

Supplemental Materials

Challenges and considerations for reproducibility of STARR-seq assays

Maitreya Das^{1, 3, 5*}, Ayaan Hossain^{4, 5}, Deepro Banerjee^{4, 5}, Craig Alan Praul⁵ and Santhosh

Girirajan^{1, 2, 3, 4, 5*}

1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802

2. Department of Anthropology, Pennsylvania State University, University Park, PA 16802

3. Molecular and Cellular Integrative Biosciences Graduate program, Pennsylvania State University Park, PA 16802

11 4. Bioinformatics and Genomics Graduate program, Pennsylvania State University, University
12 Park, PA 16802

13 5. Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
14 16802

10

17

Table of Contents

21	Supplemental Text	3
22	Supplemental Methods	4
23	1. Read deduplication, alignment, and filtering.....	4
24	2. Data quality control	4
25	3. Peak calling	5
26	4. Activity comparison between peaks and exonic regions.....	5
27	5. Assessing reproducibility of published STARR-seq datasets	5
28	Limitations of the Perspective	6
29	Supplemental Figures	7
30	6. Supplemental Fig. S1 (A-E)	7
31	7. Supplemental Fig. S2.....	12
32	8. Supplemental Fig. S3 (A-C)	13
33	9. Supplemental Fig. S4.....	16
34	10. Supplemental Fig. S5 (A-C)	17
35	11. Supplemental Fig. S6.....	18
36	12. Supplemental Fig. S7.....	19
37	Supplemental Tables	20
38	13. Supplemental Table S1	20
39	14. Supplemental Table S2.....	22
40	15. Supplemental Table S3 (A-C)	24
41	Supplemental Protocol	27
42		
43		

44 **Supplemental Text**

45 **STARR-seq experiment**

46 We built a STARR-seq plasmid library spanning approximately 33 Mbp of the human genome
47 and performed multiple STARR-seq runs on HEK293T cells. Our target regions were shortlisted
48 from existing ChIP-seq data on HEK293 or HEK293T cells available on ENCODE (The
49 ENCODE Project Consortium 2007). In brief, we first overlapped ChIP-seq sites binding to the
50 histone modifications H3K27Ac (for active enhancers) and H3K4Me1 (for active or poised
51 enhancers). Next, we intersected these regions with all TF-ChIP-seq sites on HEK293 (from
52 ENCODE) to obtain a comprehensive enhancer catalog spanning 46,010 ChIP-seq sites. The
53 selected regions comprise TF-binding sites that overlap with recognized enhancer marks. We
54 captured our target library from commercially available human whole genome DNA using
55 hybridization and capture probes and cloned the captured fragments into the human STARR-seq
56 vector to build a STARR-seq plasmid library (see **Supplemental Fig. S1A-E, Supplemental**
57 **Protocol**). To assess the impact of different genomic mutations on enhancer activity, we
58 transfected the library into seven different mutant HEK293T lines and one wild-type line in three
59 biological replicates and isolated reporter specific mRNA to build 24 STARR-seq output
60 screening libraries. We directly amplified the STARR-seq plasmid library in three replicates for
61 the input. We sequenced 24 output screening libraries and 3 input libraries using a NextSeq2000
62 sequencer with approximately 45 million reads per sample.

63 While conducting the assays we came across various design and protocol inconsistencies
64 that enabled us to generate a list of STARR-seq design considerations, best practice guidelines
65 and quality control checkpoints (see **Supplemental Tables**). Our analysis pipeline is provided as
66 **Supplemental code** and on GitHub (links provided in **Supplemental Methods**). We used our
67 data to demonstrate the effects of read filtering, significance of read depth, and compared
68 different peak callers. All sequence data generated in this study have been submitted to the NCBI
69 BioProject database (<https://www.ncbi.nlm.nih.gov/bioproject/>) under accession number
70 PRJNA879724. We also reanalyzed datasets from existing STARR-seq studies and assessed
71 them for their data quality control steps and compared them to our data (see **Supplemental**
72 **methods**). We also evaluated 24 STARR-seq studies and scored important assay features for
73 each study based on the number of details reported by the authors (see **Supplemental Table**
74 **S3A-C**).

75 **Supplemental Methods**

76 **Read deduplication, alignment, and filtering**

77 We used custom scripts to remove all PCR duplicates from raw FASTQ files of STARR-seq
78 input and output libraries obtained after demultiplexing. We then aligned the paired-end reads to
79 GRCh38 human genome assembly using BWA-MEM (Li 2013) with default settings. Next, we
80 removed reads that were (i) unaligned, (ii) low quality (mapping quality score<30), (iii) multi-
81 mapped (reads that mapped to multiple locations with equal confidence), and (iv) off-target using
82 SAMtools (Li et al. 2009) with the following parameters: -F 2828 -f 2 -q 30.

83 To compare read loss across published datasets with our data, we reanalyzed ATAC-
84 STARR-seq data from Wang and colleagues and human whole-genome STARR-seq data from
85 Johnson and colleagues using our computational pipeline with modifications to the deduplication
86 strategies (Johnson et al. 2018; Wang et al. 2018). We first aligned paired-end reads using BWA-
87 MEM. Next, we filtered PCR duplicates using Picard (Broad Institute. 2019). Finally, we
88 removed (i) unaligned, (ii) low quality (mapping quality score<30), (iii) multi-mapped (reads
89 that mapped to multiple locations with equal confidence) reads and compared reads across the
90 three datasets (**Supplemental Fig. S2**). Analysis pipelines are posted on GitHub:
91 https://github.com/deepprob/starrseq_dedup_align_filter.

92

93 **Data quality control**

94 We assessed data quality and replicability by calculating correlation of filtered read counts
95 between input and output library replicates. Additionally, we calculated correlation of Reads per
96 Million (RPM) normalized output-over-input fold changes between replicates (**Supplemental**
97 **Fig. S3A-C**). The output sequencing libraries were generated from the wild-type control
98 HEK293T line. To compare quality of published datasets with our data, we assessed the
99 correlation of filtered read counts between input and output replicates for our STARR-seq
100 libraries and the reanalyzed datasets (Johnson et al. 2018; Wang et al. 2018) (**Supplemental Fig.**
101 **S4**). We also performed Principal Component Analysis (PCA) and visualized the first two
102 principal components of input and output replicate filtered read counts for all reanalyzed datasets
103 including our own (**Supplemental Fig. S5A-C**).

104 **Peak calling**
105 We called peaks using previously published tools, MACS2 (Zhang et al. 2008), STARRPeaker
106 (Lee et al. 2020), CRADLE (Kim et al. 2021) and DESeq2 (Love et al. 2014) using default
107 settings. We merged the input and output replicates before peak calling using MACS2 and
108 STARRPeaker. For CRADLE and DESeq2, the replicates were kept separate since they both
109 utilize the variance between replicates to adjust p-value estimates of peaks. Before peak calling
110 with DESeq2, we fragmented all regions using a sliding window of size 500 bp and a stride of 50
111 bp. Next, we calculated the input and output library coverage for each of these windows using
112 BEDTools (Quinlan and Hall 2010). The input and output replicate-wise library coverage for
113 each window was used by DESeq2 to identify differentially active regions. We used BEDTools
114 to intersect CRADLE- and DESeq2-called “active” peaks with peaks called by other callers.

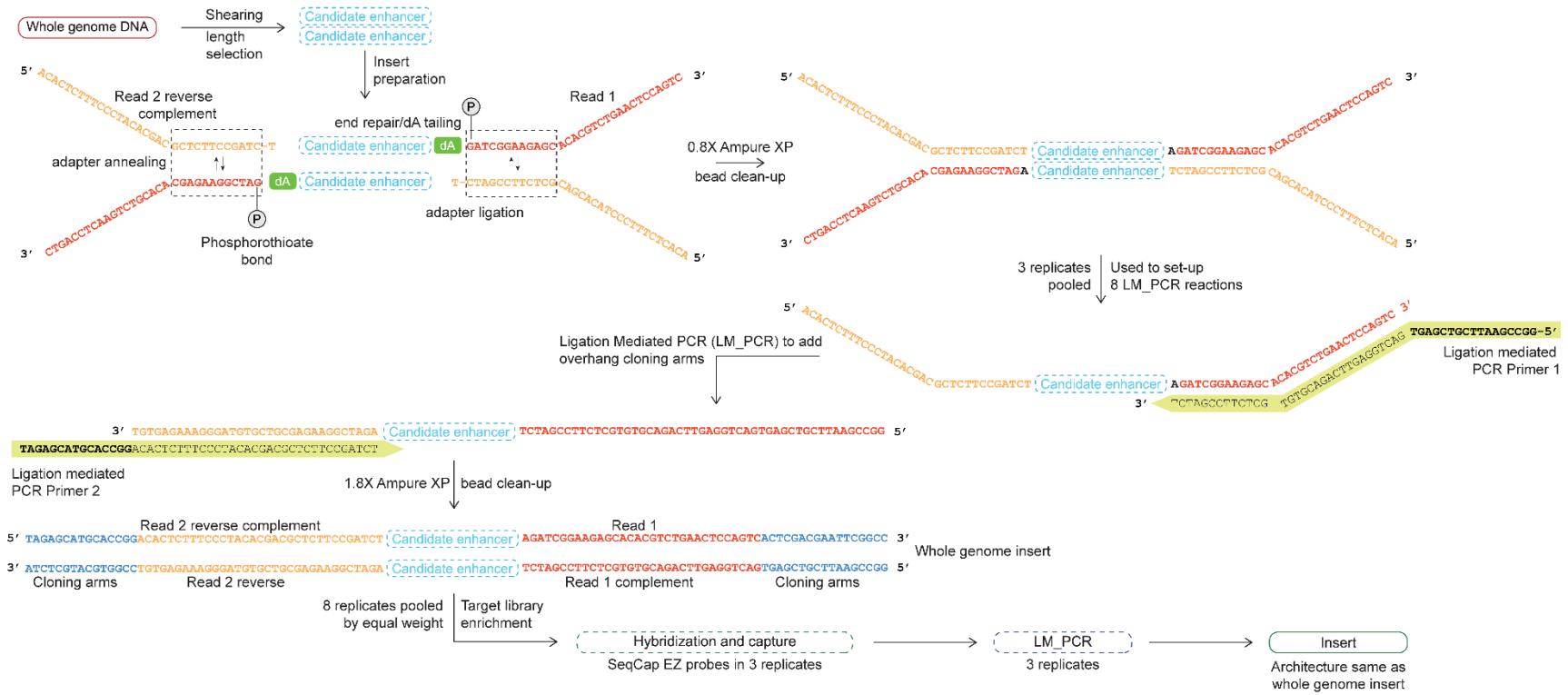
115 For comparing the number of peaks by varying library coverage, we randomly
116 subsampled the input and output control libraries from 10% to 90% with increments of 5% using
117 SAMtools (Li et al. 2009). For each subsample, we also created three replicates by changing
118 random seed parameter. We called peaks in the subsampled libraries using STARRPeaker with
119 the default settings. Our peak calling pipeline is posted on GitHub:
120 https://github.com/deepprob/starrseq_peak_call.

121
122 **Activity comparison between peaks and exonic regions**
123 To compare activity between peaks and exonic regions, we first identified regions in our library
124 which overlapped with known exonic regions from the reference human genome (GRCh38).
125 Next, we calculated the RPKM normalized coverage of filtered reads fold changes between
126 output and input libraries for both STARRPeaker called peaks and the identified exonic regions.
127 Finally, we compared the fold change distributions between peaks and exonic regions using t-test
128 (**Supplemental Fig. S6**).

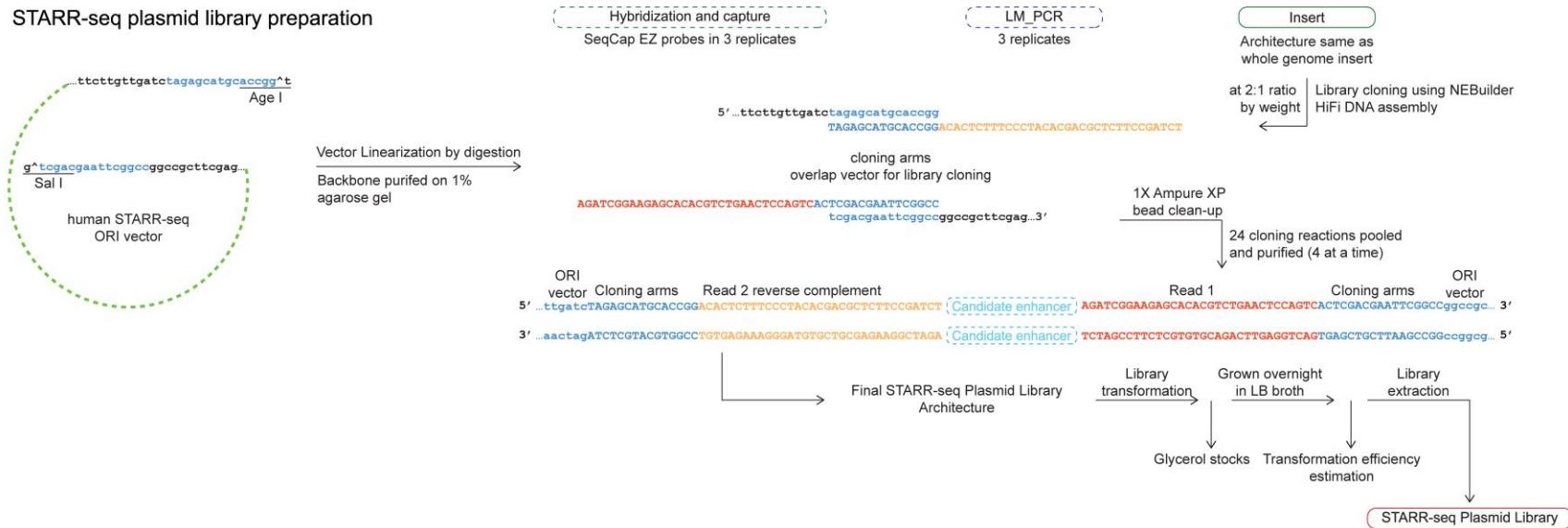
129
130 **Assessing reproducibility of published STARR-seq datasets**
131 To compare variation in enhancer activity for a given fragment between different STARR-seq
132 studies, we used processed bigwig files from Johnson and colleagues and Lee and colleagues for
133 their respective whole genome studies (Johnson et al. 2018; Lee et al. 2020). We used output
134 over input fold change signals from the two whole genome libraries reported by Lee and

135 colleagues, submitted as bigwig files. Johnson and colleagues reported separate bigwig files for
136 input and output read signals for their whole genome library. In this regard, we first normalized
137 the input signal by Z-score normalization method. Next, we calculated fold change of output
138 over normalized input. Finally, we measured Pearson and Spearman's correlation of fold changes
139 between the three libraries (**Supplemental Fig. S7**).

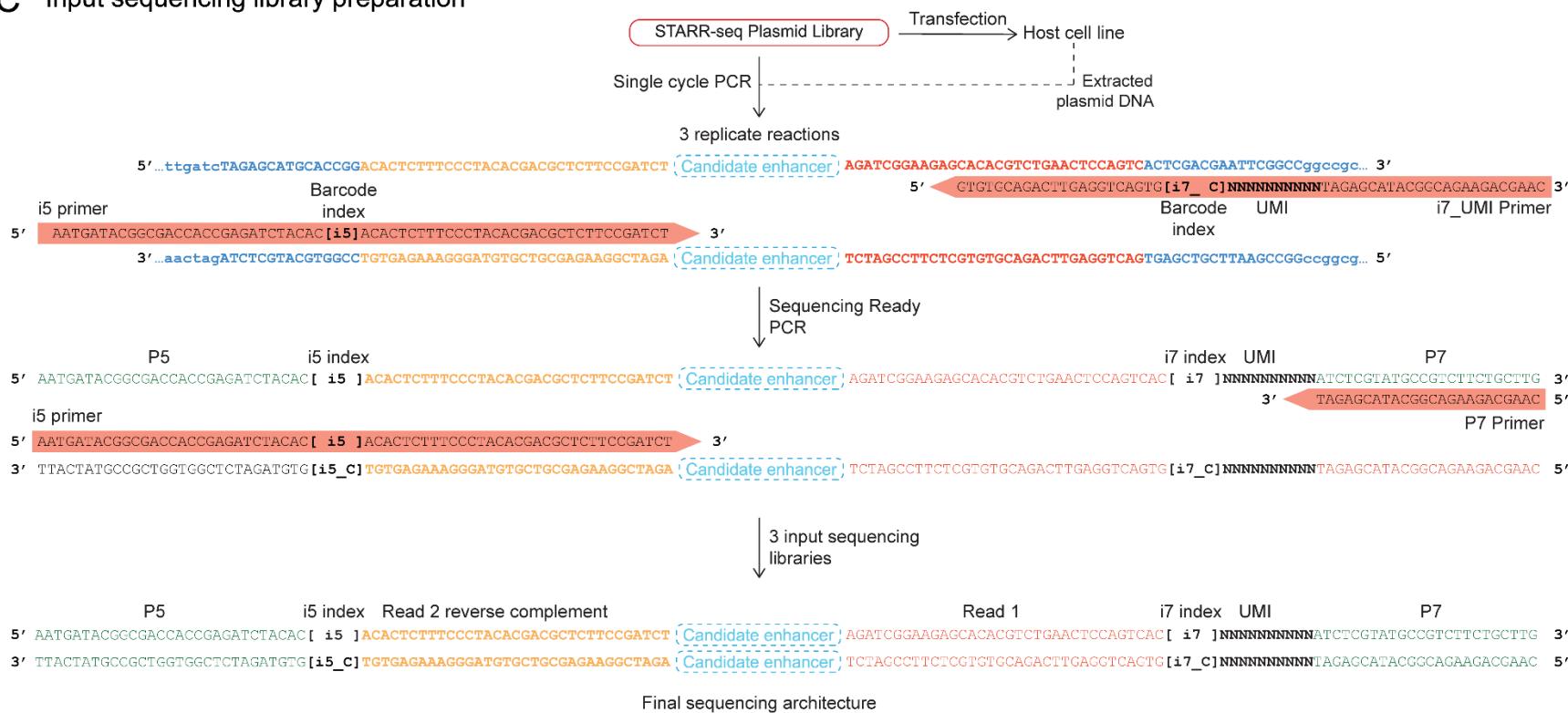
140

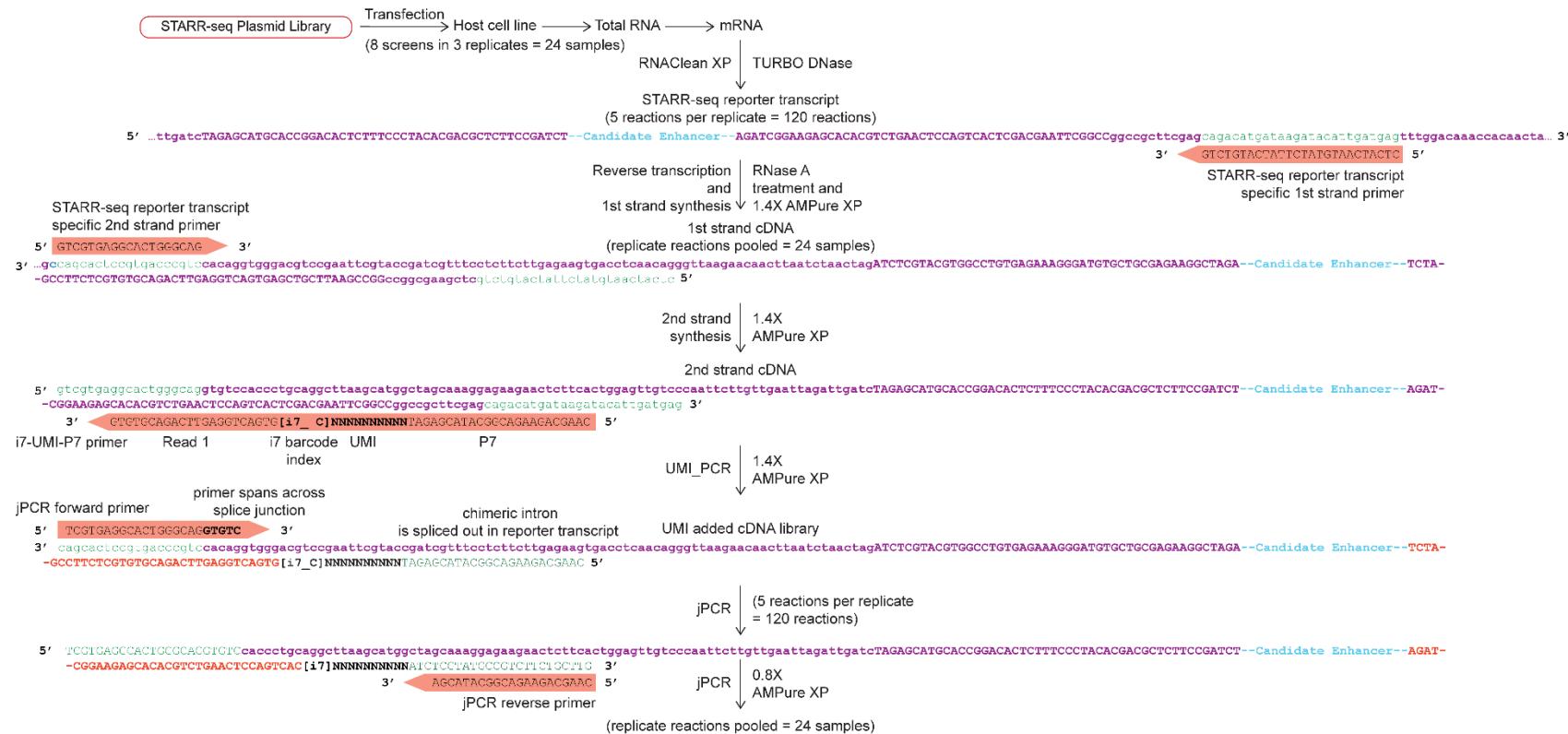

141 **Limitations of the Perspective**

142 We emphasize that the published and new data used in this manuscript is to demonstrate the
143 various nuances associated with STARR-seq analysis. We excluded any biological result,
144 interpretations or conclusions drawn from the data, as it is beyond the scope of this manuscript.
145 However, we provide a brief description of the newly generated data, quality control assessments
146 as well as detailed descriptions of all analyses conducted in this study, in addition to all raw and
147 processed files for independent review.

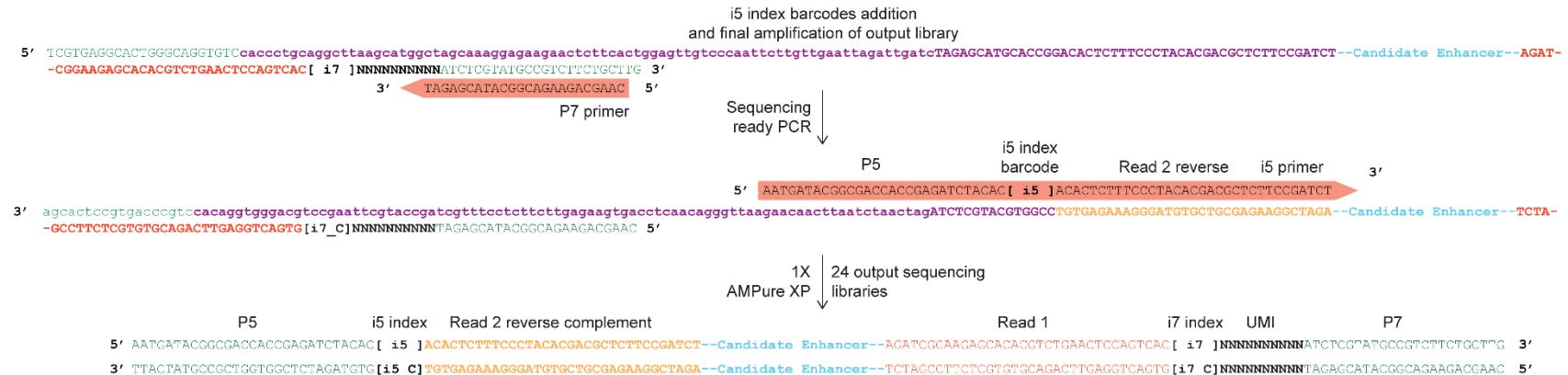

148 **Supplemental Figures**

149 **Supplemental Fig. S1 (A-E):** Schematic representation of a STARR-seq protocol highlighting all sequence information.


A Insert preparation


B STARR-seq plasmid library preparation

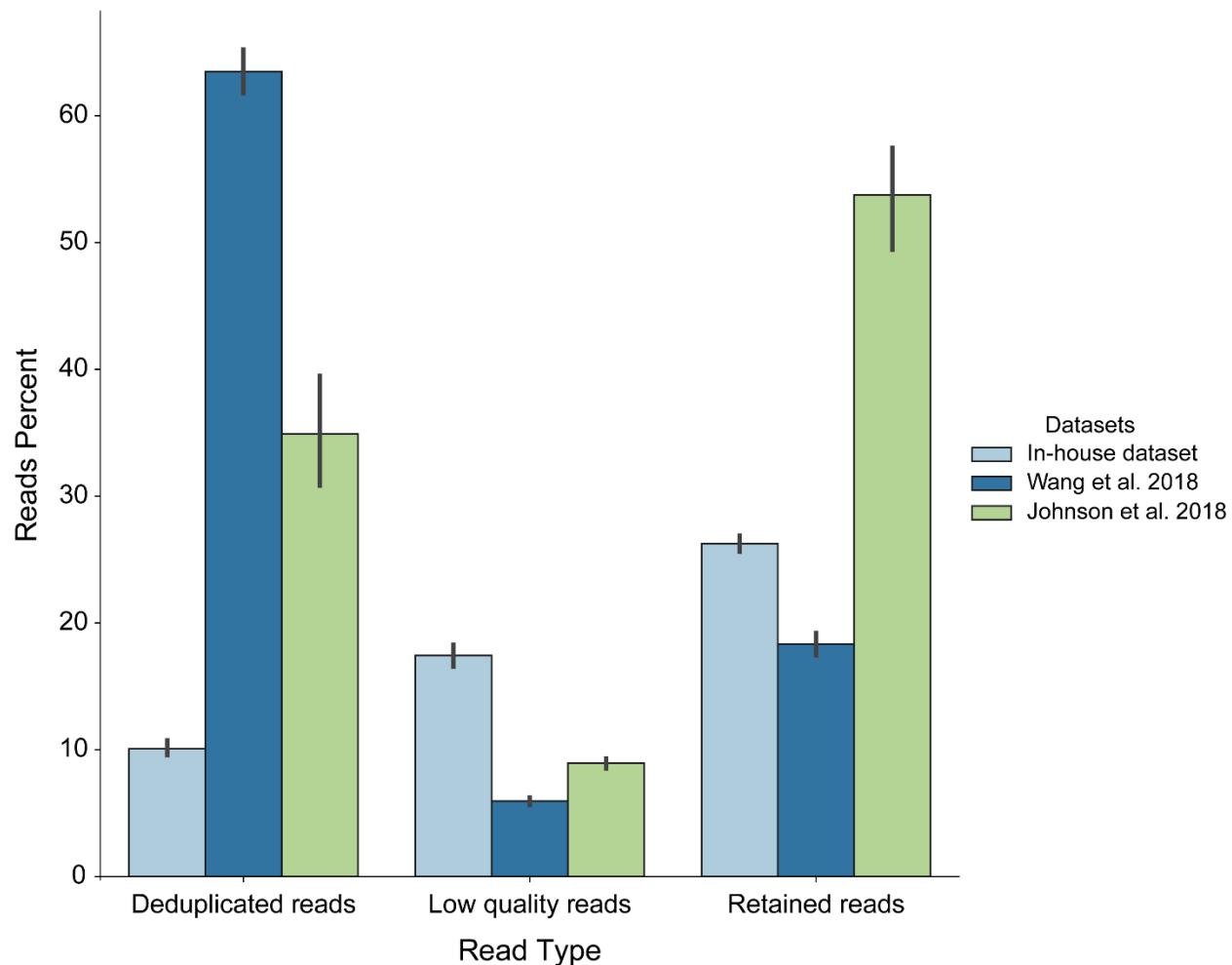
C Input sequencing library preparation



D cDNA library generation and UMI addition

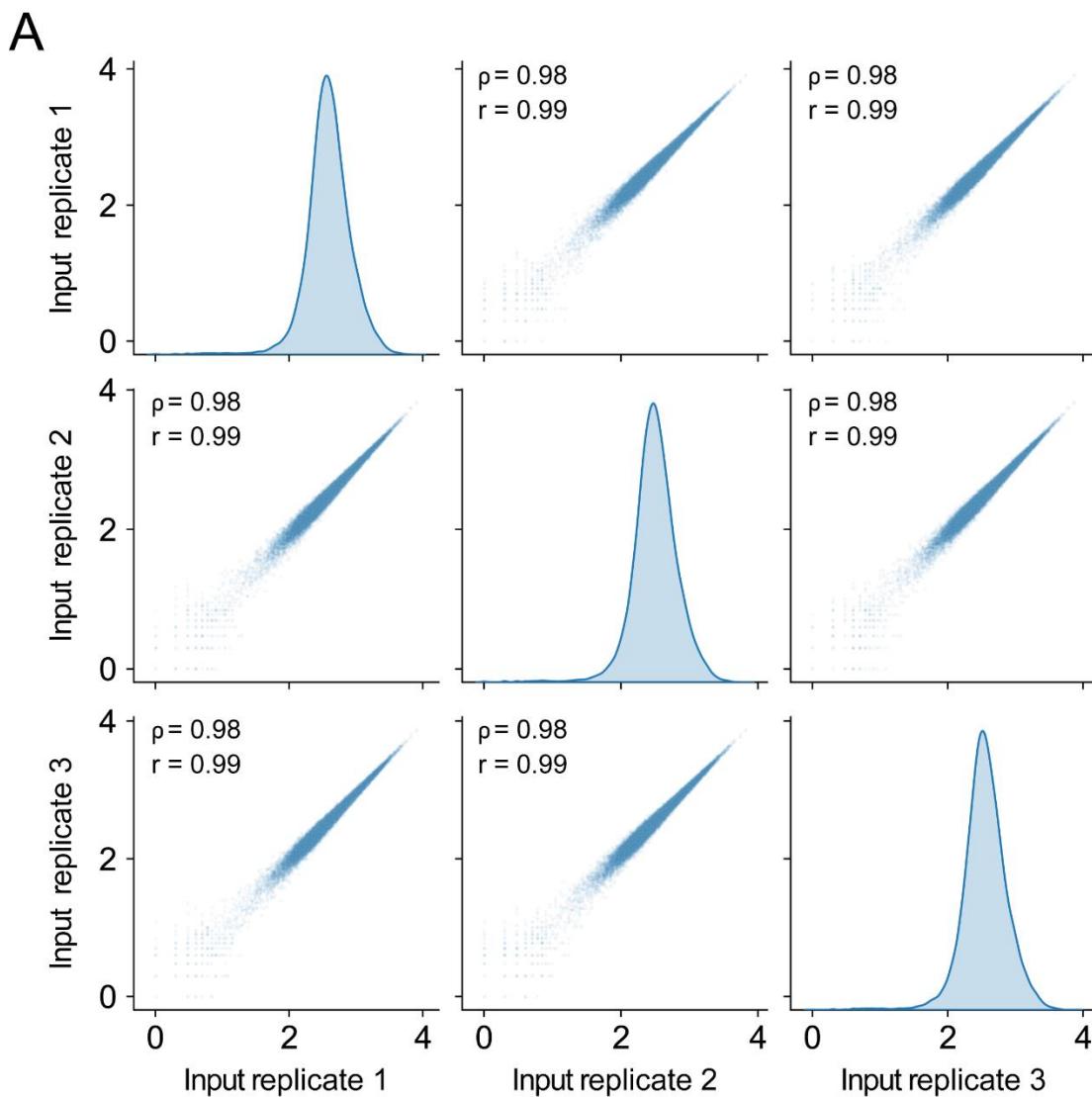
157

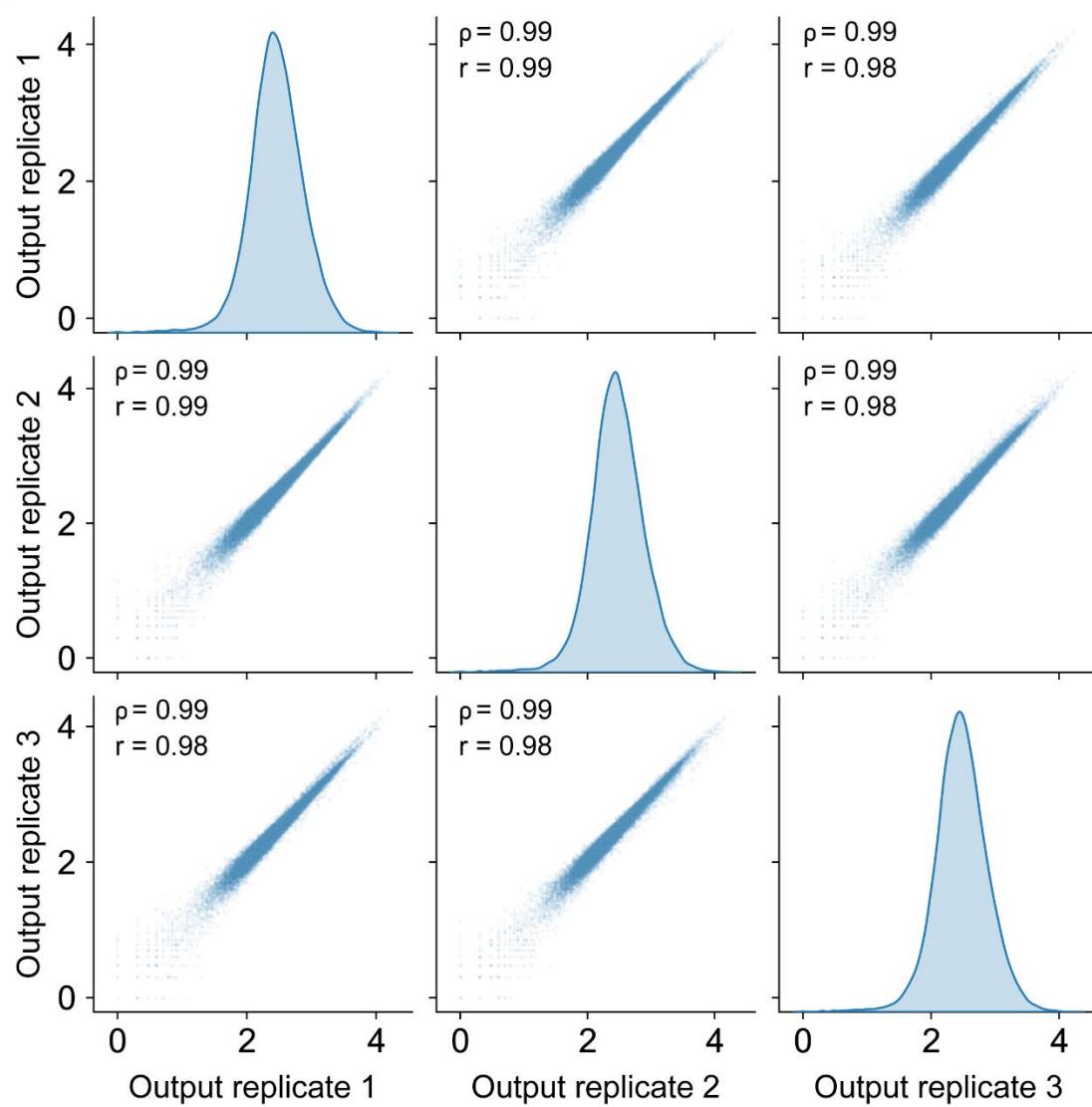
E Output sequencing library preparation


158

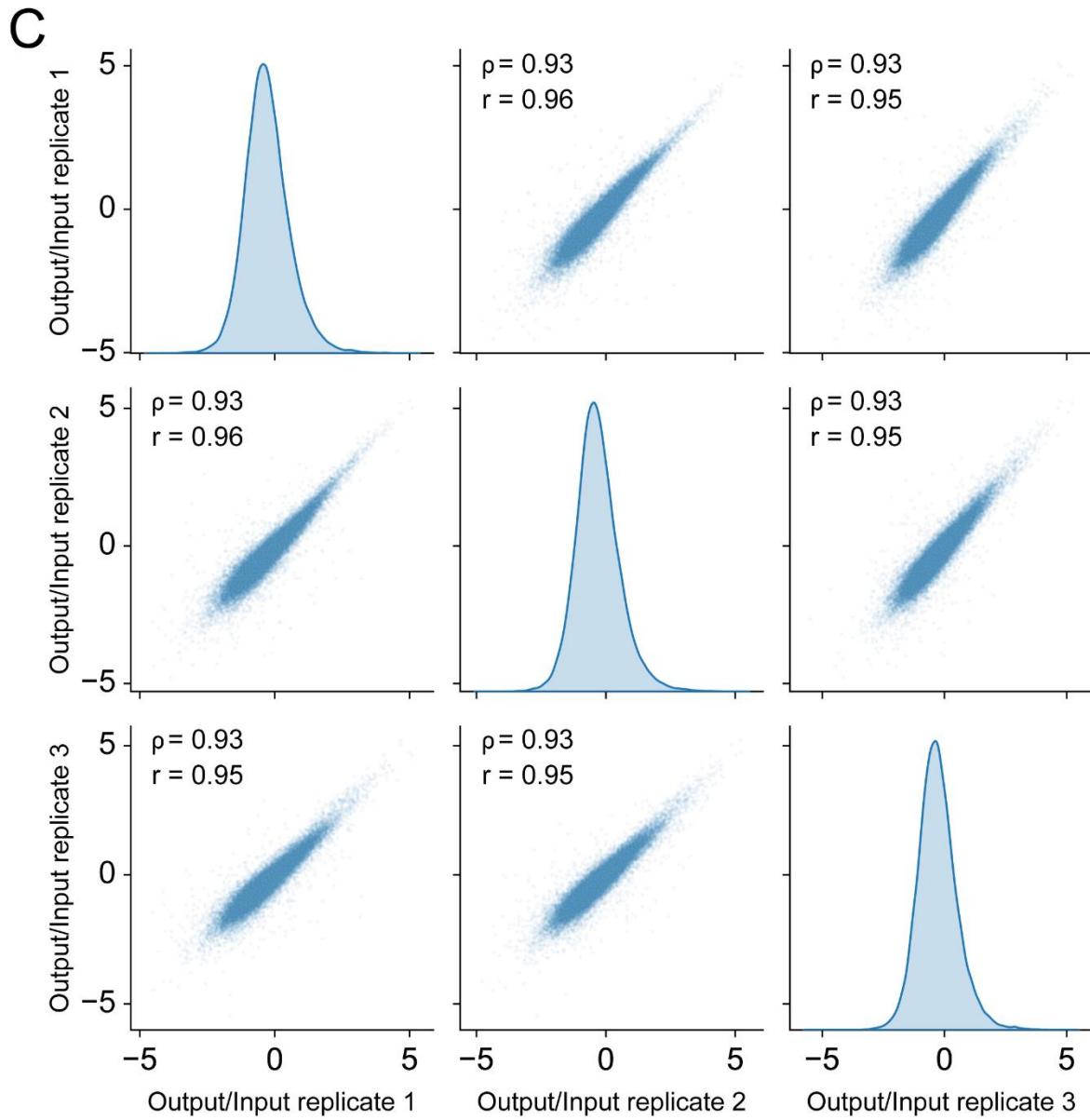
159

160 **Supplemental Fig. S1:** A schematic of STARR-seq experimental protocol and complete library sequence information are shown. **(A)** Insert preparation including addition of sequencing adapters and cloning arms to library fragments to facilitate sequencing and library cloning. **(B)** STARR-seq plasmid library preparation including vector linearization and cloning of library inserts into human STARR-seq vector (Muerdter et al. 2018) followed by library amplification through transformation. **(C)** Preparation of ‘input’ sequencing library either directly from plasmid library or from DNA extracted from library-transfected host cells. This step adds on UMIs and index barcodes to the library prior to sequencing to sort for PCR duplicates and to sequence multiple libraries on the same sequencing lane (multiplexing). **(D)** cDNA library generation for STARR-seq screening includes transfection of the plasmid library into a host cell and reverse transcription of self-transcribed reporter transcripts. This step also involves adding UMIs for detecting and removing PCR duplicates. **(E)** Preparation of ‘output’ sequencing library involves adding sequencing barcode indexes to the screening library before sequencing to enable multiplexing. Both ‘input’ and ‘output’ libraries are pooled and sequenced in parallel for enhancer screening.


171 **Supplemental Fig. S2:** Read loss across published STARR-seq datasets.


172

181 **Supplemental Fig. S3 (A-C):** Correlation across libraries for in-house input and output STARR-
182 seq libraries are shown. Please note that this figure has three multi-figure panels – each in a page.

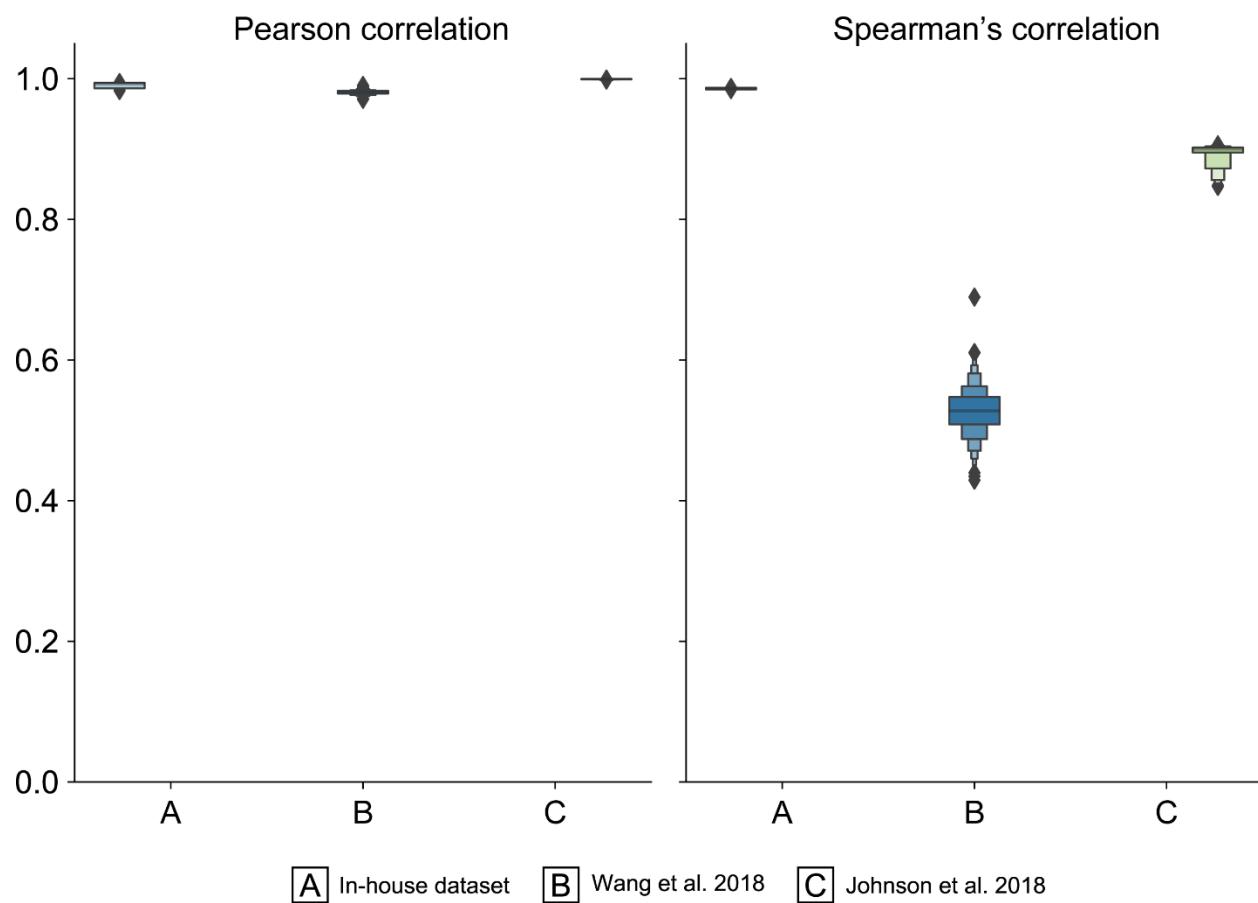

183

B

187

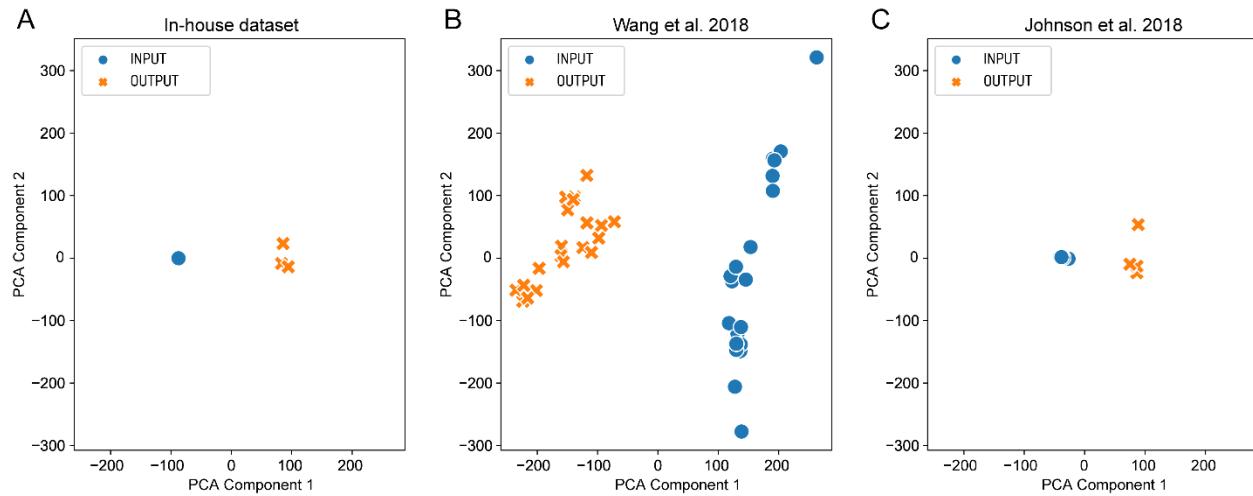
188

189


Output/Input replicate 1 Output/Input replicate 2 Output/Input replicate 3

190 **Supplemental Fig. S3:** Scatter plots and correlation (Spearman's and Pearson co-efficient values
 191 indicated) across in-house STARR-seq libraries. **(A)** Scatterplots comparing log10 transformed
 192 raw read counts across three replicates of input sequencing libraries prepared from direct
 193 amplification of in-house STARR-seq plasmid library along with the observed correlation is
 194 shown. **(B)** Scatterplots comparing log10 transformed raw read counts across three replicates of
 195 output sequencing libraries along with the observed correlation is shown. The output library
 196 consists of the STARR-seq experiment conducted on control HEK293T cell line. **(C)**
 197 Scatterplots comparing log₂ transformed output over input fold changes along with their
 198 observed correlation is shown. Input replicates assigned randomly to output replicates 1, 2 and 3.

199 **Supplemental Fig. S4:** Correlations across STARR-seq libraries

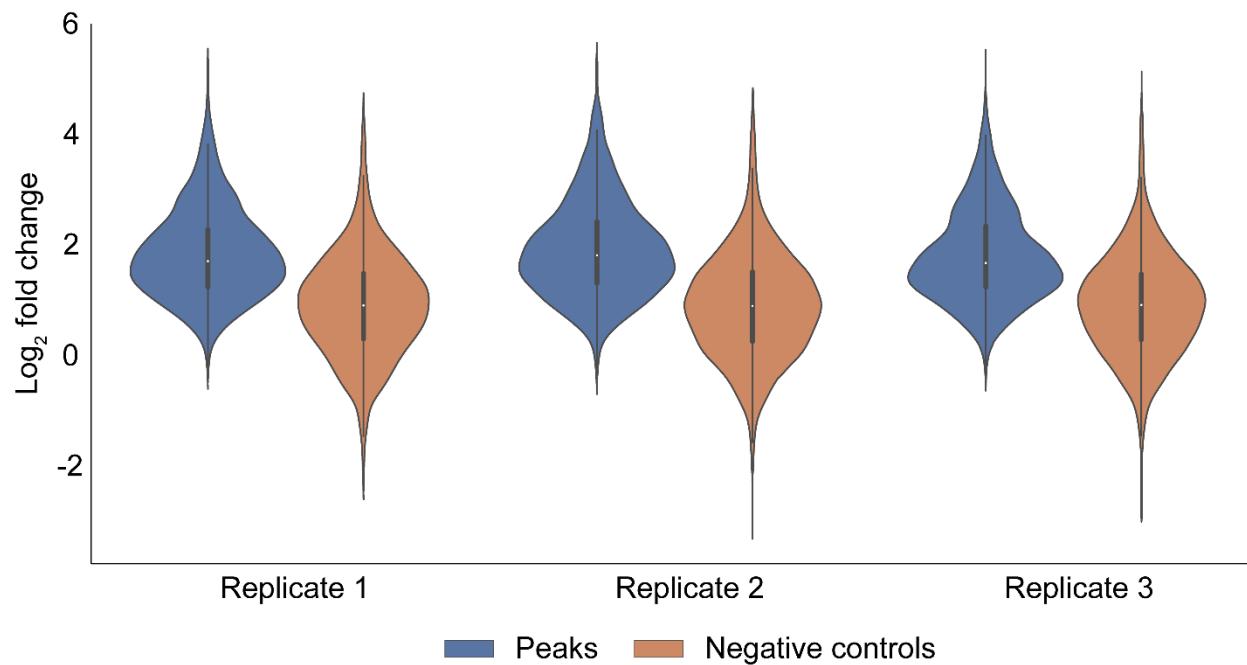

200

201

209 **Supplemental Fig. S5 (A-C):** Principal Component Analysis (PCA) for STARR-seq library
210 replicates

211

212

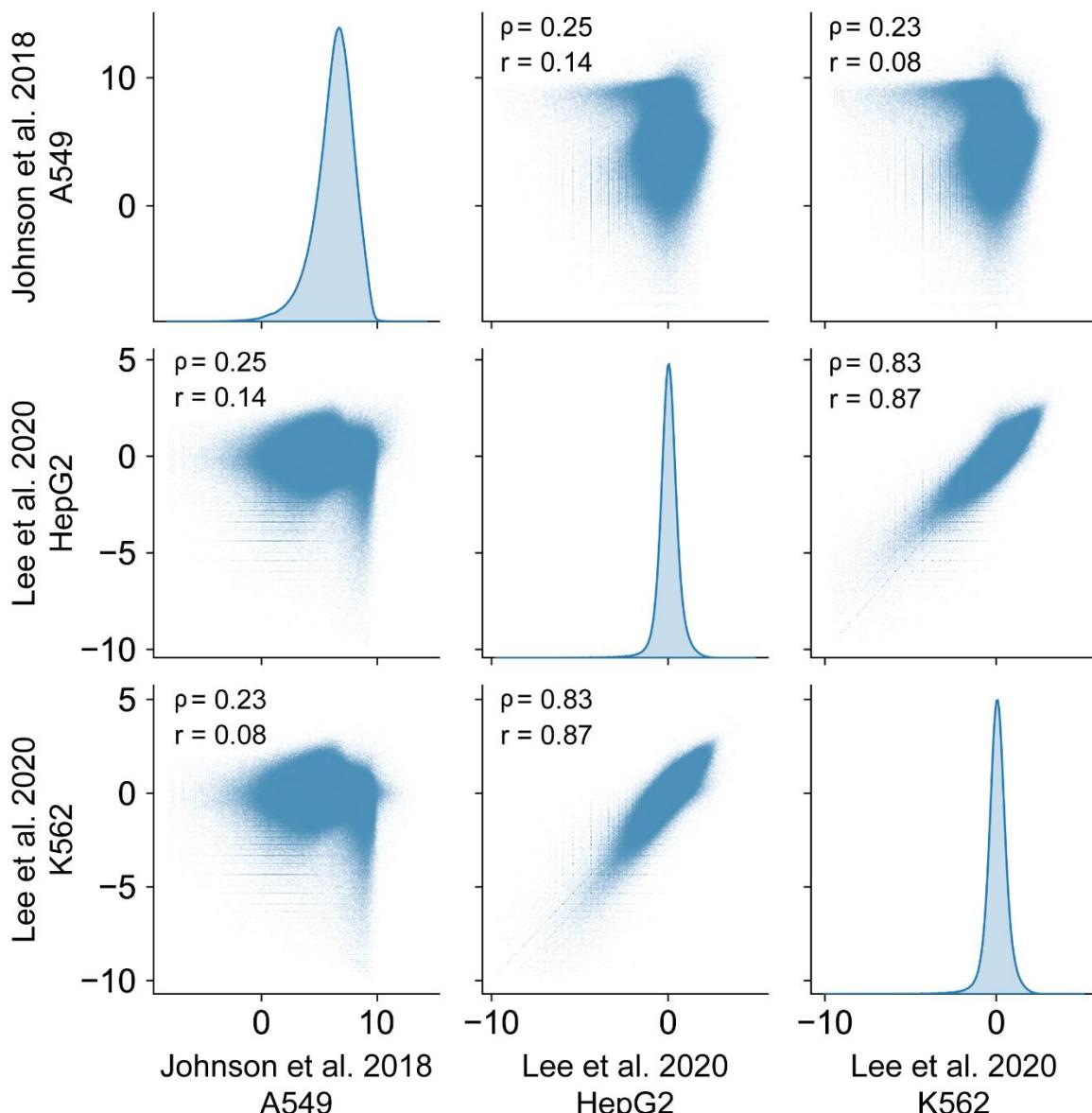

213

214 **Supplemental Fig. S5:** PCA plots demonstrating successful clustering of input and output
215 STARR-seq library replicates for (A) Our in-house STARR-seq input and control library (B)
216 Dataset from (Wang et al. 2018) (C) Dataset from (Johnson et al. 2018). Please note in (A) all
217 three input library replicates (blue dots) cluster together.

218

219 **Supplemental Fig. S6:** Controls for STARR-seq activity

220


221

222

223 **Supplemental Fig. S6:** Violin plots comparing the log₂ fold change of normalized reads (Output
224 over Input Reads Per Kilobase Million) observed between the STARRPeaker-called peaks and
225 exonic regions from our in-house STARR-seq dataset as negative controls are shown. STARR-
226 seq activity of exons was significantly lower than that of the peaks from enhancer regions (t-test
227 statistic: 53.14; p-value: 0.0).

228

229 **Supplemental Fig. S7:** Correlation across published STARR-seq assays.

230

231 **Supplemental Fig. S7:** Spearman's and Pearson correlations for output over input log₂
232 transformed fold changes for three whole genome STARR-seq assays are shown. Two assays
233 were conducted for the same study (Lee et al. 2020) in K562 and HepG2 lines using the modified
234 human STARR-seq vector containing the *ORI* promoter (Muerdter et al 2018). The third assay
235 was conducted for a different study (Johnson et al. 2018) on A549 cells using the original
236 STARR-seq vector (Arnold et al 2013).

237 **Supplemental Tables**

238

239 **Supplemental Table S1: STARR-seq assay scaling**

Library size	Fragment length range	Minimum number of fragments to cover target region	Number of transformation reactions	Reads for sufficient depth
Length of target region (in base pairs)	Determined by library size and biological question.	(Library size/frag length) Eg: Assuming upper limit of library size and lower limit of fragment length.	$t = (n \times c)/e$ $t = \text{number of transformations}$ $n = \text{number of minimum fragments}$ $c = \text{number of copies per fragment}$ $e = \text{transformation efficiency (i.e., transformants per reaction)}$	$r = n \times x \times z$ $r = \text{total number of reads}$ $x = \text{minimum number of reads required per variant}$ $z = \text{presumptive library dynamic range}$
Up to 100 kb	200-1200 bp	100 kb/200 bp = 500 fragments minimum.	$t = (500 \times 1000)/10^6 = 0.5$ Hence a single transformation reaction would yield sufficient colonies	For both libraries assuming $z = 100$, $x = 10$. $r = 500 \times 10 \times 100 = 500,000$ reads for output library
100 kb-1 Mb	200-1200 bp	5000 fragments minimum	$t = (5000 \times 1000)/10^6 = 5$ reactions	$r = 5000 \times 10 \times 100 = 5,000,000$ for output library
1-100 Mb	300-1200 bp	333,333 fragments minimum	$t = (333,333 \times 100)/10^6 = 33$ reactions	$r = 333,333 \times 10 \times 100 = 333,333,000$ reads for output library
100-1000 Mb or Whole genome	400-1200 bp	2.5 million fragments for 400 bp Therefore, by increasing length, this can be reduced. Eg: 1000 bp fragments would require 1 million unique fragments.	$t = (2.5 \times 10^6 \times 100)/10^6 = 250$ reactions This can be further optimized to use cells with higher transformation efficiency. Example: a transformation efficiency of 10^7 would decrease the number of reactions to 25.	$r = 2.5 \times 10^6 \times 10 \times 100 = 2,500,000,000$ reads for output library.

240

241

242 **Supplemental Table S1:** Proposed guidelines for assay scaling based on the library size, fragment length, and estimated read depth
243 are shown. For read depth, if the dynamic range of the library (the ratio of read count between the most active fragment in the output
244 library to the least active fragment) can be estimated, then the total number of reads in both input and output libraries is given by the
245 product of the dynamic range, the minimum number of reads per fragment for it to be considered active, and the total number of
246 fragments in the complete library. However, to uncover the true dynamic range in each output library, input and output libraries
247 should be sequenced using the same number of reads. Additionally, after library construction and validation, studies should report
248 complete library details including the length of the target region, number of unique fragments obtained, and the final sequence depth
249 or fold coverage for each unique fragment after sequencing to enable assay reproducibility.

250

251 **Supplemental Table S2:** List of oligo sequences used for in-house STARR-seq assays.

Oligo name	Sequence (5' - 3')	Function
Adapter I	/5Phos/GATCGGAAGAGCACACGTCTGAACCTCCAGTC ()	A' -- Read 1 sequence -- 'A'
Adapter II	ACACTTTCCCTACACGACGCTTCCGATCT	Reverse complement of Read 2
LM_PCR forward	TAGAGCATGCACCGGACACTCTTCCCTACACGACGCTTCCGATC*T	Cloning overhang in bold; *: phosphorothioate bond
LM_PCR reverse	GGCGAATTCTCGAGTGACTGGAGTTCAGACGTGTGCTCTCCGATC*T	Cloning overhang in bold
Blocking oligo I	AGATCGGAAGAGCGTCGTAGGGAAAGAGTGTCCGGT	For hybridization and capture
Blocking oligo II	GTGACTGGAGTTCAGACGTGTGCTCTCCGATCT-Amm	For hybridization and capture; Amm: modification
1st strand primer_ORI	CTCATCAATGTATCTTATCATGTCTG	Reverse transcription of STARR-seq reporter specific transcripts
2nd strand primer_ORI	GTCGTGAGGCAGTGGCA*G	Reverse transcription of STARR-seq reporter specific transcripts

252

253

254

i7_UMI_P7 primer	CAAGCAGAAGACGGCATACGAGATNNNNNNNNNN [i7_RC] GTGACTGGAGTTCAGACGTGT*G	N: UMIs; i7: Unique Dual Index barcode (in bold) (NEB #E6440S manual); RC: reverse complement
jPCR forward	TCGTGAGGCAGTGGCAG*G*T*G*T*C	Primer extends over splice junction (in bold)
jPCR reverse	CAAGCAGAAGACGGCATACG*A	Binds to P7 sequence
i5 primer	AATGATAACGGCGACCACCGAGATCTACAC [i5] ACACCTTTCCCTACACGACGCTCTTCCGATCT	i5: Unique Dual i5 Index barcode (NEB #E6440S manual)
P7 primer	CAAGCAGAAGACGGCATACGAGA*T	Binds to P7 sequence

255

256 **Supplemental Table S2:** Sequence information for all oligos used for in-house STARR-seq assays is shown. Sequence oligos were
 257 ordered from Integrated DNA Technologies, Inc for use. Dilutions required for each oligo is provided in STARR-seq protocol.

258

259

260

261

262

263

264

265 **Supplemental Table S3 (A-C):** Rubric used for scoring based on details provided for each feature

Steps	Rubric for each score based on details provided				
	0	1	2	3	4
Library size and DNA source	No detail	Only mentions genome wide/focused. Doesn't connect with goal of experiment	Library target justified and answers research question	Provides details on building target library including source of DNA and enrichment (if focused)	Explains scientific logic and provides complete detail on choosing library size, type, DNA source, enrichment.
Length selection	No detail	Fragment length	Fragment length and method of size selection	Justification of length and selection	Validation of selection
Insert Preparation	No detail	Mentions steps involved	Adapter ligation kit and LM_PCR reaction details including primers	Adapter ligation protocol parameters and number of reactions	Complete information on adapter sequences, explanation for choice
Library cloning	No detail	Insert source and vector name	Kit/reagent used	Total number of reactions, pooling information and purification steps	Insert and vector ratio with concentration and amount and optimization steps
Transformation	No detail	Transformation methodology	Competent cell name	Amount of competent cell and ligated product per reaction and number of reactions	Validation of transformation, complexity assessment, QC and optimization
Plasmid Library QC	No detail	Validation of any 1 step or QC checkpoint	Validation of any 2 steps or report both QC checkpoints	Validation of any 3 steps or provide intermediate reports for both QC checkpoints	Validation of all steps and report complete details for both checkpoints

266

267 **Supplemental Table S3A:** Rubric used for scoring each feature of each study for assessing plasmid library information is shown (for
268 **Figure 4 A, B).**

269

Transfection	No detail	Cell type	Transfection methodology	Transfection protocol	Transfection efficiency, validation and optimization
RNA Isolation	No detail	Different sub-stages of RNA (total RNA, mRNA prior to RT)	RNA extraction kits used for each sub-stage execution	Number of cells used, amount of final RNA, and description of protocol of kits used	Optimization and validation of RNA extracted at each sub-stage, purity and RNA integrity
Reverse Transcription	No detail	Reaction kit, primer and parameters	Amount of starting material and number of reactions.	Explanation for use of kit parameters	Validation and purification of cDNA obtained and optimizations.
Library screening QC	No detail	Explanation and validation of any 1 step	Explanation and validation of any 2 steps or report QC checkpoint	Explanation and validation of any 3 steps or report intermediate data for QC checkpoint	Explanation and validation of all steps and provide complete details for checkpoint

270

271 **Supplemental Table S3B:** Rubric used for scoring each feature of each study for assessing library screening information is shown
 272 (for **Figure 4 C, D**).

273

274

275

276

277

278

279

280

Sequencing Library preparation	No detail	Parameters of sequencing ready PCR reactions	Kit detail and protocol details for sequencing libraries (input and output)	Number of reactions, replicate information	Index information, lane and pooling information, final validation and amount sent for sequencing
Read Information	No detail	Mention sequencing platform and GEO	Read length, type of sequencing	Adapter type, total number of reads	Complete adapter sequence and reads per replicate
Read QC	No detail	Read QC steps reported in manuscript or supplementary document	Read QC tools used along with their parameters, raw data processing commands and post processing commands (after peak call) if applicable reported in manuscript or supplementary document	Final read depth or coverage per library reported in manuscript or supplementary document	Read loss due to mapping quality, N bases and bad/off-target reads reported in manuscript or supplementary document and enough information to calculate read depth or library coverage by a reader
Data QC	No detail	Correlation of replicates within input and/or output libraries reported in manuscript or supplementary document	Correlation across replicates within input and output libraries and details about transfection efficiency reported in manuscript or supplementary document	Correlation of enhancers reads between replicates and/or correlation of fold changes between replicates reported in manuscript or supplementary document	Number of reproducible peaks called across replicates and/or by sub-sampling filtered read file, reported in manuscript or supplementary document
Data transparency	No detail	Raw data and final enhancer activity data uploaded to public repository e.g. GEO	Filtered/Processed reads (after read QC) uploaded to public repo OR source code provided in public repo to reproduce filtered read file	Intermediate QC data uploaded to public repo OR source code provided in public repo to reproduce intermediate QC files	Complete analysis pipeline starting from raw data processing to analysis post peak calling uploaded to public repo. The source code should be sufficient to reproduce final results and QC data at all intermediate steps

281

282 **Supplemental Table S3C:** Rubric used for scoring each feature of each study for assessing library sequencing information (for
 283 **Figure 4 E, F).**

284 **Supplemental Protocol**

285

286 **STARR-seq Protocol (Girirajan lab)**

287 This mammalian (human) STARR-seq protocol is based on the protocol reported by Muerdter
288 and colleagues (Muerdter et al. 2018) and Neumayr and colleagues (Neumayr et al. 2019) from
289 Dr. Alexander Stark's lab, as well as the SeqCap EZ HyperCap Workflow by Roche (Roche
290 Sequencing Solutions, Inc, CA 94588, USA) along with various modifications and adaptations.
291 The major steps of the protocol are provided below, followed by detailed description of the steps.

292 **(1) STARR-seq plasmid library preparation**

293 (A) Insert preparation: End repair and dA tailing
294 (B) Insert preparation: Adapter ligation
295 (C) Insert preparation: LM_PCR
296 (D) Hybridization and Capture
297 (E) Vector preparation: Vector culturing
298 (F) Vector preparation: Vector linearization
299 (G) Library amplification: Library cloning
300 (H) Library amplification: Transformation
301 (I) Library amplification: Library storage and extraction

302 **(2) STARR-seq screening**

303 (A) Culturing of cells
304 (B) Transfection
305 (C) Total RNA isolation
306 (D) mRNA isolation
307 (E) TURBO DNase treatment
308 (F) RNAClean XP treatment
309 (G) cDNA library preparation: 1st strand synthesis
310 (H) RNase A treatment and AMPure XP clean-up
311 (I) UMI addition: 2nd strand synthesis
312 (J) UMI addition: UMI_PCR
313 (K) Junction PCR
314 (L) Sequencing Ready PCR: Output library preparation
315 (M) Sequencing Ready PCR: Input library preparation

316

317

318

319

320

321 **(1A) Insert preparation: End repair and dA tailing**

322 **Before starting:**

323 ➤ The first section of this protocol follows the SeqCap EZ HyperCap workflow by Roche. This
324 protocol replaces the NEBNext Illumina library preparation protocol reported by Neumayr
325 and colleagues (Neumayr et al. 2019) to incorporate hybridization and capture of the target
326 library using SeqCap EZ Prime Choice XL probes (Roche catalog # 08247510001).
327 ➤ The required reagents for this protocol include KAPA Hyper Prep reaction kit (Roche catalog
328 #KK8500) that consists of End repair and A-tailing buffer, End repair and A-tailing enzyme,
329 ligation buffer, DNA ligase and KAPA HiFi HotStart ReadyMix (2×). This kit also contains
330 primer mixes for standard Illumina adapters however, use custom adapter sequences
331 provided in supplementary table S2. Order additional polymerase for subsequent PCR steps
332 KAPA HiFi HotStart ReadyMix (2×) (Roche catalog #07958935001)
333 ➤ Prepare AMPure XP beads (Beckman Coulter catalog #A63881) for sample clean-up in
334 1.5ml Eppendorf tube (VWR catalog #87003-294) to equilibrate to room temperature for at
335 least 30 mins.
336 ➤ Human whole genome DNA (Promega catalog # G3041) is fragmented through sonication at
337 core facility and then selected at specified length using blue pippin and fragment length
338 distribution is verified on a bioanalyzer and provided in 5 tubes at ~ 33 ng/μl. Library is
339 sheared and selected to ~ 500 bp.
340 ➤ Take equal amounts (in ng) from each tube and pool to a total of 260ng DNA starting
341 material for end repair and dA tailing.
342 ➤ Starting DNA: 260 ng made up to 50 μl with ultra-water in 0.2 ml tubes (VWR catalog
343 #20170-012) in 2 replicates.

344

345 **End repair and dA tailing protocol:**

346 1. Thaw reagents on ice. Assemble following reaction on ice. Mix thoroughly by pipetting and
347 light tapping. Spin down and keep on ice.

	Reagent	Volume
1	KAPA End Repair & A-Tailing Buffer	7μl
2	KAPA End Repair & A-Tailing Enzyme mix	3μl
3	DNA + water	50μl
	Total	60μl

348

349

350

351 2. Incubate reactions on thermocycler (program: end_repair)

	Temperature	Time
1	20°C	30 mins
2	65°C	30 mins
3	4°C	hold

352

353 ➤ Continue to adapter ligation without stopping.

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373 **(1B) Insert preparation: Adapter Ligation**

374 1. Anneal adapter oligos: Resuspend adapter I and II sequences to 100 μ M stock (All adapter
375 sequences provided in supplementary table S2). Order fresh oligo sequences from IDT
376 (Integrated DNA Technologies, Inc, IA-52241) for new library. Use NEBuffer2 (New
377 England Biolabs catalog # B7002S).
378 2. Assemble following reaction in a 0.2 ml tube.

379

	Reagent/Oligo	Volume
1	Adapter I	10 μ l
2	Adapter II	10 μ l
3	NEBuffer 2	4 μ l
4	Ultra-pure water	16 μ l
	Total	40 μ l (25 μ M)

380

381 3. Incubate reaction at 95°C for 5 mins on thermocycler. Keep on bench for 2 hours to cool
382 slowly to room temperature.
383 4. Add 2 μ l ultra-pure water + 3 μ l adapter mix for final conc at 15 μ M for KAPA protocol. (5
384 μ l adapter per reaction in the next step)
385 5. Thaw out adapter ligation reagents on ice and assemble following reaction in 0.2 ml tubes.
386

	Reagent/Oligo	Volume
1	Ultra-water	5 μ l
2	KAPA Ligation Buffer	30 μ l
3	KAPA DNA Ligase	10 μ l
4	End Repair/dATail product (Step A)	60 μ l
5	Adapters (15 μ M)	5 μ l
	Total	110 μ l

387

388

389 6. Mix samples thoroughly by pipetting and spin down. Incubate in thermocycler (program:
390 Adapter lig)

391

	Temperature	Time
1	20°C	15 mins

392

393 7. Clean-up reaction using 0.8× AMPureXP bead clean-up (protocol below).

394 **AMPure XP Clean-up notes**

395 ➤ These are magnetic beads that bind to specific lengths of DNA depending on the ratio of
396 bead volume and sample volume.
397 ➤ Beads must be equilibrated to room temperature prior to use for at least 30 mins.
398 ➤ Use only freshly prepared 80% ethanol (diluted in ultra-pure water) for wash steps.
399 ➤ Ethanol wipe bench and magnetic rack prior to use.
400 ➤ All further AMPure XP clean-up steps will follow the same protocol with different volume
401 ratios and elution reagent type and volume.

402 **AMPure XP Clean-up protocol:**

403 1. Pipette appropriate amount of beads into sample tube. For 0.8× clean-up, pipette 88 µl beads
404 into each 110 µl adapter ligation reaction and transfer mix to 1.5 ml Eppendorf tube.
405 2. Mix beads and sample thoroughly by vortexing for 10 secs and pipetting vigorously. Spin
406 down the tube once finished.
407 3. Incubate mix for 5-10 mins at room temperature. Set-up magnetic rack during incubation and
408 prepare 5 ml 80% ethanol.
409 4. Place tubes on magnetic rack and incubate for 5 mins (till a clear solution is observed).
410 Carefully remove supernatant liquid without disturbing the beads. (Keep tube on the rack
411 while discarding supernatant)
412 5. Add 200 µl 80% ethanol and incubate for 30 secs to 1 min and then remove promptly. Repeat
413 this step. After 2 washes, leave tube on rack to dry.
414 6. If residue ethanol is scattered on the inner tube surface, spin down tube for 1-2 secs and then
415 use P20 pipette to remove trace ethanol. Dry tube for 2-3 mins or till no liquid visible.
416 7. Do not over-dry. The beads should have a moist liquid coating and not crack up.
417 8. Remove tube from rack and add 40 µl 10mM Tris-HCl at pH 7.5 for elution. Mix thoroughly
418 with beads and vortex lightly and spin down.
419 9. Incubate for 5 mins. Place tube back on magnetic rack. Wait till clear solution obtained and
420 pipette solution into a fresh 1.5 ml Eppendorf tube.
421 10. Measure sample purity and concentration. Typical concentration observed is ~ 40 ng/µl but
422 purity ratios will be high (>3 for both 260/280 and 260/230).
423 11. Use 3 µl adapter ligated DNA for subsequent LM_PCR step.

424

425 **(1C) Insert preparation: Ligation Mediated PCR (LM_PCR)**

426 ➤ This step adds overhang arms to the adapter ligated fragments to facilitate library cloning.
427 ➤ Use custom primers (LM_PCR forward and LM_PCR reverse) designed for human STARR-
428 seq ORI vector (Muerdter et al. 2018) as provided in supplementary table S2.
429 ➤ Order fresh primers from IDT for new library. Reconstitute oligos to 100 μ M.

430

431 **LM_PCR protocol:**

432 1. Dilute primers and make primer pool according to the following:

433

	Reagent/Oligo	Volume
1	LM_PCR forward	2 μ l
2	LM_PCR reverse	2 μ l
3	Ultra-pure water	16 μ l
4	Total	20 μ l

434

435 2. Thaw out LM_PCR reagents on ice and assemble following reaction on ice in 0.2 ml PCR
436 strip tubes.

437

	Reagent/Oligo	Volume
1	Adapter ligated DNA (Previous step)	3 μ l
2	Primer Mix	5 μ l
3	Ultra-water	17 μ l
4	KAPA HiFi HotStart Ready Mix	25 μ l
	Total	50 μ l

438

439

440

441

442

443 3. Gently mix and spin down and incubate in Thermocycler (Protocol: LM_PCR)

444

	Temperature	Time	Step
1	98°C	45 secs	Initial denaturation
2	98°C	15 secs	Denaturation
3	65°C	30 secs	Annealing
4	72°C	30 secs	Extension
5	72°C	60 secs	Final extension
6	4°C	Hold	

x 8

445

446 4. Clean-up reactions using 1.8× AMPure XP bead clean-up. (Use 90 μ l beads for each 50 μ l reaction. Elute samples in 30 μ l of ultra-pure water.

447

448 5. Measure concentration and purity. Typical yield is ~ 10-20 ng/ μ l.

449

450 6. **Checkpoint 1:** Assess samples on bioanalyzer. Send 3 μ l of each sample to assess purity and 451 fragment length distribution. Fragments should show a steady increase in length based on the 452 size of the adapter sequences and serves as the first validation of library preparation. This 453 also shows presence of adapter dimers or primer dimers as well as potential PCR biases.

454

455 7. Samples can be stored at -20°C.

456

457 8. For whole genome libraries, repeat several replicates of LM_PCR as directed in protocol 458 reported by Neumayr and colleagues (Neumayr et al 2019).

459

460 9. For focused libraries using hybridization and capture of target sites, perform at least 8 461 replicates. Assess each replicate for quality and length distribution.

462

463 10. Pool equal amounts from each replicate for hybridization and capture.

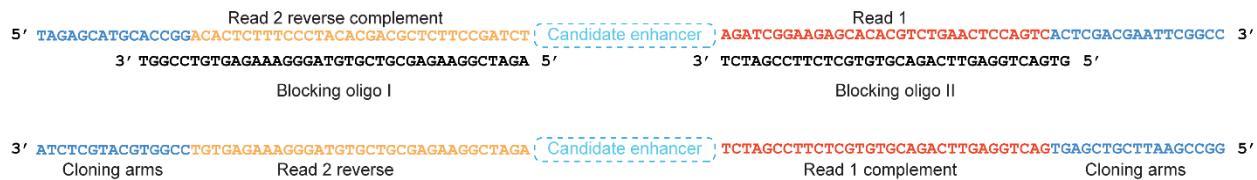
464

465

466

467

468


469

470

471 **(1D) Hybridization and Capture**

472 ➤ This step allows for selectively capturing target library using custom designed hybridization
473 and capture probes. The required kits needed for this include
474 (1) SeqCap EZ Prime Choice XL probes (Roche catalog # 08247510001)
475 (2) SeqCap EZ Hybridization and Wash kit (Roche catalog # 05634261001)
476 (3) SeqCap EZ Pure Capture Bead Kit (Roche catalog # 06977952001)
477 (4) Blocking Oligos custom designed (IDT), sequences provided in supplementary table S2
478 (5) COT Human DNA (Sigma Aldrich catalog #11581074001)
479 ➤ Upon receipt of probes, immediately aliquot into 4.5 μ l aliquots in 0.2 ml tubes and store at -
480 20°C. Each aliquot will be sufficient for 1 capture reaction.
481 ➤ To prepare blocking oligos, reconstitute oligos to 400 μ M. Use 2.5 μ l (1000 pmol) of each
482 for final reaction. Here is a schematic outline on the role of blocking oligos during
483 hybridization and capture.

484

485

486

487 ➤ Prepare pooled LM_PCR product from multiple replicates and measure final concentration
488 and purity. Starting material should be ~ 1 μ g of DNA.
489 ➤ Prior to starting, thaw capture reaction aliquot on ice.
490 ➤ Bring AMPure XP beads to room temperature for at least 30 mins for clean-up.

491 **Hybridization protocol:**

492 1. Prepare following reaction mix in a 1.5 ml Eppendorf tube.

493

	Component	Volume
1	COT Human DNA	5 μ l
2	Blocking Oligos	2.5 + 2.5 μ l
3	LM_PCR Pool	1 μ g

494

495 2. Calculate total volume of the mixture and add 2 \times AMPure XP beads to mix and vortex for 10
496 seconds and incubate at room temperature for 10 mins.
497 3. Place tube onto magnetic rack and discard supernatant when it clears.
498 4. Wash beads with 190 μ l 80% ethanol for 30 secs and remove and dry beads for 5 mins.

499 5. For each reaction, prepare a hybridization buffer mix:
500 7.5 μ l Hybridization Buffer + 3 μ l Hybridization Component A = 10.5 μ l
501 6. Add hybridization buffer mix to beads (per reaction) and vortex and incubate up to 2 mins
502 and place on rack.
503 7. Pipette complete 10.5 μ l solution from tube into fresh 200 μ l tube containing 4.5 μ l of
504 SeqCap EZ Prime Choice XL probes and mix thoroughly.
505 8. Incubate on thermocycler (program: Hybridization)

506

	Temperature	Time
1	95°C	5 mins
2	47°C	20 hours

507

508 **Wash and recover of captured library protocol:**

509 ➤ Follow SeqCap EZ HyperCap workflow (User's guide v2.3 pages 29 – 34) according to
510 manufacturer's instructions completely for capturing target library from hybridized beads.
511 ➤ Dilute all buffers according to the protocol.
512 ➤ Prior to starting, allow capture beads and AMPure XP clean-up beads to equilibrate to room
513 temperature for at least 30 mins.
514 ➤ Proceed directly to post capture LM_PCR reaction. All reaction parameters and primers are
515 same as previous LM_PCR.
516 ➤ Use sample and beads as starting material for LM_PCR (~ 20 μ l).
517 ➤ Perform 1.8 \times AMPure XP clean-up of LM_PCR product. Elute in 50 μ l ultra-pure water.
518 Repeat AMPure XP clean-up step and elute in 40 μ l. This significantly improves purity ratio
519 of final product.
520 ➤ Product now ready for library cloning.

521

522

523

524

525

526

527

528

529

530

531 **(1E) Vector preparation: Vector culturing**

532 Use human STARR-seq vector ADDgene #99296 as reported by Muerdter and colleagues
533 (Muerdter et al. 2018). The hSTARR-seq_ORI vector was a gift from Alexander Stark (Addgene
534 plasmid # 99296 ; <http://n2t.net/addgene:99296> ; RRID:Addgene_99296)

- 535 1. Use all standard bacteria culture protocols for preparation of LB broth, LB-agar plates and
536 antibiotic stocks. Prepare fresh broth and plates for use.
- 537 2. Prepare LB plates along with both ampicillin (10mg/ml stock) and chloramphenicol (25
538 mg/ml in ethanol stock) according to standard lab protocol. (final ampicillin concentration is
539 100 μ g/ml and chloramphenicol is 25 μ g/ml in plate) (Vector carries both resistance markers)
- 540 3. Streak LB plate using a sterile pipette tip with inoculum from vector stab and incubated
541 overnight at 37°C to grow isolated colonies.
- 542 4. Following day, pick multiple colonies using sterile pipette tips and inoculate 4 ml LB broth
543 with ampicillin and chloramphenicol in 14 ml bacteria culture tube (VWR catalog #60819-
544 524) (1 culture tube per colony) and shake at 300 rpm at 37°C overnight in shaker-incubator.
- 545 5. Use 1 ml of culture broth to make glycerol stock for each colony (Use standard procedure for
546 glycerol stock preparation). Spin down rest of the cultures and extract vector DNA using
547 ZymoPURE plasmid Miniprep kit (Zymo catalog #D4209).
- 548 6. Measure purity and concentration and send 2 samples for sanger sequencing at the genomics
549 core facility using multiple primers designed for ORI vector sequence verification to verify
550 sequence. (Sequences available on request)
- 551 7. Following sequence verification regrow sample with highest concentration and purity from
552 the glycerol stock. In the morning, pick glycerol stock with a sterile pipette and inoculate 2
553 ml of LB broth with ampicillin and chloramphenicol and incubate at 300rpm at 37C for 8
554 hours as a starter culture. In the evening, use 1 ml of starter culture to incubate 150 ml of LB
555 broth with ampicillin and chloramphenicol and incubate overnight at 300 rpm at 37°C.
- 556 8. Make fresh glycerol stocks using 1ml of culture. Spin down rest of the culture and extract
557 vector DNA using ZymoPURE II plasmid Midiprep kit (Zymo catalog #D4200) and verify
558 concentration and purity.

559

560

561

562

563

564

565

566

567

568 **(1F) Vector preparation: Vector linearization**

569 ➤ Reagents required include enzymes SalI-HF (NEB catalog #R3138S) and AgeI-HF (NEB
570 catalog #R3552S) along with supplied Cutsmart buffer and 6× purple loading dye.
571 ➤ Perform gel extraction using Zymoclean Gel DNA Recovery Kit (Zymo catalog #D4001).
572 Further PCR purification or sample concentration can be carried out using DNA clean and
573 concentrator kit (Zymo #D4003).
574 ➤ Bring AMPure XP beads to room temperature for at least 30 mins.
575 ➤ Prepare 1% agarose gel.
576

577 **Vector linearization protocol:**

578 1. Setup following reaction for each digest. Set-up 8 such reactions in 0.2ml PCR strip tubes
579 and incubate in thermocycler at 37°C for 2 hours. Approximately 1/3rd of the product will be
580 recovered from the gel so scale reactions accordingly for larger libraries.
581

	Digest mix	Volume
1	Vector	~ 1µg
2	SalI	1µl
3	AgeI	1µl
4	Cutsmart	5µl
5	Water	Up to 50µl
	Total	50µl

590

591 2. Run on 1% agarose gel for 1 hour at 100V till bands separate and cut out heavier band (~2kb)
592 and weigh each slice. Add 3 volumes of ADB buffer and melt gel at 55°C for 30 min.
593 Column purify each gel slice separately and pool 4 samples together and measure
594 concentration and purity. (Purity may be low).
595

596 3. Perform secondary clean-up with 1× AMPure XP beads for each pooled sample and confirm
597 concentration. (Should be above 35ng/µl)

598

599

600

601

602 **(1G) Library amplification: Library cloning**

603 ➤ For cloning, use the NEBuilder HiFi DNA Assembly Master Mix (NEB catalog #E2621L)
604 with the 2-3 fragment assembly protocol for efficient cloning. Alternatives include In-fusion
605 HD cloning and Gibson Assembly.
606 ➤ Try multiple ligation ratios to optimize library cloning. Repeat cloning using multiple
607 replicates to maximize library complexity.
608 ➤ Use DNA clean and concentrator kit or AMPure XP beads for reaction clean-up prior to
609 transformation.

610 **Library cloning protocol:**

611 1. Calculation of [insert: vector ratio] for ligation

612 Considerations:

613 a) Vector and insert mass and associated molarity
614 b) Maximum molar capacity per reaction (30 fmol – 200 fmol per reaction for ligating 2-3
615 fragments)
616 c) Final volume of reaction
617 d) Number technical replicates to be performed

618 For calculations:

619 ➤ Insert length: Use average insert fragment length as observed on bioanalyzer in step C.
620 ➤ Vector length: 2543 bp

621 Ratio calculations can be done using the NEBioCalculator
622 (<https://nebiocalculator.neb.com/#!/ligation>) to calculate amount of DNA for insert and vector
623 required for final reaction assembly. Example parameter calculation for cloning:

624

625 Starting material:

DNA	conc ng/ul	260/280	260/230
Insert_1	29.8	1.81	2.32
Insert_2	25.7	1.81	2.22
Vector	38.2	1.87	2.33

626

627

628

629

630 Cloning parameters:

631

Ratio	Vector (ng)	Vector (fmol)	Insert (ng)	Insert (fmol)	total fmol
1:2	100	63.64	51.91	127.3	190.94
1:2	50	31.82	25.95	63.62	95.44
1:2	70	44.54	36.34	89.1	133.64
1:7	39.29	25	71.38	175	200

632

633 2. Set up cloning reactions according to the following volumes. Perform at least 4 reactions for
634 each condition.

	Sample	Amount (volume)
1	Insert	X (depends on ratio)
2	Vector	Y (depends on ratio)
3	NEBuilder HiFi Assembly mix	Up to 10ul
4	Water	10
5	total	20 ul

635

636 3. Incubate reactions at 50°C for 1 hour. Pool 4 reactions of same conditions and purify using
637 1× AMPure XP beads and measure concentration and purity.

638

Ligation reactions	conc ng/ul	260/280	260/230	Ratio	# Reactions
HiFi Assembly_1	24.1	1.92	1.5	1:7	4
HiFi Assembly_2	36	2	1.87	1:2	4
HiFi Assembly_3	33.4	1.87	1.48	1:2	4
HiFi Assembly_4	31.8	1.88	2.22	1:2	4
HiFi Assembly_5	42.5	1.91	2.21	1:2	4
HiFi Assembly_6	41.6	1.87	2.21	1:2	4
HiFi Assembly_7	42	1.89	2.27	1:2	4

639 **(1H) Library amplification: Library transformation**

640 ➤ Use either NEB5 alpha (NEB #C2989, currently discontinued) and NEB10 beta (NEB
641 #C3020K) electrocompetent cells. Following protocol has been tested with only NEB
642 electrocompetent cells.

643 ➤ Perform test transformation for each cloning ratio in 25 µl competent cells. Vary between 2 –
644 5 µl of cloned product per transformation reaction.

645 ➤ For control, use supercoiled plasmid of choice, either plasmid provided with NEB
646 electrocompetent cells (pUC19 Vector at 50 pg/µl or plasmid PX459 (Ran et al. 2013)
647 (ADDgene catalog #62988). Vector pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from
648 Feng Zhang (Addgene plasmid # 62988 ; <http://n2t.net/addgene:62988> ;
649 RRID:Addgene_62988) For PX459, dilute stock to 1:10 and use 2 µl per transformation.

650 ➤ Prior to starting: Electroporation is a very time sensitive step and must be carried as quickly
651 and efficiently as possible. Make sure everything is kept ready, labeled and within reach.
652 After cells have thawed out, work as quickly as possible to proceed. If there are a large
653 number of reactions, perform and thaw in batches of 4 or 8 reactions.

654 ➤ Prepare adequate number of sterile LB-agar ampicillin plates according standard laboratory
655 protocol for estimating cloning efficiency and CFU/µg. Prepare >20 plates from 500 ml LB-
656 agar. Pre-warm to 37°C during transformation.

657 ➤ Prepare adequate amount of sterile LB broth with ampicillin for inoculating and amplifying
658 transformed library. Prepare 500 ml to 1 L LB broth depending on number of transformations
659 performed. Use >600 ml for 100 µl (4 reactions) to 200 (8 reactions) µl of competent cells.

660 ➤ Pre-chill electroporation cuvettes 200 µl and 20 µl tips overnight (or at least 1 hour) at 4°C.

661 ➤ Tightly pack ice into an ice bucket and spray with ethanol to make a ‘chilled ice sludge’.
662 Move cuvettes into ice bucket.

663 ➤ Pre-warm SOC media provided with electrocompetent cells to 37°C for 1 hour and place
664 back on bench.

665 ➤ Take out required number of sterile 1.5ml Eppendorf tubes (1 for each transformation
666 reaction) and place on ice to chill.

667 ➤ Thaw out electrocompetent cells on the ice. Gently flick tube to check thawing.

668 ➤ Label each tube with name of transformation reaction.

669 ➤ Label 14 ml round bottomed bacterial culture tubes with similar labels as tubes.

670 ➤ Make sure to work inside a sterile environment (under a lamp or inside a biosafety cabinet).
671 Wipe everything down with ethanol prior to starting transformation.

672 ➤ Ensure electroporation machine is within reach and set to correct parameters depending on
673 competent cells. Use 1700V for NEB5 alpha or NEB10 beta cells.

674 **Transformation procedure:**

675 1. After cells have completely thawed out, pipette out 25 µl of cells onto the pre-chilled and
676 labeled Eppendorf tube (DO NOT pipette more than once or necessary). Use pre-chilled tips
677 while pipetting.

678 2. Add appropriate amount of cloned product (2 – 5 μ l) to cell. Gently mix by flicking tube
679 from side by holding the tube around the cap a few times. Use pre-chilled tips. (High number
680 of unique colonies observed for 5 μ l of product in 25 μ l of cells)

681 3. Transfer mix of cells and cloned product into electroporation cuvette without any bubbles.
682 Wipe cuvette from the side and electroporate cells with 2 pulses. Record the time constants
683 for each transformation. (Typical range is 4.4 – 4.6 milliseconds).

684 4. Immediately add 975 ml of pre-warmed SOC media to cuvette and pipette up and down to
685 mix.

686 5. Transfer the transformant mixture into pre-labeled 14 ml bacterial culture tubes and incubate
687 in a shaker-incubator at 300 rpm at 37°C for 1 hour.

688 6. Repeat this for each transformation reaction one by one.

689 7. During 1 hour incubation, prepare LB broth and plates for overnight culture. Label plates
690 with name of cloning ratio being tested and serial dilution number.

691 8. Label flasks with cloning ratio being amplified. Keep separate flasks for different ratios. If
692 ratios show similar efficiency, products can be pooled during extraction.

693 9. Prepare 100% ethanol and sterile spreader for plating. Prepare 1.5 ml Eppendorf tubes for
694 serial dilution. Add 900 μ l of LB broth (no antibiotics) to each tube.

695 10. After 1 hour incubation, take 14 ml tubes off the shaker-incubator. Transformant sample
696 should be cloudy.

697 11. Use 1 reaction per ratio to test efficiency in dilution series. Take 100 μ l of transformant and
698 add to 900 μ l of LB broth in the 1.5ml Eppendorf tube for the 1st dilution (labeled as [-2])
699 and mix thoroughly.

700 12. Change tips and take 100 μ l of 1st dilution and add to another 900 μ l LB broth in the next
701 tube for the 2nd dilution (labeled as [-3]. Repeat this up to 5th or 6th dilutions (labeled [-6] and
702 [-7] respectively). Repeat this for each cloning ratio and control plasmid.

703 13. From each tube, take 100 μ l of diluted transformant and spread evenly onto the pre-warmed
704 plates and incubate overnight at 37°C.

705 14. Add rest of the transformants to the LB broth in conical flasks with ampicillin. Make sure
706 volume of broth is ~ 1/4 of maximum volume of flask. Use 500 ml flasks for 150 ml cultures.
707 Use 1 L flasks for 250 ml cultures. Pool replicates of same cloning ratios.

708 15. Incubate cultures overnight on shaker-incubator at 300 rpm and 37°C.

710

711

712

713

714

715

716

717 **(1I) Library amplification: Library storage and extraction**

718 1. After incubation between 12-16 hours check for colonies on LB plates. Depending on the
719 cloning and transformation efficiency, there should be at least >1 colony on the [-6] plate for
720 all successfully transformed libraries. DH10B should show increased number of colonies.
721 2. This can be used to compare efficiency of each cloning ratio and show overall estimates of
722 library complexity. A single colony on [-6] is equivalent to at least 1 million unique colonies.
723 Higher number of colonies indicates greater library complexity.
724 3. Control plasmid should show significantly more colonies than cloned products and can be
725 used to calculate the Colony Forming Units (CFU)/ μ g of plasmid transformed using the
726 formular provided by NEB. This helps estimate the transformation efficiency of the
727 competent cell being used.
728 4. After validation of transformation, check the optical density of the cultures (~ 2.6).

729 **Library Storage**

730 1. Pipette 5 ml of culture into a sterile round-bottomed 15 ml tube and spin down culture for 5
731 mins.
732 2. Pipette out LB broth and resuspend pellet in 750 ml of fresh LB broth. Mix with 750 ml of
733 sterile glycerol and transfer to 2 ml screw-capped cryotube. Label tubes and transfer to -80°C
734 for long term storage.
735 3. Make up to 5 glycerol stocks for each successfully transformed ratio.

736 **Library extraction**

737 1. Pipette remaining cultures into screw capped 500 ml centrifuge tubes and spin down.
738 Aspirate media and use pellet to extract DNA using ZymoPURE II Plasmid Maxiprep kit
739 (Zymo catalog #D4203) according to manufacturer's protocol.
740 2. Use up to 150 ml of culture per maxiprep reaction. Use centrifuge version of the protocol.
741 3. Perform optional endotoxin treatment on the extracted library using column provided in kit.
742 4. Verify concentration and purity of final library ready for transfection or input library
743 preparation.

744

745

746

747

748

749

750

751

752

753 **(2) STARR-seq Screening**

754 **(2A) Culturing of cells**

755 ➤ Follow standard cell culture techniques for all experiments. Conduct all cell culture inside
756 biosafety cabinet. Use only cell culture grade labware including sterile serological pipettes
757 (VWR catalog #89130-896 for 5 ml, catalog #89130-898 for 10 ml, catalog #89130-900 for
758 25 ml and catalog #414004-265 for 2 ml aspiration pipettes) and standard cell culture plates
759 and culture dishes.

760 ➤ Use HEK293T cells or cell line of choice for STARR-seq. Do appropriate literature review to
761 see evidence of IFN response from cell line upon transfection. HEK293T cells have not
762 shown to be highly susceptible.

763 ➤ Make appropriate media for HEK293T cells using following recipes.

	Media	percentage	Vol (500 ml)	Catalog number
1	DMEM (High glucose)	87	435	Sigma Aldrich #D6429-500ML
2	PenStrep	1	5	Sigma Aldrich #P4333
3	FBS	10	50	Sigma Aldrich #F2442
4	Non-essential amino acids	1	5	Sigma Aldrich #M7145-100ML
5	HEPES	1	5	Sigma Aldrich #H0887-100ML

764

765 ➤ For 500 ml solutions, take out 65 ml of DMEM from the bottle and prepare media inside
766 DMEM bottle.

767 ➤ Store FBS in 40-50 ml stocks in 50 ml tubes (VWR catalog #89039-656) and store at -20°C.
768 Thaw out FBS overnight at 4°C.

769 ➤ Store PenStrep at -20°C in 5-10 ml stocks in 15 ml tubes (VWR catalog #89039-666) and
770 thaw out at room temperature.

771 ➤ Scale recipe as needed.

772 ➤ Thaw cells in to 6-welled plates (VWR catalog #10861-696) or a 6 cm dish (VWR catalog
773 #25382-100) using standard lab protocol.

774 ➤ Passage cells every 2-3 days or when ~80% confluent and track cell morphology. Pass cell
775 through at least 3 passages prior to transfection.

776 ➤ For transfection of STARR-seq library, use at least 30 to 50 million cells per replicate (1 x 15
777 cm dish (VWR catalog #430599). For efficiency, passage cells from 2 or 3, 80% confluent 10
778 cm dishes (VWR catalog #25382-166) per 15 cm dish.

779

780

781 **(2B) Transfection**

782 Use Lipofectamine 3000 reagent (Thermo Fisher catalog #L3000008) for HEK293T cells with
783 OptiMEM (Thermo Fisher catalog #31985070). Transfection optimized and shown to be >70%
784 efficient and up to 90%.

785 1. Ensure ~70-80% confluence and healthy morphology of cells prior to starting transfection.
786 2. Pre-warm optiMEM media to 37°C in water bath. Label 1.5 ml sterile Eppendorf tubes to be
787 used for transfection. Keep everything inside biosafety cabinet.
788 3. Aspirate DMEM culture media from the dishes to be transfected, wash cells with 10 ml
789 sterile 1× PBS (Sigma Aldrich catalog #806552-500ML), aspirate and add 30 ml of
790 OptiMEM media to cells, 30 mins prior to transfection and place cells back into the
791 incubator. (While aspirating, be careful not to detach cells from the surface. Add media
792 dropwise or from the side of dish to prevent detachment.)
793 4. Scale lipofectamine 3000 protocol according to number of cells or size of culture dish/plate.
794 For 15 cm dish, use following reagent volumes. Remaining protocol steps are unchanged.
795 5. Perform up to 3 transfections per cell line. To avoid batch effects, transfect replicates on
796 separate days.

797

798

	Tube A	Vol
1	Lipofectamine 3000	57 μ l 800
2	OptiMEM	1443 μ l 801 802
3	total	1.5 ml 803

	Tube B	Vol
1	STARR-seq plasmid library	38 μ g
2	P3000 enhancer reagent	76 μ l
3	OptiMEM	1375 μ l
4	Total	1.5 ml

804 6. Prepare tubes A and B and add mix from
805 tube B into tube A dropwise, gently mix by tapping (DO NOT vortex) and incubate for 15
806 mins.

807 7. After incubation, gently pipette combined mix onto the cells and incubate for 24 hours.

808

809

810

811

812

813

814

815 **(2C) Total RNA Isolation**

816 ➤ Any RNA isolation kit may be used and should be scaled according to number of cells and
817 culture volume. Use Trizol plus RNA purification kit (Thermo Fisher Catalog #12183555)
818 for HEK293T cells. This kit combines trizol and chloroform extraction with PureLink RNA
819 Mini Kit.

820 ➤ RNA isolation should be carried out inside fume hood. Wipe everything down with
821 RNaseZap RNase Decontamination Solution (Thermo Fisher Catalog # AM9782) and use
822 separate tips and pipettes for RNA. Eppendorf tubes should be clean, RNase free and labeled
823 for each replicate.

824 ➤ Move tabletop centrifuge to cold room if temperature-controlled centrifuge not available at
825 least 1 hour prior to starting and wipe down with RNaseZap.

826 ➤ Harvest cells in trizol in the biosafety cabinet and then move to fume hood. Trizol and
827 chloroform are biohazard chemicals and all associated waste should be discarded separately
828 and disposed only in satellite waste area inside fume hood.

829 **Total RNA Isolation Protocol:**

- 830 1. For 15 cm dish, use up to 6 ml of trizol.
- 831 2. To collect cells, aspirate out all media from cells and wash the cells with 10 ml of PBS.
- 832 3. Add 6 ml trizol to cells directly and collect ~1 ml of cells in trizol per 1.5 ml Eppendorf tube
833 (6 tubes per replicate) and incubate for 5 mins at room temperature.
- 834 4. Add 0.2 ml of chloroform to each 1 ml of cells and trizol mix vigorously by shaking the tube
835 for 15 secs. Make sure tube cap is firmly closed and not leaking. Incubate at room
836 temperature for 3 mins.
- 837 5. Centrifuge tubes at 12,000 g for 15 mins at 4°C. Gently place tubes back inside fume hood.
838 Sample will form 2 phases inside tube. Lower phase will be red phase comprising of phenol-
839 chloroform, an interphase and upper aqueous phase will comprise of RNA.
- 840 6. Carefully pipette 450 – 500 µl of aqueous phase into fresh Eppendorf tubes without
841 disturbing other phases. Pipette 150 µl at a time for ease.
- 842 7. Add equal volume (450 – 500 µl) of 70% ethanol to each tube, vortex and spin down.
- 843 8. Add up to 700 µl of mix into spin column and centrifuge at 12,000 g for 30 secs at room
844 temperature and discard flow-through. Repeat process until all sample has been processed
845 using the same column for all tubes per replicate. (Use the same column for all 6 tubes per
846 replicate).
- 847 9. After all sample has been processed per replicate add 700 µl wash buffer I and centrifuge at
848 12,000 g for 30 secs and discard flow-through.
- 849 10. Add 500 µl of wash buffer II and repeat centrifugation and discard flow-through. Repeat
850 step.
- 851 11. Perform a final dry centrifuge spin at 12,000 g for 1 min to remove trace ethanol from the
852 column.
- 853 12. Remove collection tube and place column into fresh tube for RNA collection. Add 100 µl of
854 DEPC water to column and incubate sample for 1 min at room temperature.

855 13. Centrifuge tube at 12,000 g for 2 mins at room temperature and measure concentration and
856 purity.
857 14. Add 100 μ l DEPC water for 2nd elution and 3rd elution by repeating process and measure
858 concentration and purity of each elution. If values are consistent, pool eluates and measure
859 final concentration and purity. Purity ratio for 260/280 and 260/230 should be above 2.0.
860 15. Send samples for RIN analysis to genomics core facility for quality assessment.
861 16. RNA can be stored at -80°C or used for mRNA isolation.
862 17. Dilute total RNA to 750 ng/ μ l for mRNA isolation. Typical yield is ~1200 μ l of dilute total
863 RNA (~900 μ g of total RNA).

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884 **(2D) mRNA Isolation**

885 ➤ Use dynabeads mRNA Purification Kit (Thermo Fisher catalog #61006) for mRNA isolation.
886 Each kit contains reagents for 10 mRNA isolations.
887 ➤ However, binding buffer and wash buffer B (Thermo Fisher catalog #11900D) and elution
888 buffer (Thermo Fisher catalog #A33566) will not be enough if beads are to be reused and can
889 be ordered or prepared additionally. Binding buffer is not available separately and needs to
890 be prepared or ordered with kit.
891 ➤ Additional Lysis/Binding buffer (Thermo Fisher catalog #A33562) also needs to be ordered
892 for reusing beads). Instructions are provided on manufacturer website as well as in STARR-
893 seq protocol by Neumayr and colleagues (Neumayr et al 2019).
894 ➤ Dilute total RNA sample to 750 ng/µl prior to starting mRNA isolation. (Beads can process
895 up to 75 µg of RNA at a time and can be regenerated for reuse. Process 100 µl of diluted
896 total RNA at a time.
897 ➤ Use 200 µl of dynabeads per 100 µl of total RNA. Regenerate beads up to 6 times. Therefore,
898 use ~ 600 µl of total RNA for 1 x 200 µl dynabead reaction. Reuse beads within same
899 replicate to avoid cross contamination.
900 ➤ Work inside RNA hood and wipe everything with RNaseZap.
901 ➤ Set heat block A to 65°C and heat block B to 80°C.
902 ➤ Set tabletop shaker incubator to 25°C (room temperature) and 60 rpm.
903 ➤ Thaw out total RNA on ice before proceeding.

904 **mRNA Isolation Protocol:**

- 905 1. Separate the diluted total RNA into 100 µl batches in individual 1.5 ml Eppendorf tubes and
906 keep on ice.
- 907 2. Transfer tube containing the sample being processed to 65°C for 2 mins (to remove
908 secondary structures) and then immediately replace on ice.
- 909 3. To prepare beads, pipette 200 µl of the beads to a RNase free 1.5 ml Eppendorf tube and
910 place on magnetic rack for 30 secs. Carefully discard the supernatant without disturbing the
911 beads adhering to the magnet.
- 912 4. Remove tubes from the rack and add 100 µl of binding buffer to the tube, lightly mix and
913 place tubes back on rack. Remove supernatant. Add another 100 µl of binding buffer (or
914 same volume of total RNA being processed) and mix. Beads are not ready for mRNA
915 isolation.
- 916 5. Add 100 µl of total RNA to 100 µl of beads and mix by pipetting. Incubate on shaker
917 incubator at room temperature and low rpm (~60 rpm) for 5 mins.
- 918 6. Transfer tubes to magnetic rack and remove supernatant. Add 200 µl of wash buffer B, mix
919 and place tubes on magnetic rack. Remove supernatant and repeat wash step.
- 920 7. Remove the tubes from the rack and add 6-10 µl of elution buffer per 100 µl total RNA and
921 incubate samples at 80°C for 2 mins and immediately place tubes back on rack.
- 922 8. Pipette supernatant (mRNA) into a fresh tube and measure concentration and purity.

923 9. To reuse the beads, remove the beads from the rack and add 300 μ l of Lysis/Binding buffer
924 to wash beads. Place back on the rack, remove the supernatant and add 100 μ l binding buffer
925 to proceed with the next round of mRNA isolation for the same replicate. (Note, this is only
926 for reuse of beads and not regeneration which has a separate protocol provided on
927 manufacturer's website).

928 10. Repeat until all total RNA has been processed to mRNA. Pool multiple batches for each
929 replicate and measure final concentration and purity. Typical yield is between 45 – 70 μ l of
930 mRNA at \sim 400 ng/ μ l or 18 – 28 μ g of mRNA and depends on starting amount of total RNA
931 (around 1 – 5% of total RNA).

932 11. Store mRNA at -80°C or proceed with TURBO DNase treatment, RNA clean-up and reverse
933 transcription.

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952 **(2E) TURBO DNase treatment**

953 ➤ This is required to remove any residual DNA from sample prior to reverse transcription. Use
954 TURBO DNA-free Kit (Thermo Fisher catalog #AM1907).
955 ➤ Starting material is around ~400 ng/µl or ~400 µg/ml and thus requires the rigorous protocol
956 for TURBO DNase treatment and thus use 2 µl or 4 units of TURBO DNase enzyme per
957 reaction.
958 ➤ Process entire sample together per replicate. Scale protocol according to volume of mRNA.
959 ➤ Set heat block to 37°C prior to starting.

960 **TURBO DNase treatment protocol:**

961 1. Add 0.1 volume of 10× TURBO DNase buffer to sample.
962 2. Add 2 µl (4 units) of TURBO DNase enzyme and mix gently (DO NOT vortex).
963 3. Incubate at 37°C for 60 mins.
964 4. Add 0.2 volumes of DNase inactivation reagent and mix gently (DO NOT vortex) and
965 incubate at room temperature for 5 mins. Lightly flick tube to redistribute reagent every 1
966 min.
967 5. Centrifuge tubes at 10,000 g for 1.5 mins at room temperature and transfer supernatant to
968 fresh 1.5 ml Eppendorf tube for the next step.

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983 **(2F) RNAClean XP treatment**

984 ➤ Perform clean-up of each TURBO DNase reaction using RNAClean XP beads (Beckman
985 Coulter catalog #A63987)
986 ➤ Warm beads to room temperature for at least 30 mins.
987 ➤ Prepare fresh 80% ethanol for sample wash.
988 ➤ Set tabletop shaker incubator to 37°C and 60 rpm (low rpm).
989 ➤ Process 1 replicate per clean-up reaction. Scale volume of beads according to volume of
990 mRNA.

991 **RNAClean XP protocol:**

- 992 1. Add 1.8 volume of bead per 1 volume of mRNA sample and mix by thoroughly pipetting
993 >20 times and incubate at room temperature for 15 mins.
- 994 2. Transfer mix to magnetic rack and incubate for 10 mins or till when all beads have adhered
995 to magnet.
- 996 3. Remove supernatant (should be clear liquid) and add 500 µl of 80% ethanol for 1st wash.
997 Incubate for up to 2 mins, remove supernatant and add 500 µl of 80% ethanol for 2nd wash.
998 Incubate for 2 mins and remove without disturbing beads.
- 999 4. Dry beads completely at room temperature for 5 mins. Check for any residual ethanol inside
1000 tube and remove.
- 1001 5. Remove tubes from the rack, and add 20 µl DEPC water to beads for elution, mix by
1002 pipetting and vortexing and incubate in tabletop shaker incubator at 37°C at low rpm for 3
1003 mins and place tubes back on magnetic rack.
- 1004 6. Incubate for 1 min on the rack and pipette pure mRNA into a fresh 1.5 ml Eppendorf tube
1005 for further processing.
- 1006 7. Assess final concentration and purity of mRNA. This is the final checkpoint for samples
1007 prior to cDNA library preparation.
- 1008 8. Typical yield is ~12 µg of mRNA per replicate (600 – 900 ng/µl of mRNA in 19 µl of water
1009 (1 µl used for purity and concentration assessment)

1010

1011

1012

1013

1014

1015

1016

1017

1018 **(2G) cDNA library preparation: 1st Strand Synthesis**

1019 ➤ For 1st strand synthesis, use Superscript III kit

1020 ➤ Divide total sample amount by 5 and round off to nearest multiple of 5 to determine number

1021 of reactions required per sample. Use 5 reactions using 2.4 µg of mRNA per reaction for ~12

1022 µg samples.

1023 ➤ Adjust all samples to 12 µg in 20 µl (600 ng/µl) of DEPC water for uniformity across

1024 replicates. Use 4 µl (2.4 µg mRNA) per RT reaction.

1025 ➤ Though protocol suggests using 500 ng of mRNA at a time for 1st strand synthesis, we are

1026 performing reverse transcription only for fraction of mRNA that was self-transcribed due to

1027 enhancer activity and so taking larger amounts of mRNA is permissible.

1028 ➤ Dilute STARR-seq reporter specific primer to 2 µM. Dilute dNTP solution to 10 µM.

1029 **1st Strand Synthesis Protocol:**

1030 1. Assemble following reaction as reaction 1:

	Reagent/sample	Vol (µl)
1	mRNA	4
2	dNTP	1
3	Primer	1
4	Water	7
5	Total	13

1031

1032 2. Incubate at 65°C for 5 mins followed by 4°C for 1 min on a thermocycler (program RT_1)

1033 3. Assemble following reaction as reaction II:

1034

	Reagent	Vol (µl)
1	1 st strand buffer	4
2	DTT	1
3	RNaseOUT	1
4	Superscript III	1
5	total	7

1035

1036

1037 4. Add reaction II to reaction I for each RT reaction (final volume 20 μ l)
1038 5. Incubate according to following conditions on thermocycler (program RT_II):

1	50°C	60 mins
2	75°C	15 mins
3	4°C	hold

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059 **(2H) cDNA clean-up: RNase A treatment and AMPure XP clean-up**

1060 ➤ Treat all reverse transcribed samples with RNase A to remove residual RNA.
1061 ➤ Pool 5 RT reactions (total = 100 µl per replicate) (5 reactions carried out per replicate)
1062 ➤ Move to DNA bench to avoid pipetting RNase A in RNA isolation bench
1063 ➤ Prepare 80% ethanol for AMPure XP bead clean-up wash steps
1064 ➤ Bring beads to room temperature for at least 30 mins prior to starting.

1065 **RNase A treatment and AMPure XP bead clean-up Protocol:**

1066 1. Add 1 µl of RNase A (10mg/ml) per 5 RT reactions.
1067 2. Incubate at 37°C for 1 hour in thermocycler (program: RNase A treatment)
1068 3. Perform 1.4× AMPure XP bead clean-up protocol
1069 4. Elute cDNA in 43 µl DEPC water for next step.
1070 5. Measuring cDNA concentration is advised but is not accurate and hence it is also okay to
1071 proceed to either 2nd strand synthesis and UMI_PCR or directly to jPCR steps.

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088 **(2I) UMI addition: 2nd strand synthesis**

1089 ➤ Unique Molecular Identifiers (UMIs) are essential to label and filter out PCR duplicates from
1090 the libraries that occur during library preparation.

1091 ➤ For addition of UMIs, follow UMI-STARR-seq protocol reported by Neumayr and
1092 colleagues (Neumayr et al. 2019) including a 2nd strand synthesis reaction and UMI_PCR
1093 reaction prior to jPCR.

1094 ➤ Start 2nd strand synthesis using 2nd strand primer as shown by Neumayr and colleagues
1095 (Neumayr et al. 2019). Dilute primer to 10 µM in DEPC water for use.

1096 ➤ Use KAPA 2× HiFi Hot Start Ready mix polymerase (Roche catalog #07958927001)

1097

1098 **2nd strand synthesis protocol:**

10991. Process entire replicate cDNA (~43 µl) per reaction. Set-up following reaction for each replicate:

	Sample/reagent	Vol (µl)
1	cDNA	42.5
2	KAPA HiFi 2× Ready mix	50
3	2 nd strand primer	7.5
4	Total	100

1100

11012. Incubate reactions in thermocycler (program: 2nd strand synth)

1102

	Temperature	Time	Step
1	98°C	60 secs	Denaturation
2	65°C	30 secs	Annealing
3	72°C	30 secs	Extension

1103

11043. Reaction purification using 1.4× AMPure XP bead clean-up.

11054. Elute library in 43 µl of DEPC water for UMI_PCR step.

1106

1107

1108

1109 **(2J) UMI addition: UMI_PCR**

1110 ➤ To add UMI, use custom designed i7-UMI-P7 primer to add i7 index sequence and UMI
1111 sequence simultaneously to cDNA. This helps retain unique dual indexing to mitigate index
1112 hopping as well as allow for PCR duplicate filtration as opposed to Neumayr and colleagues
1113 protocol where the i7 is replaced by the UMI.
1114 ➤ Dilute primers to 10 μ M for use. Keep record of which index is being added to which sample
1115 and label all tubes.
1116 ➤ Process complete cDNA for each reaction.

1117 **UMI_PCR protocol:**

1118 1. Set-up following reaction for each replicate:

	Sample/reagent	Vol (μ l)
1	cDNA	42.5
2	KAPA HiFi 2 \times Ready mix	50
3	i7-UMI-P7 primer	7.5
4	Total	100

1119
1120 2. Incubate reaction in thermocycler (program: 2nd strand synth) Same conditions as 2nd strand
1121 synthesis.

	Temperature	Time	Step
1	98°C	60 secs	Denaturation
2	65°C	30 secs	Annealing
3	72°C	30 secs	Extension

1122
1123 3. Clean-up reactions using 1.4 \times AMPure XP bead clean-up and elute in 50 μ l of DEPC water
1124 per replicate. These samples are now ready for jPCR step.

1125
1126
1127
1128
1129 **(2K) Junction PCR (jPCR)**

1130 ➤ Perform same number jPCR reactions as RT reactions. Use 10 µl of cDNA library per jPCR
 1131 reaction.

1132 ➤ Use modified jPCR primers as provided by Neumayr and colleagues in their protocol
 1133 (Neumayr et al. 2019).

1134 ➤ jPCR allows amplification of only self-transcribed fragments and filters out plasmid
 1135 transcripts

1136 **jPCR protocol:**

1137 1. Set-up following reactions for each replicate. (5 reactions per replicate)

	Sample/reagent	Vol (µl)
1	cDNA library	10
2	DEPC water	10
3	jPCR forward primer	2.5
4	jPCR reverse primer	2.5
5	KAPA 2× HiFi Ready Mix	25
	Total	50

1138

1139 2. Incubate reactions in thermocycler (program: jPCR)

	Temperature	Time	Step
1	+98°C	45 secs	Initial denaturation
2	+98°C	15 secs	Denaturation
3	+65°C	30 secs	Annealing
4	+72°C	30 secs	Extension
5	+72°C	60 secs	Final extension
6	+4°C	Hold	

X 16

1140 3. Clean-up jPCR reactions by pooling all 5 reactions per replicate (250 µl per replicate) and
 1141 perform a 0.8× AMPure XP clean-up using 200 µl of beads per replicate.

1142 4. Elute in 50 µl DEPC water. Measure concentration and purity of final jPCR products prior to
 1143 performing final sequencing ready PCR step.

1144 5. Typical yield is around 50 – 130 ng/µl of 50 µl product. Yields may vary based on STARR-
 1145 seq activity and starting amount for samples.

1146 **(2L) Sequencing ready PCR: Output library preparation**

1147 ➤ This step is carried out to add i5 and P5 index adapters to the library before sending samples
1148 for sequencing.

1149 ➤ Use standard i5 primer as forward primer and P7 primer as shown in Neumayr et al 2019 and
1150 supplementary table S2.

1151 ➤ Dilute all primers to 10 µM prior to use.

1152 ➤ Bring AMPure XP beads to room temperature for at least 30 mins for PCR clean-up

1153 ➤ Prepare 1% agarose gel for test PCR run to determine number of cycles for PCR. Start with
1154 low cycle number. 5 cycles are sufficient for jPCR products obtained in the previous step.

1155 ➤ If performing test PCR, test on all samples since they may have different starting amounts.

1156 **Sequencing Ready PCR protocol:**

1157 1. Setup the following reaction for each replicate:

	Sample/reagent	Vol (µl)
1	jPCR product	10
2	DEPC water	10
3	i5 primer	2.5
4	P7 primer	2.5
5	KAPA 2× HiFi Ready Mix	25
	Total	50

1158

1159 2. Incubate reactions on thermocycler (program: SeqReady PCR)

	Temperature	Time	Step
1	+98°C	45 secs	Initial denaturation
2	+98°C	15 secs	Denaturation
3	+65°C	30 secs	Annealing
4	+72°C	30 secs	Extension
5	+72°C	60 secs	Final extension
6	+4°C	Hold	

X 5

1160

1161 3. Run 10 μ l sample with 2 μ l of 6 \times loading dye (for each replicate) on 1% agarose gel for 30
1162 mins at 130V and observe band. Check for characteristic smear for each band at right size as
1163 shown by Neumayr and colleagues (Neumayr et al. 2019). If band is concentrated, repeat
1164 PCR with lower cycles (if cycle >5) or try lower starting material (5 μ l of jPCR).
1165 4. Repeat PCR for correct starting amount and number of cycles as determined.
1166 5. Clean up each reaction with 1 \times AMPure XP beads and elute in 20 μ l. Typical yield can vary
1167 and may need to be diluted prior to sequencing.
1168 6. Samples once sent to core facility will be reassessed for quality, checked for distribution on
1169 tapestation, further diluted and pooled into an equimolar pool for sequencing.

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189 **(2M) Sequencing ready PCR: Input library preparation**

1190 ➤ To assess enhancer activity, plasmid library needs to be sequenced alongside output libraries
1191 for normalization.

1192 ➤ Library sequence architecture should be identical to enable pooling of library along with
1193 output libraries.

1194 ➤ Input library also goes through PCR steps and so also important to add UMIs to these
1195 libraries prior to sequencing similar to output libraries.

1196 ➤ Use custom i7-UMI-P7 primers designed for UMI addition. Use i5 primer to add i5 index
1197 and P5 adapter. Assign unique dual index pairs to each replicate of input library and use at
1198 least 3 replicates. Record indexes assigned. Dilute primers to 10 μ M prior to use.

1199 ➤ Bring AMPureXP clean-up beads to room temperature for at least 30 mins for clean-up.

1200 ➤ Prepare 1% agarose gel for final library fragment length verification and purification.

1201 ➤ For starting material, use 1 μ l of STARR-seq plasmid library (~750 ng/ μ l) added with 39 μ l
1202 of DEPC water.

1203 **UMI_PCR protocol for input library preparation:**

1204 1. Setup following reaction for each input replicate:

	Sample/reagent	Vol (μ l)
1	STARR-seq plasmid library	40
2	KAPA HiFi 2 \times Ready mix	50
3	i7-UMI-P7 primer	5
4	i5 primer	5
5	Total	100

1205

1206 2. Incubate reaction in thermocycler (program: UMI_PCR)
1207 3. Perform 1.4 \times AMPure XP clean-up of each replicate reaction. Elute in 20 μ l DEPC water.

1208

1209

1210

1211

1212

1213

1214 **Sequencing Ready PCR protocol for input library preparation:**

1215 1. Setup following reaction for each input replicate: (use complete product)

	Sample/reagent	Vol (μl)
1	Input replicate DNA	20
2	i5 primer	2.5
3	P7 primer	2.5
4	KAPA 2× HiFi Ready Mix	25
	Total	50

1216

1217 2. Incubate reactions in thermocycler (program: SeqReady PCR)
 1218 3. Run entire sample (50 μl) with 10 μl 6× loading dye on a 1% agarose gel for 30 mins at
 1219 130V.
 1220 4. Visualize gel and verify fragment length. Slice out band of correct length and weigh gel slice.
 1221 5. Extract DNA form gel slice using Zymoclean Gel DNA recovery kit.
 1222 6. Clean-up extracted DNA using 1× AMPureXP bead clean-up and elute in 25 μl of DEPC
 1223 water and measure concentration and purity. Typical yield is ~ 10 – 20 ng/μl.

1224

1225 ➤ All input and output libraries are sent to sequencing core facility for sequencing.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238 **References**

1239 Arnold. Cosmas D, Gerlach. Daniel, Stelzer. Christoph, Boryń. Łukasz M, Rath. Martina SA.

1240 2013. Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq.
1241 *Science* (80-) 339.

1242 Barakat TS, Halbritter F, Zhang M, Rendeiro AF, Perenthaler E, Bock C, Chambers I. 2018.
1243 Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells. *Cell*
1244 *Stem Cell* 23: 276-288.e8.

1245 Bergman DT, Jones TR, Liu V, Ray J, Jagoda E, Siraj L, Kang HY, Nasser J, Kane M, Rios A, et
1246 al. 2022. *Compatibility rules of human enhancer and promoter sequences*. Springer US.

1247 Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z,
1248 Snyder M, Dermitzakis ET, Thurman RE, et al. 2007. Identification and analysis of
1249 functional elements in 1% of the human genome by the ENCODE pilot project. *Nature* 447:
1250 799–816.

1251 Chaudhri VK, Dienger-Stambaugh K, Wu Z, Shrestha M, Singh H. 2020. Charting the cis-
1252 regulome of activated B cells by coupling structural and functional genomics. *Nat Immunol*
1253 21: 210–220. <http://dx.doi.org/10.1038/s41590-019-0565-0>.

1254 Glaser L V., Steiger M, Fuchs A, Van Bömmel A, Einfeldt E, Chung HR, Vingron M, Meijising
1255 SH. 2021. Assessing genome-wide dynamic changes in enhancer activity during early
1256 mESC differentiation by FAIRE-STARR-seq. *Nucleic Acids Res* 49: 12178–12195.

1257 Hansen TJ, Hodges E. 2022. ATAC-STARR-seq reveals transcription factor–bound activators
1258 and silencers within chromatin-accessible regions of the human genome. *Genome Res* 32:
1259 1529–1541.

1260 Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N, Shendure J.
1261 2017. A systematic comparison reveals substantial differences in chromosomal versus
1262 episomal encoding of enhancer activity. *Genome Res* 27: 38–52.

1263 Johnson GD, Barrera A, McDowell IC, D’Ippolito AM, Majoros WH, Vockley CM, Wang X,
1264 Allen AS, Reddy TE. 2018. Human genome-wide measurement of drug-responsive
1265 regulatory activity. *Nat Commun* 9: 1–9. <http://dx.doi.org/10.1038/s41467-018-07607-x>.

1266 Kalita CA, Brown CD, Freiman A, Isherwood J, Wen X, Pique-Regi R, Luca F. 2018. High-
1267 throughput characterization of genetic effects on DNA-protein binding and gene
1268 transcription. *Genome Res* 28: 1701–1708.

1269 Kim YS, Johnson GD, Seo J, Barrera A, Cowart TN, Majoros WH, Ochoa A, Allen AS, Reddy
1270 TE. 2021. Correcting signal biases and detecting regulatory elements in STARR-seq data.
1271 *Genome Res* 31: 877–889.

1272 Klein JC, Agarwal V, Inoue F, Keith A, Martin B, Kircher M, Ahituv N, Shendure J. 2020. A
1273 systematic evaluation of the design and context dependencies of massively parallel reporter
1274 assays. *Nat Methods* 17: 1083–1091. <http://dx.doi.org/10.1038/s41592-020-0965-y>.

1275 Lambert JT, Su-Feher L, Cichewicz K, Warren TL, Zdilar I, Wang Y, Lim KJ, Haigh J, Morse
1276 SJ, Canales CP, et al. 2021. Parallel functional testing identifies enhancers active in early
1277 postnatal mouse brain. *Elife* 10: 1–27.

1278 Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, Tung J. 2018.

1279 Genome-wide quantification of the effects of DNA methylation on human gene regulation.
1280 *Elife* 7: 1–27.

1281 Lee D, Shi M, Moran J, Wall M, Zhang J, Liu J, Fitzgerald D, Kyono Y, Ma L, White KP, et al.
1282 2020. STARRPeaker: uniform processing and accurate identification of STARR-seq active
1283 regions. *Genome Biol* 21: 1–24.

1284 Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
1285 00: 1–3. <http://arxiv.org/abs/1303.3997>.

1286 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
1287 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078–2079.

1288 Liu S, Liu Y, Zhang Q, Wu J, Liang J, Yu S, Wei GH, White KP, Wang X. 2017a. Systematic
1289 identification of regulatory variants associated with cancer risk. *Genome Biol* 18: 1–14.

1290 Liu Y, Yu S, Dhiman VK, Brunetti T, Eckart H, White KP. 2017b. Functional assessment of
1291 human enhancer activities using whole-genome STARR-sequencing. *Genome Biol* 18: 1–
1292 13.

1293 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
1294 RNA-seq data with DESeq2. *Genome Biol* 15: 1–21.

1295 Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, Feizi S, Gnrke A, Callan
1296 CG, Kinney JB, et al. 2012. Systematic dissection and optimization of inducible enhancers
1297 in human cells using a massively parallel reporter assay. *Nat Biotechnol* 30: 271–277.

1298 Muerdter F, Boryn LM, Woodfin AR, Neumayr C, Rath M, Zabidi MA, Pagani M, Haberle V,
1299 Kazmar T, Catarino RR, et al. 2018. Resolving systematic errors in widely used enhancer
1300 activity assays in human cells. *Nat Methods* 15: 141–149.

1301 Neumayr C, Pagani M, Stark A, Arnold CD. 2019. STARR-seq and UMI-STARR-seq:
1302 Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate
1303 Libraries. *Curr Protoc Mol Biol* 128: e105.

1304 Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, Lee C, Andrie JM, Lee SI,
1305 Cooper GM, et al. 2012. Massively parallel functional dissection of mammalian enhancers
1306 in vivo. *Nat Biotechnol* 30: 265–270.

1307 Peng T, Zhai Y, Atlasi Y, Ter Huurne M, Marks H, Stunnenberg HG, Megchelenbrink W. 2020.
1308 STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent
1309 mouse embryonic stem cells. *Genome Biol* 21: 1–27.

1310 Quinlan AR, Hall IM. 2010. BEDTools: A flexible suite of utilities for comparing genomic
1311 features. *Bioinformatics*.

1312 Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using
1313 the CRISPR-Cas9 system. *Nat Protoc* 8: 2281–2308.

1314 Sahu B, Hartonen T, Pihlajamaa P, Wei B, Dave K, Zhu F, Kaasinen E, Lidschreiber K,
1315 Lidschreiber M, Daub CO, et al. 2022. Sequence determinants of human gene regulatory
1316 elements. *Nat Genet* 54: 283–294.

1317 Schöne S, Bothe M, Einfeldt E, Borschiwer M, Benner P, Vingron M, Thomas-Chollier M,
1318 Meijssing SH. 2018. Synthetic STARR-seq reveals how DNA shape and sequence modulate
1319 transcriptional output and noise. *PLoS Genet* 14: 1–24.

1320 Shlyueva D, Stelzer C, Gerlach D, Yáñez-Cuna JO, Rath M, Boryń LM, Arnold CD, Stark A.
1321 2014. Hormone-Responsive Enhancer-Activity Maps Reveal Predictive Motifs, Indirect
1322 Repression, and Targeting of Closed Chromatin. *Mol Cell* 54: 180–192.

1323 Vanhille L, Griffon A, Maqbool MA, Zacarias-Cabeza J, Dao LTM, Fernandez N, Ballester B,
1324 Andrau JC, Spicuglia S. 2015. High-throughput and quantitative assessment of enhancer
1325 activity in mammals by CapStarr-seq. *Nat Commun* 6.

1326 Verfaillie A, Svetlichnyy D, Imrichova H, Davie K, Fiers M, Atak ZK, Hulselmans G,
1327 Christiaens V, Aerts S. 2016. Multiplex enhancer-reporter assays uncover unsophisticated
1328 TP53 enhancer logic. *Genome Res* 26: 882–895.

1329 Wang X, He L, Goggin SM, Saadat A, Wang L, Sinnott-Armstrong N, Claussnitzer M, Kellis M.
1330 2018. High-resolution genome-wide functional dissection of transcriptional regulatory
1331 regions and nucleotides in human. *Nat Commun* 9. <http://dx.doi.org/10.1038/s41467-018-07746-1>.

1333 Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, Stark A. 2015. Enhancer-
1334 core-promoter specificity separates developmental and housekeeping gene regulation.
1335 *Nature* 518: 556–559. <http://dx.doi.org/10.1038/nature13994>.

1336 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM,
1337 Brown M, Li W, et al. 2008. Model-based analysis of ChIP-Seq (MACS). *Genome Biol* 9.

1338

1339