4, Group5, and 

Group6 from batch 1, and Group3, Group5, and Group6 from batch 2 of simulation 1 to get 

variant 1. Then, we removed Group3, Group4, and Group6 from batch 3, and Group3, 

Group4, and Group5 from batch 4 of variant 1 to get variant 2. Thus, variants 1 and 2 

contain two and four rare cell groups, respectively, with each rare cell group only present 

in a single batch. 

cPCA can remove the technical effects between data sets 

Here, we show that the technical effects between data sets can be removed by cPCA, 

giving the theoretical reasonability of the “cell similarities filtering on the cPCA space” step 

in the scInt model. 

Given two scRNA-seq data sets 1p nX 
 and 2p nY 

 , with X as target data and Y as 

background data. Then, they can be formulated as: 

 
X X X X

Y Y Y Y

X WZ W U

Y WZ W U





= + +

= + +
 

where p dW  represents the shared effects between the target and background data, 

Xp d

XW 
 represents the specific effects of the target data relative to the background data, 

and Yp d

YW 
 represents the specific effects of the background data relative to the target 

data. It assumes that the target and background data follow the Gaussian distribution, i.e.,
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. . ., ', , ~ (0, )i i dZ Z U V I , 2

. . ., ~ (0, )X Y i i d I    . Without loss of generality, let

( ) ( )X Yspan W W span W =   . Because if ( ) ( )X Yspan W W span W    , then the 

above equation can be rewritten as: 

 
\

( ) \( )'

X Y X Y

Y X Y X

W W W W X

W W W W W W Y

X WZ W U W U

Y WZ W V W V





= + + +

= + + +
 

Then the covariance matrices of the target and background data can be written as: 

 
2

2

T T T

X X X

T T T

Y Y Y

C XX WW W W I

C YY WW W W I





= = + +

= = + +
 

 T T

X Y X X Y YC C W W W W− = −  

Consider the optimization problem: 

 
2

2

argmax ( )

. . 1

p
unit

T T T T T

X Y X X Y Yv
v C C v v W W v v W W v

s t v


− = −


 

The obtained contrastive principal components 'iv s are the directions of maximization of 

target-specific variations T

X XW W meanwhile minimization of background-specific variations

T

Y YW W  . By our assumption, T

Y YW W  can be the background-specific variation and 

background-to-target technical variation. Thus, the common dimensional reduction of the 

target and background data using the matrix p lV   of first l  contrastive principal 

component, [ , ]TL V X Y= , remove the technical variations between X andY . 

Selection of scInt parameters 

To select the optimal key parameters from sets of candidates, we propose the following 

methods. 

ForT , we expect 1) it big enough to preserve high reliability of retained similarities; 2) 

retained similarities are sufficient to capture the technical effects. For each batch i , asT

increases, both the number of retained similarities and the number of cell identities of 
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identified similar cells are non-increasing. Without loss of generality, given a set of 

incremental candidate values { : 1, , }sSetT T s S= = , we aim to select optimalT satisfied 

1) and 2). First, we delete the sT ’s which filter out excessive similarities. For each batch i , 

we filter the identified similarities using each candidate sT and obtain the number
s

i

TNum of 

retained similar cells in remaining batches. We calculate the decrease ratio of
s

i

TNum for 

each increase of sT :
1

( ) /
s s s

i i i

T T TNum Num Num
+

− . We delete all sT ’s after sT whose decrease 

ratio is greater than 50%, as the bigger sT will filter out excessive similarities. We take the 

intersection of the update sets of candidate sT for all batches denoted by *SetT . Then, we 

select optimalT  which captures most similarities. As we pre-cluster each batch in the 

previous section, the pre-clustered labels are also available in our pipeline. We find the 

smallest i

s
T  for each batch i  , which preserve the identified cell label identities using the 

maximum sT in *SetT . The median of i

s
T ’s is identified as the optimalT . 

For , given a set of incremental candidate values { : 1, , }vSet v V = = , we aim to 

select optimal  satisfied 1) big enough to remove technical effects; and 2) enable sufficient 

number of cPCs. We simply select the biggest inSet , while
T TXX ZZ− has more than

l (default by 40) positive eigenvalues. 

Selecting parameters for RPCI, LIGER, and online iNMF 

We selected the optimal key parameters of RPCI, LIGER, and online iNMF. For RPCI, we 

set the reference batch as the batch that contained the most cell types and selected the 

optimal “eigens” parameter for each data set from 8, 10, 12, 15, 20, 25, 30, and 50. The 

final “eigens” parameter was tuned to be 12, 15, 8, 8, 12, and 15 for simulation 1, simulation 

2, simulation 3, dendritic, developing tracheal epithelial, and DiHS/DRESS skin data sets, 
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respectively. For LIGER and online iNMF, since they employed the same integrative 

nonnegative matrix factorization model, the same key parameters k and lambda were 

applied for these two methods. We selected the optimal lambda from 1, 5, and 10, and k 

from 8, 10, 12, 15, 20, and 25. Finally, lambda was tuned to be 5 for all data sets, and k 

was tuned to be 10, 20, 20, 15, 20, and 20 for simulation 1, simulation 2, simulation 3, 

dendritic, developing tracheal epithelial, and DiHS/DRESS skin data sets, respectively. In 

particular, the UMAP visualizations of the parameter tuning results of RPCI and online 

iNMF on simulation 1 were shown in Supplemental Figs. S26 and S27. 
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