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Supplementary methods
Mutation accumulation experiment

We started the MA experiment with two different strains: 2489 mat A and 2489 mat a. We have
previously generated these strains by backcrossing mating type mat a from strain 4200 into 2489
nine times (Kronholm et al., 2020). The strains differ in their mating types, but should share over
98% of the rest of their genetic background. Their Fungal Genetics Stock Center ID’s are: B
26708 and B 26709. We used 20 lines for both these strains, giving 40 MA lines in total. We used
two different mating types to later have the possibility to perform crosses between the MA lines.
However, for this study the mating types of the lines do not matter as all propagation was asexual.

Common protocols for culturing N. crassa were followed, and sorbose plates were used to
induce colonial morphology on plates (Davis and de Serres, 1970). The experiment was started by
picking a single colony from a sorbose plate for both ancestors and transferring that colony into a
75x12 mm test tube with flat surface of 1 mL of Vogel’s Medium (VM) with 1.5% agar and 1.5%
sucrose (Metzenberg, 2003). Tubes were incubated at 25 °C for 3 days to allow conidia (asexual
spores) to develop. Then we picked small amount of conidia with a loop into a tube with 1.4 mL of
0.01% Tween-80, we then pipetted 1 uL of this conidial suspension into a 50 ul. water droplet on
a sorbose plate and spread it. We incubated the plates at room temperature for 2 days and picked
single colonies to establish the MA lines. The MA lines were transferred the same way, so that a
single colony was always picked randomly from a sorbose plate to propagate the MA line (Figure
1B). We tested that 2 days of incubation was enough time for all colonies to appear on plates.
Combining the time of 2 days on plates and 3 days in a tube, a single transfer took 5 days. We
propagated the MA lines for 40 transfers, the ancestors and the MA lines were stored frozen in

suspended animation until sequencing.
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Estimating the number of mitoses in the MA experiment

To estimate the mutation rate per mitosis, we needed to estimate how many mitoses happened in
the MA lines during the experiment. To estimate the number of mitoses that happened during one
transfer, we needed to obtain data about the number of nuclei present in each phase of a transfer:
in a colony on a sorbose plate, in the mycelium in a test tube, and the conidia produced in the test
tube. To estimate the density of nuclei per um? of hyphae we used the strain mat A his-3"::Pccg-
I-hHI1"-sgfp™ (FGSC# 9518) which expressed a green fluorescent protein that had been fused into
histone H1 (Freitag et al., 2004). We grew the strain on plates with either normal VM medium or
sorbose medium, cut out a piece of the agar, and mounted it on a glass coverslip using the inverted
agar block method (Lichius and Zeilinger, 2019). We used Congo Red to stain cell walls: a 20
uL droplet with 2 uM Congo Red was pipetted to a glass coverslip and an agar block with the side
carrying the mycelium was placed face down in the droplet.

Samples were imaged with a Nikon A1R confocal microscope, GFP was excited with a 488
nm laser and detected with a 515/30 emission filter, Congo Red was excited with a 561 nm laser
and detected with a 595/50 emission filter. Plan apochromat air objectives 20x (numerical aperture
0.75) and 40x (numerical aperture 0.95) were used. Laser power was set as low as possible to avoid
saturated pixels. We imaged vertical stacks of the mycelium, and used imageJ2 (Rueden et al.,
2017) to measure the area covered by hyphae in sections of the image, and counted the number of
nuclei in these areas (Figure 1C).

We then estimated the number of nuclei in the different phases of a transfer, and calculated the
number of mitoses that the MA lines went through. The number of nuclei can only increase when
the old nuclei divide. If we know the number of initial nuclei and the number of nuclei at time ¢,

we can calculate the number of mitoses, m, that separate these time points from the equation

m = log, (%) (SD)

(2

where n, is the initial number of nuclei, and n; the number of nuclei at time ¢. Thus, in order to
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estimate number of mitoses that happened in the MA lines during one transfer, we need to count
how many nuclei were present in the colonies on sorbose plates that were picked and transferred
to slants, and how many nuclei were in the mycelium that formed in the test tube, and finally how
many nuclei were in the conidia that formed in the test tube (Figure 1B). This allows us to calculate
how many mitoses happened during one transfer of the MA experiment, from one spore to a spore.
There are multiple sources of uncertainty in these calculations, so we used a Bayesian framework
to do the calculations using posterior distributions of the estimates to incorporate all sources of
uncertainty in the final estimate.

Nuclei were counted from the microscope images using Fiji2 version 2.0.0-rc-54/1.51g (Schin-
delin et al., 2012). Short sections of mycelium were surrounded with the rectangular selection
tool and the area inside was measured. All nuclei with more than 50% of their diameter inside
the selection were counted manually. Multiple sections were counted from each image, with no
overlap. In some fainter images, the contrast was enhanced with the enhance contrast tool, with
the default value 0.3% saturated pixels and no histogram equalization. To estimate the number
of nuclei in a given area of hyphae, we used the counts of nuclei and the hyphal areas measured
from the microscope images to obtain the number of nuclei per um?. We had images for both VM
and sorbose plates, in total we collected 519 measurements. To estimate average density of nuclei
for VM and sorbose we used a model where we allowed standard deviations to differ for VM and

sorbose media:

i~ N(as, ) (52
i = p+ Bs;
log(o;) = a, + Box;
p, Bs ~ N(0,0.1)

A, By ~ hT(3,0,10)
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where y; is the ¢th density measurement, p is the intercept, s is the effect of sorbose medium, x;
an indicator variable for sorbose, «, is the intercept for standard deviation, and f3, is the effect of
sorbose medium on standard deviation. The average density of nuclei in VM medium is p and the
density of nuclei in sorbose is obtained as ps = p + [s.

To estimate the average size of colonies on sorbose plates, we plated conidia on sorbose plates
as in the MA experiment and photographed the plates. Millimeter paper was used as a scale.
Colony area was measured from these images with ImageJ2 version 2.0.0-rc-43/1.50e. The pixels
per millimeter calibration value was set by measuring the number of pixels per 1 mm of millimeter
paper. The images were enhanced with the sharpen tool to make the colony outlines more distinct.
The colony area was measured using the elliptical selection tool. We used 10 different genotypes
from different MA lines and timepoints in this experiment, including the 2 ancestors. We collected
a dataset with 482 area measurements. To estimate the average colony size, we fitted a multilevel

model

yi ~ N(pi, 0) (83)
Hi = Qglg]
agy ~ N(a, 04)

a ~ N(0,3)

0,0, ~hT(3,0,10)

where y; is the ith area measurement, & is the overall mean, «; is the mean for jth genotype, o,
is the genotype standard deviation, and o is the error standard deviation. Standard deviations had
a weakly informative prior, which was the half-location scale version of Student’s t-distribution,

where 3 is the degrees of freedom, O is the location, and 10 is the scale parameter. We estimated
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the number of nuclei in a sorbose plate colony, n, as

ns = a x 10° x Ps (S4)

the average colony size is multiplied by 10° to transform the unit from mm? to pm?.
Once the sorbose colony is transferred to the test tube, the mycelium will cover the surface of
the growth media. We estimated the number of nuclei present in the mycelium, n,, by multiplying

the surface of the media in the test tube with the density of nuclei in the hyphae in VM medium:

ny = m(d/2)* x 10° x p (S5)

where d is the diameter of the test tubes (in mm) used in the experiment, area is multiplied by 10°
to transform the unit to um?.

To estimate the number of conidia produced by the mycelium in the test tube, we counted
conidia by suspending them in 1 mL of 0.01% Tween-80, making a 10000-fold dilution of the
suspension, and plating 10 uL of the dilution on sorbose plates. We counted the colonies that were
formed, and estimated the original number of conidia produced. We used 10 different genotypes,
including the ancestors from the MA experiment to estimate produced conidia. We collected 71

measurements, the model was

4~ N (56)
i = Vg[s]

vy ~ N(v,0y)

u ~ hT(3,40,21)

0,0, ~hT(3,0,21)

where y; is the ith conidial number measurement, © is the overall mean, «; is the mean for jth

6
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genotype, o, is the genotype standard deviation, and o is the error standard deviation. Priors
followed Student’s t-distribution. The number of nuclei contained by the conidia, n. was estimated
as

Ne = 20 (ST

since the mode of nuclei in conidia of N. crassa is two.

The number of mitotic divisions separating two time points can be calculated from equation
S1. First, we need to calculate the number of divisions that happened when a single spore grows
to a colony on sorbose plate, then the number of divisions when the colony grows to a lawn of
mycelium in the test tube, and finally the number of divisions it takes to form the final number of
conidia. Thus, using the posterior distributions of numbers of nuclei in the different phases of the
transfer and equation S1, we can calculate the number of mitoses that happen during a transfer, m,

as:

Ng Ng + Ny Ng + Ny + N
m = logs () +logy (= ) + oy (1

which simplifies to

m = log, (ns +ny, +n.) — 1 (S8)

this estimate of the number of mitoses incorporates all sources of measurement error since posterior

distributions are used in every step of the calculations.

DNA extraction

To get high quality DNA for sequencing, the natural strains, MA lines, and the ancestors were
grown in 5 mL of liquid VM for two days at 25 °C with shaking. We harvested the mycelium
and freeze dried it over night in a lyophilizer. Dried mycelium was then ground with a glass bead
in Qiagen Tissue Lyzer for two times 20 s with frequency of 25 s~!. Then 500 uL of extrac-
tion buffer was added (10 mM Tris pH 8, 0.1 M EDTA, 150 mM NaCl, and 2% SDS), and the
powdered tissue dissolved by shaking. Then samples were extracted with 750 uL. of 25:24:1 Phe-

nol:Chloroform:Isoamylalcohol and keeping the aqueous phase. We added 2 pul. of RNAse A (10
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mg/ml) and 50 U of RNAse I to each sample and incubated them for 1 h at 37 °C. Samples were
then extracted with 750 pL of chloroform, 1 mL of 100% ethanol was added, and DNA was pre-
cipitated for 1 h at —20 °C. Then DNA was pelleted with centrifugation at 4 °C, ethanol aspirated,
pellet washed with 70% ethanol, and air dried. We then added 77.5 pL of TE-buffer to elute the
samples and incubated at 37 °C to help dissolve the pellets. We observed that occasional small
DNA fragments would remain in the samples and to remove these we did a polyethyleneglycol
precipitation: we added 12.5 pL. of 4 M NaCl, mixed and added 12 uL. 50% PEG (P3350), mixed
and precipitated DNA over night at 4 °C. DNA was then pelleted with centrifugation and the super-
natant aspirated, the pellet was washed twice with 70% ethanol, and aspirated. Pellets were eluted
to 55 uL. of TE-buffer as above. DNA concentrations were measured with the Qubit Broad Range

Kit, and DNA quality was checked by running 2 uL of the sample on an 0.8% agarose gel.

Read mapping and genotyping

To be able to map reads to the mating type locus in the mat a strains, we included the mating type
a region, as well as the mitochondrial genome, as additional contigs. Reads were mapped using
BWA-MEM version 0.7.12-r1039 with default parameters (Li, 2013). Alignment files were sorted
and indexed with samtools and read groups were added with picardtools. See table S1 for alignment
metrics.

We used the GATK version 4.2.0.0 (McKenna et al., 2010) pipeline to call single nucleotide
mutations (SNMs) and small indels. First, we ran Haplotypecaller for each sample individually to
make a g.vcf file. Haplotypecaller was run with otherwise default parameters, emitting all sites,
and in diploid mode. We then consolidated all of the samples together into a database using the
GenomicsBDImport function in GATK. Samples were then jointly genotyped with the Genotype-
GVCFs function to produce a vcf file with all samples.

We used wormtable version 0.1.5 (Kelleher et al., 2013) to convert the vcf file into an indexed
database and then a custom Python script to filter for high quality sites. For a site to be included

as a candidate mutation, first we required the genotypes of the ancestor and the MA line to differ



929

930

931

933

934

935

936

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

for that site. Second, the site had to have five or more reads from both the ancestor and the sample.
Third, the site had to have genotype quality greater or equal to 30 for both the ancestor and the
sample, and finally sites that were called heterozygous in either the ancestor or the sample were
excluded. There was also a filter that a site could not be called as a mutation if all of the MA lines
had the same genotype. Sites were considered as invariant if their reference genotype quality was
greater or equal to 30.

To produce the final dataset of curated mutations, we checked all candidate mutations manually
by inspecting the alignments from BWA and or Haplotypecaller in IGV (Thorvaldsdéttir et al.,
2013). Based on our manual inspection our filtering criteria were stringent enough, for our high
coverage haploid genomes, to remove mapping errors and leave only real mutations, as only very
few candidate mutations had to be rejected based on manual inspection and most mutations were
unambiguous.

For genotyping SNPs in the strains sampled from natural populations, the above pipeline was
used to call the genotypes. Other variants than SNPs were excluded. For a site to be included, it
had to be polymorphic in the sample, with a mean read depth five or greater, genotype quality 30
or greater, and mapping quality 40 or greater across all samples. Then these same criteria were
applied for each individual sample, and if a sample failed to meet the quality filters, its genotype
was recorded as missing data. Heterozygous sites were excluded. Sites were also excluded if >90%
of samples had missing data. Sites were called as monomorphic if the mean reference genotype
quality was 30 or greater and read depth 5 of greater across all samples. Then these same criteria
were applied to individual samples, genotypes were recorded as missing data if a sample did not

pass the filters.

Genotyping structural variants

There are several algorithms available to detect structural variants (SVs) from short-read sequenc-
ing data. However, because this kind of data is prone to base calling and alignment errors, none

of the available computational algorithms can accurately and sensitively detect all types and sizes
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of SVs (Kosugi et al., 2019). To overcome this limitation it is common to use several algorithms
and merge their outputs to increase sensitivity and precision. First, we assessed the performance of
four different SVs algorithms (DELLY, Lumpy, PINDEL and SVaba) using simulated data.

We evaluated the performance of different SV callers on simulated data created using SUR-
VIVOR version 1.0.7 (Jeffares et al., 2017). SURVIVOR simulates SVs by first modifying a fasta
reference file by randomly altering locations according to given parameters of length and number
of different SVs types (insertions, deletions, duplications, inversions and translocations). Reads are
simulated based on the modified fasta and SVs are detected using the preferred SV caller. Finally
SURVIVOR compares the SVs detected against the known simulated SVs, based on this FDR and
sensitivity can be calculated.

We simulated four sets with 18, 40, 50 and 120 structural variants with a mutation rate of 0.001
on the reference genome (assembly NC12). The number of each type of SV simulated in each set is
presented in the table S6. In set number four we simulated 20 complex SVs in which inversions and
deletions occur in the same location. For duplications the min and max length parameter was set to
100-1000 bp, for INDELs 20-500 bp, for translocations 1000-3000 bp and for inversions 600-800
bp.

The SV length distribution across our four simulated sets were very similar (Figure S23), and
the distribution coincides with ones reported in the literature, which indicates that short SVs are
more common than large ones (Jeffares et al., 2017). The number of reads, the error rate and
the coverage of the simulated data represent our sequenced reads. The inflated number of SV per
genome is for testing purposes.

Based on the modified fasta we created 150 bp pair end reads with an error rate of 0.003% and
a mean coverage of 30X using DWGSIM version 0.1.11 (Homer, 2021). Simulated reads were
then aligned to the reference genome using BWA-MEM (Li, 2013) with default parameters, and
SVs were called using DELLY version 0.8.7, LUMPY version 0.2.13, PINDEL version 0.2.5b9
and SVaba version 1.1.0 (Rausch et al., 2012; Layer et al., 2014; Ye et al., 2009; Wala et al.,

2018). Finally, we used SURVIVOR to evaluate the performance of each SV caller. The SV calls

10
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were considered correct if the simulated and detected SVs were 1) of the same type 2) on same
chromosome and 3) both start and stop locations were within 50 bp. The callers that performed the
best were DELLY and LUMPY as they showed high sensitivity score and low false discovery rate
(FDR) score (Table S6), and they were selected to call SVs on the MA lines.

For calling SVs in the MA lines we first aligned the reads to the reference genome using BWA-
MEM, excluded duplicated reads with SAMBLASTER version 0.1.26 (Faust and Hall, 2014),
and extracted the discordant paired-end and split-read alignments using SAMTOQOLS version 1.9
(Danecek et al., 2021). DELLY was used as indicated in the recommended workflow (Rausch et al.,
2012). For LUMPY the read and insert lengths were extracted from alignment files using SAM-
TOOLS and the SVs were genotyped using SVTyper version 0.7.1 (Chiang et al., 2015). To filter
out SVs that were present in the ancestor we used SnpSift version 5.0e (Cingolani et al., 2012). We
removed those calls with a genotype quality score lower than 30 and read depth below 10. The anal-
ysis with both callers were carried out in somatic-germline mode, considering MA line as somatic
and the ancestor as the germline. The signature of a translocation are reads with discordant mate
pairs, where both mates are consistantly mapped to other chromosomes for example. Translocation
length was determined from the break points of these discordant reads. All of the SVs detected by

each caller were manually verified by inspecting the alignment files in IGV.

Genotyping copy number variants

To evaluate the performance of copy number variant (CNV) detection algorithms, we simulated 32
CNVs using SECNVs version 2.7.1 (Xing et al., 2020), then simulated 150 bp paired end reads with
an error rate of 0.03% and a mean coverage of 30X using DWGSIM. We scanned for copy number
variants (CNVs) using two detection programs, CNVnator version 0.4.1 (Abyzov et al., 2011) and
CNV-seq version 0.2-7 (Xie and Tammi, 2009). CNV-seq was used with default parameters while
CNVnator was used with two different bin sizes, 75 and 1670. Bins of 75 bp allowed the detection
of small events, while bins of 1670 bp, which is the average gene length of N. crassa (Galagan

et al., 2003), allowed the detection larger-scale events. Both callers togetherperformed better that
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any of the callers individually by showing the lowest FDR rate score of 0.482, and good sensitivity
score of 0.906 (Table S7).

For genotyping CNVs in the MA lines we excluded MA line sites if the start or stop location of
these where within 500 bp of any site detected in the ancestor. Also, we only retained the sites that
were detected by both callers CNVnator and CNVseq (if 1000 bp or less overlapped at the start or
end location). The remaining sites were manually verified by inspecting the alignment file in IGV.

However, we did not find any evidence of copy number changes in the MA lines.

Chromatin modifications

To determine regions of the genome where chromatin modifications occur, ChIP-seq reads for
H3K9me3, H3K27me3, and H3K36me?2 were aligned to the reference genome using BWA-MEM,
and duplicate reads were removed by Picard tools. Domains of chromatin modifications were iden-
tified using RSEG 0.4.9 (Song and Smith, 2011). Data for centromeric regions were obtained from
Smith et al. (2011) and coordinate corrections for NC12 from Wang et al. (2020). The centromeric
regions were defined based on the presence of centromeric histone 3 variant: CENPA. Smith et al.
(2011) collected ChIP-seq data against CENPA and other centromeric proteins. Centromeric se-
quences in N. crassa are composed of AT-rich sequences of degraded transposable elements. How-
ever, the repeat arrays are heterogenous due to action of RIP, making almost all sequence suffi-
ciently unique to be able to map short reads to the genome (Smith et al., 2011).

Furthermore, we used the data of the duplicated regions that were defined by Wang et al. (2020).
Wang et al. (2020) identified duplicated regions using BLAST, with the criteria of at least 100 bp

alignment length and at least 65% sequence identity.

Analysis of relative mutation rate for different classes

For cases where the relative mutation rates were computed for different classes of mutations the

model was:

12
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y; ~ Poisson(\;) (S9)
log(\;) = log7; + oy

Qaqg ~ N(O, 10)

where 7; is an offset term for class j that allows taking into account differences in the abundance
of certain classes (McElreath, 2015), such as higher frequency of A’s and T’s than G’s and C’s in
the genome. Priors for different predictors remained the same as in equation 1. Furthermore, if
we calculate the expected number of mutations for different classes under the assumption that all
mutations in all classes are equally likely, as 7; = f;n, where f; is the frequency of class j and
n is the total number of observed mutations, and use 7;, the expected number of mutations, as the
offset parameter, then exp(cyj;)) yields the relative mutation rate of class j. Since all estimates for
different classes come from the same model, they are simultaneous comparisons in the statistical

sense.

Mutation rate variation across the genome

To model the effects of epigenetic domains and GC-content on mutation rate we used the following

model:

y; ~ Poisson(\;) (S10)
log(\;) =log T + a+ Bacxi + Brodi + Brargi + Boci + Praid;

a, 8 ~ N(0,10)

13
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where y; is the number of mutations a class of ¢ intervals contained, 7; is the number of class 7 inter-
vals in total, x; the GC-content of those intervals, d; indicates presence or absence of H3K9me3, g;
indicates presence or absence of H3K27me3, and ¢; indicates presence or absence of centromeric
region. [3 coefficients are the corresponding effects and « is the intercept.

Model selection was a combination of biological and statistical reasoning, and we tested mod-
els representing plausible biological hypotheses. For instance, we had a clear biological reason to
expect that GC-content influences mutation rate, and we saw a large improvement in model pre-
dictions when GC-content was included in the model. Therefore we did not further test models
without GC-content and with different combinations of other terms. Furthermore, the only bio-
logically realistic interactions are those involving GC-content and one of the domains. There are
no regions where H3K27me3 and centromeric regions overlap, or regions where H3K9me3 and
centromeric regions do not overlap, hence statistical interactions between domains are not possible
in our data. Tested models are shown in Table S2, model comparisons were done using the widely
applicable information criterion (WAIC) (McElreath, 2015; Vehtari et al., 2017).

When we assessed how well did the mutation model predict the natural genetic variation we
used the predicted mutation rates from model S10 as a response and 6y calculated from a popula-
tion sample of strains as a predictor in a simple regression model. Bayesian version of R? (Gelman
et al., 2019) was used to assess the model fit.

We could not asses the effect of duplicated regions defined by Wang et al. (2020) independently
of H3K9me3 regions. Nearly all duplicated regions overlapped with H3K9me3 regions (Figure
2). Those regions that were marked as duplicates, but which did not overlap with H3K9me3 or
H3K27me3, contained mainly mutations in microsatellite repeats. Only 10 point mutations were
observed in these regions, which was not enough to obtain reasonable estimates of independent
effect of duplicated regions on mutation rate. Of those 10 point mutations, 3 were C:G — T:A tran-
sitions. As C — T transitions were not over-represented, action of RIP is unlikely to be responsible

for these mutations, which is expected as RIP is active only during meiosis.
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Effects of local sequence context

To analyze effects of local base composition on the mutation rate, we estimated the effects of the
trinucleotides from a model that included the effects of the epigenetic domains. First, we extracted
the adjacent basepairs for every point mutation. There are 64 different trinucleotides, but as we
cannot know in which strand the mutation originally occurred we grouped the trinucleotides into
32 different classes based on sequence complementarity. For example, trinucleotides ATA and TAT
are complementary and were grouped. Then we counted how many times a given trinucleotide
occurs in the genome in all three reading frames. Relative mutation rate was analyzed using the

following model:

y; ~ Poisson(\;) (S11)

log(\;) = log 7y + By + Brods + Brarge + Bece

B ~ N(0,10)

We compared different linear models (Table S4) with the same reasoning as above. We did not
include an intercept in this model, as we wanted to obtain estimates for all trinucleotide classes,
and not set one class as the intercept against which the others are compared. This does not alter any
biological conclusions.

We further investigated how the flanking base pairs influenced the relative mutation rates of
the trinucleotides. We extracted estimates of the relative mutation rates for the trinucleotides from
model S11, and used these as a response in a model where we predicted relative mutation rates with
the identities of the flanking base pairs and the mutating base. Since our estimates of the relative
mutation rates contain uncertainty, we included the estimated error of the relative mutation rates in

the model. The model was:
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Yobs,i ™~ N(yest,iv ysd,i) (S12)
Yest,i ~ N(pti, 0)

pi = @+ Byxi + Bszi + B39i + Brswizi + Brawigi
a, f ~ N(0,10)

o ~hT(3,0,10)

where y,,s; 1s the median of ith observed relative mutation rate, y,q,; is the observed standard
deviation of the ¢th relative mutation rate, vy, ; is the ¢th estimated relative mutation rate, « is the
intercept, (3 is the effect of C:G relative to A:T for the mutating base, 35 is the effect of C:G relative
to A:T for the 5° flanking base pair, 3 is the effect of C:G relative to A:T for the 3’ flanking base
pair, (35 is the interaction effect of 5° CG when the mutating base is C:G, and ;3 is the interaction
effect of 3’ C:G when the mutating base pair is C:G. z;, z;, and g; are indicators whether the basepair
is C:G. We used the half location-scale version of Student’s t-distribution as a prior for the standard

deviation with 3 degree’s of freedom, location 0, and scale 10.

Supplementary results
Accuracy of mutation calling

Estimating mutation rates and particularly estimating differences in the mutation rate in different
parts of the genome requires accurate mutation calls. As some regions of the genome, such as cen-
tromeric regions, may contain repetitive sequences it is important to verify that the mutations are
called accurately in all regions of the genome, and that no region has an excess of false positive mu-
tations. First, we examined sequencing coverage throughout the genome, GC-content does have an
effect on sequencing coverage as regions of low GC can be preferentially amplified during library

construction, and we observed slight elevation on normalized coverage around 35% GC (Figure
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S13). However, overall we observed that sequencing coverage was rather uniform across regions
of different GC-content (Figure S13). Centromeric regions and regions marked by H3K9me3 have
low GC-content, and while we did observe that coverage went down in regions of < 15% GC,
those regions constitute a very small fraction of the genome. Next, we explored the accuracy of our
mutation calls after the mutations had been called by our pipeline and manually inspected in IGV.
We observed that overwhelming majority of mutations had the highest possible genotype quality
score determined by the GATK pipeline (Figure S1). Median genotype quality for mutations was
the highest possible value of 99, and only 8.6% of mutations had genotype quality less than 80
and only 1.9% less than 50. Distribution of quality scores was similar in different regions of the
genome (Figure S1). While there was slightly more mutations that had lower quality scores than
99 in regions marked by H3K9me3 and in centromeric regions than in euchromatic regions (Figure
S1), overwhelming majority of mutations in those regions have the highest genotype quality score
of 99.

If most of the mutations had genotype quality scores of 99, then what kind of confidence we
have in those mutation calls? We illustrate genotype quality scores with alignments viewed in
IGV that show mutations in different regions of the genome and different genotype quality scores
(Figure S14, S15, S16, S17, S18, S19, S20, S21, S22). When mutations had genotype quality
score of 99 they were unambiguous (Figure S14, S17, S20). When genotype qualities were around
70 mutations could still be distinguished from unambiguously, even if few reads did not support
the mutation or the mutations were in repetitive regions. When mutation genotype qualities were
around 45 this was usually a sign that the region had lower mapping quality due to repeats or
duplications (Figure S16, S19, S22). Despite of this, even in these regions, real mutations could
be distinguished from mapping errors by looking at which reads supported the mutation and which
did not (Figure S19, S22).

We have also provided screenshots of the alignments showing mutations viewed in IGV for a
random sample of mutations. We selected mutations randomly, by first splitting the mutations into

three genomic domains: H3K9me3, centromeric, and euchromatic, then drew a random sample of
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30 from each pool, for a total of 90 mutations (see supplementary file S2). Information about the
sampled mutations can be found in supplementary file S1.

The reason we chose first to do Sanger-verification for the mutations with the lowest genotype
qualities was because for mutations with genotype quality of 99, there was no doubt that these were
real mutations. We verified 23 base pair changes, of which 12 were in complex mutations and 11
as single nucleotide mutations. Of the 11 SNMs 5 were in regions marked by H3K9 (excluding
centromes), 3 in centromeric regions, and 3 in euchromatin. Of the 12 base pair changes in complex
mutations, 3 mutations were in H3K9 regions (5 base changes in total), 1 mutation in centromeric
region (2 base pair changes), and 3 mutations in euchromatin (5 base pair changes). In the second
verification set we sequenced 15 randomly sampled mutations from each genomic region (euchro-
matin, H3K9me3, and centromeric). One mutation located in centromeric region failed to amplify
by PCR, the remaining 44 mutations were all confirmed. In summary, we confirmed point muta-
tions by Sanger sequencing in centromeric, H3K9me3, and euchromatic regions. We confirmed
all point mutations where PCR-amplification and Sanger sequencing were successful, so we never
detected a false positive point mutation.

Why were the genotype qualities of the mutations so good in our experiment? There are several
factors in this study that contributed excellent genotype calls. First, the ancestors for the MA lines
were derived from line 2489 (synonym OR74a), which was the strain used for the original genome
project (Galagan et al., 2003). Therefore, the reference genome used for read mapping corresponds
to the genome of the MA line ancestors. This is seen in alignment metrics as 98% reads are mapped
to the genome in the ancestors and MA lines (Table S1). As such, there are likely not many reads
that would erroneously map to an incorrect location because their true source of origin was missing
from the reference genome. Second, as explained in the introduction, repetitive sequences tend
to diverge from each other in N. crassa due to the action of RIP. RIP does not induce the exact
same mutations to the duplications, so over time duplicated arrays, such as those often found in
centromeric regions, tend to diverge from one another, to the extent that short reads can be mapped

to the genome in regions where it is not often possible to the same extent in other species (Smith
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et al., 2011). Third, the small genome of N. crassa made it possible to sequence the samples to
a high depth, on average over 50x in many samples (Table S1). This allowed us to discriminate
between true mutations and mapping errors. With this kind of sequencing depth, sequencing errors
are simply not an issue anymore and they have no impact on calling the mutations, e.g. Figure S18
shows a mutation in repetitive region that as a consequence has higher frequency of sequencing
errors, but with so many reads identifying the real mutation is not a problem. Finally, N. crassa
is haploid. Combined with high sequencing depth, this makes identifying mutations easy. The
only important errors are read mapping errors that may cause some sites to appear as heterozy-
gous. But as heterozygous sites are not expected to occur in our experiment we can filter out sites
called as heterozygous. We did inspect heterozygous sites manually, as it is possible that some
mutations could have been present in a heterokaryotic state (nuclei with different genotypes in the
same mycelium). However, we did not find any evidence of true mutations in heterokaryotic state.
Whenever sites appeared as heterozygous, multiple sites were found close together (Figure S19),
indicating that read mapping errors were the more likely explanation. Because of these factors,
our study differs substantially from studies that need to call heterozygous sites from data with low
sequencing depth and the problem of calling genotypes correctly is of different nature.

In summary, overwhelming majority of mutations that our pipeline detected had the highest
possible genotype quality of 99, and this was true in regions of the genome with potentially more
repetitive and duplicated regions like in centromeric regions and regions marked by H3K9 methy-
lation. Those mutations that had genotype quality of 99 were unambiguously real mutations. Thus,
even if we would filter out every mutation with genotype quality less than 99, we would still de-
tect the observed pattern that mutation rate was higher in regions marked by H3K9 trimethylation
and in centromeric regions. Differential mutation calling in different regions of the genome cannot

explain the observed results.
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Simulating variation in mutation rate

Despite our very high genotype qualities, we attempted to further understand could repetitive se-
quences or other sequence features of heterochromatin in the N. crassa genome hinder our ability
to correctly estimate differences in mutation rates in different regions of the genome. We simulated
data under two different scenarios. First, we simulated a scenario where mutation rate was set to
be higher in H3K9me3 domains, with a rate of 2 x 10™° mutations per site, compared to the rest
of the genome, with a rate of 3 x 10~% mutations per site. In the second scenario, we simulated
a uniform mutation rate across the genome, with a rate of 2 x 10~% mutations per site. We simu-
lated mutations to the N. crassa genome using the program Mutation-Simulator (Kiihl et al., 2021).
We simulated 40 different MA lines for each scenario with a transition / transversion rate of 1.08.
We then generated simulated reads from these simulated genomes, using DWGSM (Homer, 2021),
with 30X sequencing depth and read length of 150 bp. We tried to imitate the conditions of our real
sequenced data, so we set the standard deviation of the base quality scores to two and the per base
sequencing error rate to 0.003. The ancestor of the MA lines was simulated by generating reads
from the reference genome of N. crassa. To call the simulated mutations from the simulated reads,
we ran the same pipeline as we used for the experimental data. Thus, we had two simulated scenar-
10s, and for each scenario we had information about the true number of mutations that happened in
the simulation, and number of mutations we called with our pipeline from the simulated read data.

In the scenario with the higher mutation rate in H3K9me3 regions, we ended up with a total of
1759 mutations, of which 719 were in H3K9me3 domains, 990 in euchromatin, and 50 in unspecific
domains. With our pipeline we detected a total of 1705 mutations, of which 692 were in H3K9me3
domains, 964 in euchromatin and 49 in unspecific domains. All of the called mutations were true
positives. However, we failed to call 54 true mutations, that is, these were false negatives. In a
similar manner, in the scenario with the uniform mutation rate, we ended up with a total of 3078
mutations, of which 562 were in H3K9me3 domains, 2245 in euchromatin, and 271 in unspecific
domains. Our pipeline detected 2978 mutations in total, of which 535 were in H3K9 domains, 2177

in euchromatin, and 266 in unspecific domains. Again, there were no false positive calls. We failed
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to detect 100 mutations in this set. In general, the number of false negatives was higher in H3K9me3
regions, with proportion of false negatives 3.75% and 4.80% in H3K9me3 regions, and 2.62% and
3.02% in euchromatin in for the different and uniform mutation rate scenarios respectively.

We found that the estimated mutation rate was higher in H3K9me3 regions in the scenario where
the true mutation rate was higher in H3K9me3 (Figure S2), the mutation rate ratio of H3K9me3
/ euchromatin was 3.39 [3.06, 3.72]. This mutation rate ratio was not statistically different from
the one calculated from the true simulated mutations: the difference was 0.28 [-0.15, 0.74], which
includes zero in the interval estimate. Furthermore, when we simulated a uniform mutation rate
across the genome, we found no difference among called and true datasets (Figure S2). The muta-
tion rate ratio of H3K9me3 / euchromatin was 1.15 [1.05, 1.27], there was no statistical difference
in the rate ratios between called and true simulated mutations: difference was 0.08 [-0.05, 0.23],
which includes zero in the interval estimate.

With this simulation data we show that our pipeline can confidently detect a difference in mu-
tation rates in different regions of the genome. This shows that sequence features of the H3K9me3
regions, such as repetitive sequences, do not interfere with mutation calling in a manner that would
lead to gross biases in mutation rate estimates in the different domains. While simulated read data
cannot capture all of the properties of real data, because of sequences missing from the reference
or assembly errors, it does give us confidence that we will be able to detect a real difference in mu-
tation rates. Moreover, since we did not observe any false positive mutations, we are confident that
mutation calling cannot generate spurious results in our case. We did observe slightly higher pro-
portions of false negative mutations in H3K9me3 regions. However, if this bias is true for real data,

this would make our estimate of the elevated mutation rate in H3K9me3 regions more conservative.

Robustness of relationship between 6y, and predicted mutation rate

We wanted to evaluate the robustness of the observed relationship between 6 and the predicted
mutation rate. One potential issue is that there are windows in the genome, especially for small

window sizes, where the observed 6 is zero. Since zero is the minimum value that § can obtain, and
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there is a clumping of = 0 observations in the data, this violates the assumption that response is
gaussian and could lead to biased estimates. However, since there so many data points, the model
may be robust to observations where 6 = 0. First, we tested the effect of window size, calculating
0 over longer windows reduced the number of windows where § = (. Increasing window size
slightly improves the amount of variation explained by the model (Figure S5). Thus, results are
robust the to different window sizes.

Then we tested whether the results were robust to different models. Data that can take zero or
positive values, but is clumped at zero, can be modeled in different ways. One possibility is Tobit
regression. Tobit regression is a type of censored regression, where observations are assumed to
have an underlying gaussian distribution, but appear as zeros if y; < 0 (Min and Agresti, 2002).
We used a conventional Tobit regression and robust Tobit regression, for both cases the results
were very similar to an ordinary regression model (Figure S6). Then, we tested a log-normal
hurdle model. In this model the response distribution is a mixture of two processes, one models the
probability that the observation is larger then zero, and the other is a log-normal gaussian model
(Min and Agresti, 2002). For the hurdle model, we also observed that that the relationship between
0 and predicted mutation rate was positive (Figure S6). Therefore, our results are robust to the
clumping at zero phenomenon.

Next, we tested whether the action of RIP could explain the relationship between 6 and pre-
dicted mutation rate. If level of genetic diversity is very high in H3K9me3 regions due to C — T
transitions induced by RIP, we want to make sure that this phenomenon does not solely cause the
relationship between 6 and predicted mutation rate. We cannot determine the exact contribution of
RIP to genetic diversity, because we do not know the ancestral states of the SNPs and therefore can-
not distinguish between C:G — T:A and A:T — G:C transitions. Furthermore, we would need to
know the population recombination rate to estimate the number of meiotic divisions for every mito-
sis and thus the frequency of RIP. Therefore, we looked at the relationship between ¢ and predicted
mutation rate within each of the genomic domains, and observed a positive relationship between ¢

and predicted mutation rate within each of the domains. Although, the effect was weak within cen-
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tromeric domains (Figure S7A). We then filtered the SNP dataset to include only transversions and
calculated € across the genome. There was a positive relationship between 6 for transversions only
and the predicted mutation rate within all domains except H3K9me3 (Figure S7B). These results
show that while RIP probably has a large contribution to genetic diversity in regions of H3K9me3,

it does not solely drive the relationship between # and predicted mutation rate.

Re-analysis of data from Wang et al. 2020

Wang et al. (2020) estimated the rate of spontaneous mutation during meiosis in N. crassa. During
meiosis a genome defence mechanism called repeat-induced point mutation (RIP) induces mainly
C — T transitions in duplicated regions of the genome resulting in a very high overall mutation
rate (Wang et al., 2020). While not made explicit by Wang et al. (2020), the duplicated regions
correspond almost completely to the H3K9 trimethylated domains. In order to better compare our
results for asexual mutation rate in different domains to the sexual mutation rate estimated in their
study, we re-analyzed the data from Wang et al. (2020) provided in their supplementary material,
and included the information about chromatin domains. Their data are comprised of mutations in
sequenced tetrads, which correspond to the products of a single meiosis. We included only those
tetrads originating from crosses between non-mutant strains. This leaves 67 tetrads in the data that
originate from five different crosses.

First we split the mutations to those that occurred in euchromatin and to those that occurred in
H3K9 trimethylated domains. We observed that the numbers of mutations occurring in euchromatin
and H3K9me3 domains for a given tetrad had very different distributions (Figure S11A), number of
mutations occurring per tetrad in the H3K9me3 domains had a very long tail. When we examined
the number of mutations per tetrad by cross, we observed a median of 22 mutations that occurred
in euchromatic regions per tetrad, with some differences among the five crosses. However, the
variation among tetrads from the different crosses was similar (Figure S11B). However, there were
a median of 38 mutations that occurred in the H3K9me3 domains per tetrad, but a huge variation

among tetrads, even within tetrads from a single cross (Figure S11B). For example, some tetrads
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from the same cross had 20 to 40 mutations, while others could have hundreds. In cross E the
range of mutations was from 27 in one tetrad to 1187 in another. Variation among mutations in the
H3K9me3 domains per tetrad suggest that while there probably were some genetic influences on
the mutation rate in the different crosses, there was substantial heterogeneity in the activation of
RIP that was independent of genetic effects.

We calculated the mutation rate per meiosis for the euchromatic regions of the genome using a

multilevel model with cross as a random factor. The model was

y; ~ Poisson()\;) (S13)
log(\i) = @+ agy

a ~ N(0, 10)

ae ~ N(0,0c)

0. ~hT(3,0,10)

where y; is the number of mutations in euchromatic regions in the 7th tetrad, & is the average inter-
cept, a. is deviation from average intercept for each cross, and o, is the cross standard deviation.
Prior for 0. was the half-location scale version of Student’s t-distribution, with 3 degrees of free-
dom, location 0, and scale 10. Based on posterior predictive checks, this model fitted the data.

Mutation rate was calculated from posterior distribution of & as

exp(a@) (S14)

o= ]\]7lt

where N is the number of called nucleotides, and n; is the number of tetrads. The mutation rate in
euchromatic regions during sexual reproduction was 1.07 [0.6, 1.67 | x 10~8 mutations / meiosis /
bp.

The data for mutations that occurred in the H3K9me3 domains are clearly overdispersed. To
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calculate the mutation rate per meiosis for the H3K9me3 domains we also modelled the heterogene-
ity among the tetrads. We fitted a gamma-poisson model, also called a negative binomial model, to
the data. A gamma-poisson model allows each observation, a tetrad in our case, to have a different
poisson rate allowing us to model this heterogeneity in observed rates (McElreath, 2015). We fitted

a model

y; ~ Gamma-Poisson(\;, ¢) (S15)
log(\;) = & + agy

a ~ N(0, 10)

a. ~ N(0,0,)

. ~ hT(3,0,10)

¢ ~ I'(0.01,0.01)

where y; is the number of mutations in the H3K9me3 domains in the 7th tetrad, ¢ is the dispersion
parameter, and other parameters were same as above. The prior for ¢ was a gamma distribution
with shape of 0.01 and scale 0.01. Posterior predictive check indicated that the model fit the data
reasonably well. The mutation rate was calculated from the average intercept as above. The muta-
tion rate in H3K9 trimethylated regions during sexual reproduction was 2.54 [0.11, 7.55 ] x10~7
mutations / meiosis / bp. As a result of rate heterogeneity there is quite a bit of uncertainty in the
estimate. The ratio of mutation rates in the H3K9me3 regions over the euchromatic regions was
23.710.99, 76.38]. While the 95% interval of the ratio slightly overlaps one due to large uncertainly
in mutation rate in the H3K9me3 regions, mutation rate those regions seems higher.

We examined the spectrum of mutations that occurred in the euchromatic and the H3K9me3 re-
gions separately, in the same way we did for asexual mutations. We observed that in the H3K9me3
regions there was a substantial over-representation of C:G — T:A transitions due to the action of

RIP (Figure S11C). However, the mutation spectra that occurred in euchromatic regions was much
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more similar to the one we observed during asexual reproduction in euchromatic regions. There
was no difference in the relative mutation rate of C:G — T:A transitions during sexual and asexual
reproduction in euchromatic regions. Some of the transversions did have different relative rates:
A:T — C:G, and C:G — G:C transversions had higher rate during sexual reproduction, while C:G
— A:T transversions had a lower relative mutation rate during sexual reproduction (Figure S12).
Our analysis gives somewhat different results compared to those of Wang et al. (2020), who
only calculated mutation rates across the whole genome, and did not take variation among tetrads
or crosses into account. We do find higher mutation rates during sexual reproduction than during
asexual reproduction, suggesting that in N. crassa meiosis is mutagenic in addition to the RIP ef-
fect in the H3K9me3 domains. However, the mutation rate per meiosis was much smaller than
that estimated by Wang et al. (2020). The H3K9 trimethylated regions contain mainly degraded
transposable elements, and are quite gene poor. If we compare non-synonymous mutations in eu-
chromatic and H3K9me3 regions, of those mutations that occurred in euchromatic regions 22.16%
were non-synonymous, while only 0.17% of mutations were non-synonymous in H3K9 methylated
regions. Thus, the very high mutation rate observed in H3K9 regions due to action of RIP, does
not necessarily translate into a high genetic load. We suggest that the mutation load during sexual

reproduction in N. crassa may not be as high as it has been suggested by Wang et al. (2020).
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Figure S1: Distribution of genotype qualities of observed mutations given by GATK. Distributions
are shown for the whole genome, euchromatin, H3K9me3 domains excluding centromeric regions,

and centromeric regions.

31



called + simulated

Ratio H3K9/euchromatin

T AP $____

higher' H3K9 uniform

Figure S2: H3K9me3 / euchromatin mutation rate ratio in the simulated data. Estimates calculated
from called mutations from the simulated reads are in red, and estimates calculated using the true
simulated mutations are in blue. The two different scenarios are: mutation rate was higher in
regions of the genome marked by H3K9me3, and mutation rate was uniform across the genome.
Points are means and range shows the 95% HPD interval of the ratio. Interval estimates overlap in
both scenarios.

32



A 37 B
[7)]
Q
=
2 <
© = 2
S 2 ¢
© 5
> ~
= ~
¢ ©
Z <
- g 14--t---- @ ----F----d - --
« o *
©
o
o O KA O ! O A !
}&v 00/0 /?. /@0 //\Y /&v O /IO /V‘ 00 /«V‘
/ / /7
KK o o &7 o A A ey A ey
Mutation Mutation

¢ Transition
é Transversion

Figure S3: Mutation spectra for the MA line 21. A) Relative mutation rates. B) Ratios of relative
mutation rates for line 21 / rest of the MA lines. Intervals for C:G — A:T transversions and C:G

— T:A transitions barely overlap one.

33



>

g e +

.% *

5 1

g O -=-mmrfmmmmmmmmmmmmmmmmm o mm ot e t""*"'"*'""*""‘"";"";""f""+""+' """"
g

23 255 28 305 33 355 38 405 43 455 48 505 53 555 58 605 63 655 68
GC content (%)

B 054

72\ +

g 004--f---- *— -------- * ----*----*----?----¢----f----+ ---------------------------------------------

;

s

>

2 -05

(]

2

<

@ -1.0

=

(=]

9 -154

138 161 184 208 231 254 277 30 323 347 37 393 416 439 462 486 509 532 555

GC content (%)

C 34

Log;q(relative mutation rate)
-

e e O B I A R
_l.
242 264 286 307 329 351 373 395 417 438 46 482 504 526 548 569 591 613 635
GC content (%)
D 14
v
©
c
E-J Y AU SRR AR PSPPIV TR RUIIRIPIO WUSUUY YR EUPUPU FpUpUpuet JRyy AU UUpUpRpUUy KSR EpR
g
>
S
(0]
2
8 ™
S
=
—
(=)
[}
a0,

161 183 204 225 247 268 289 3L1 332 353 374 396 417 438 46 481 502 524 545
GC content (%)

Figure S4: GC-content and relative mutation rate within domains. Relative mutation rates for
windows of 200 bp binned for GC-content at 2.5 percentage point intervals. Ticks on the horizontal
axis are at the end points of intervals. Note that y-axis is on a log;, scale, the dashed line indicates
relative mutation rate of one. Some bins did not contain any mutations, so estimates are missing for
those bins. A) Euchromatic regions B) H3K9me3 domains C) H3K27me3 domains D) Centromeric
regions. 34



G¢

200 bp windows

0.3 n = 202310
$=0.0096 [0.0095, 0.0097]
® R?=0.22[0.21,0.22]
°
0.2

-7 6 5 -4 3
log (predicted mutation rate)

800 bp windows

0.3 n =50575
B=0.0097 [0.0095, 0.0098]
R?=0.27 [0.26, 0.27]
0.2
2
D
™
0.1
0.0 1 ®
-7 6 5 4 -3

log (predicted mutation rate)

count

10000 q?
5000

count

4000

3000 =
D

2000

1000

400 bp windows

0.3 n=101153
B =0.0096 [0.0095, 0.0097]
[ R?=0.24[0.23, 0.24]
®
0.2 . count
6000 3
4000
2000
-7 6 5 -4 3
log (predicted mutation rate)
1000 bp windows
0.3 n = 40459
B=0.0097 [0.0095, 0.0098]
R?=0.27 [0.27, 0.28]
0.2 1 count
3000
2000
PY 1000
0.1 ®
0.0 ®
-7 6 5 4 3

log (predicted mutation rate)

600 bp windows

0.3 n=67436
$=0.0096 [0.0095, 0.0097]
®  R?=0.25[0.25, 0.26]
0.2 e count
5000
4000
3000

2000
1000

-7 6 5 -4 3
log (predicted mutation rate)

Figure S5: Effect of window size on regression between the predicted mutation rate and the observed nucleotide polymorphism in natural
populations. Results have been calculated for different window sizes. n is the number of windows, [ is the slope of the regression line,
and R? is the Baysian R? value, a measure of model fit.



9¢

Tobit regression

Robust Tobit regression

Log-normal hurdle model

0.3 n = 202310 0.3 n = 202310 0.3 n = 202310
f3=0.0094 [0.0093, 0.0095] f3=0.0093 [0.0092, 0.0094]
® R?=0.21[0.21,0.21] ® R?=0.21[0.2,0.21] ® R?=0.36[0.36,0.37]
° °® °
0.2 1 count 0.2 1 count 0.2 1 count

-7 6

5 -4 3

log (predicted mutation rate)

10000 g
I 5000

-7 6

5 -4 -3

log (predicted mutation rate)

10000 g
I 5000

0.14

0.01

10000
I 5000

-7 6

5 4 3

log (predicted mutation rate)

Figure S6: Effect of different models on regression between the predicted mutation rate and the observed nucleotide polymorphism. To
check the robustness of results to windows where § = 0, different models were used. Window size = 200 bp, n is the number of windows,
(3 is the slope of the regression line, and R? is the Baysian R? value, a measure of model fit.



Centromeric Euchromatic
012+ = 0.0042 [0.0015, 0.007] 3= 0.0153 [0.0148, 0.0159]
' P
0.08
0.04 A
count
0.00 1 F ol 1500
& H3K27 H3K9 1000
0124 B=0.0224 [0.0209, 0.024] 3=0.0128 [0.012, 0.0135] 500
0.08
0.04 4
0.00
-7 -6 -5 -4 -3 -7 -6 -5 -4 -3
log (predicted mutation rate)
B Centromeric Euchromatic
0.06
®
3=0.0035 [0.0027, 0.0044] 3= 0.0062 [0.0061, 0.0064]
0.04 A
0.02
‘t‘ % - e
0.00 2000
<§ 3K2 3K9 1500
H3K27 H3K
0.06 - . 1000
500
3= 0.0096 [0.0091,0.0101] 3 =-0.0021 [-0.0024, -0.0019]
0.04 4
L ]
‘ [}
0.02 -
F, .
<
0.00 1 - b -
-7 -6 -5 -4 -3 -7 -6 5 -4 -3

log (predicted mutation rate)

Figure S7: Regression between the predicted mutation rate and the observed nucleotide polymor-
phism within different regions of the genome. Window size was set to 1000 bp in both panels,
as there are large number of windows where # = 0 for small window sizes in the transversions
only data. n = 40459, (3 is the slope of the regression line. A) 6 has been calculated for all
SNPs, R? = 0.32[0.32, 0.33]. B) € has been calculated only for SNPs that represent transversions,
R? =0.29[0.28, 0.30].

37



Euchromatin

AAATTT 1

AAG:CTT 1

AAC:GTT 1

AAT:ATT -

GAATTC A
GAG:CTC 1

GAC:GTC 1

GAT:ATC 1
CAATTG A
CAG:CTG 1

T

CAC:GTG 1

CAT:ATG 1

TAATTA 1

TAG:CTA -
TAC:GTA -

L

TAT:ATA -

ACATGT 1

ACG:CGT -

ACC:GGT -

ACT:AGT A

GCA:TGC 1

GCG:CGC A

GCC:GGC -

GCT:AGC A

CCATGG 1

CCG:CGG -

CCC:GGG 1
CCT:AGG A

TCATGA -

TCG:CGA -

TCC:GGA -

1

TCT:AGA A

H3K9

il

LU

14

Whole genome

il

L

|

0

Figure S8: Observerved deviations of trinucleotide frequencies from expectations for different parts
of the genome. Observed trinucleotide frequencies were divided by their expected frequencies

[ T
N

1 IJE T
30 1 2
Observed / Expected

- -
N

30

based on GC-content. The dashed line shows the expected ratio of one.

38



All mutations Transitions Transversions
AAATTT A 1"_ —;—-— —;—-—
AAG:CTT — —— —L
AAC:GTTA —— —_—— —
AAT:ATT - —r — ——
GAATTCH{  —e— —_— —_—
GAG:CTCH _.._ —u— —-—~—
GAC:GTC{ ——L —_— —_—
GATATC{ —— ! —! !
CAATTG{ — —_— —
CAG:ICTGH{  —er— _—— —_—
CAC:GTG]| —e+ —— ——
CATATG{ —e—t —— ———
TAATTA A — — —
TAG:CTA - — —— ——
TAC:GTA - — — —
TATATA{  —— 1 —_— ——
ACATGT —f— —-;— _.“‘—
ACG:CGT - L— 4 —_—
ACC:GGTHA — —— —_—
ACT:AGT - — — —_——
GeaTee{ < —e— _— _
GCG:CGC A _.”_ —:—c— —';—
GCC:GGC - —— 4 —
GCT:AGC A — —— —_—
CCATGG A —— —_— _—
CCG:CGG — _— —_—
CCC:GGG A —— e P
CCT:AGG - —— — b———
TCATGA — —L -
TCG:CGA A —— — —_
TCC:GGA —  — | ————
TCT:AGA : —_— —:-— : -
0 1 2 3 0 1 2 3 0 1 2 3
Relative mutation rate
B All mutations Transitions Transversions
centromere E —_— E —_— E - .
H3K9{ ! — ! — ! —_—
H3K27 r' r" 1‘-
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Mutation rate relative to euchromatin

Figure S9: A) Relative mutation rates for the 32 different trinucleotide classes. B) Model estimates
for relative mutation rates for centromeric, H3K9me3 and H3K27me3 domains from the trinu-
cleotide model. Estimates are medians and range shows 95% HPD intervals.

39



Deletion Insertion

9-
=
6 5
Q.
@
w
’ !
c
g [ e N e
g 0
o
e
S
D 9- 7
2 3
o 2
.= 6 ® »
< ° 2
L ® g
o 37 g
c i 2
S 01
g
>
=
9-
Py
[}
?
61 2
(7]
o
>
31 <
e S S

Centromere H3K27  H3K9  Centromere H3K27  H3K9

Figure S10: Mutation rates for indels in the different domains relative to euchromatin. The dashed
line shows the relative mutation rate of one. Facets show deletions and insertions for all indels, for
indels that did not occur in repeats, and for indels that occurred in repeated sequences. Estimates
are medians and ranges show 95% HPD intervals. Intervals that do not overlap with one, that is,
those where mutation rate is higher than in euchromatin are colored red.

40



Euchromatin H3K9

8751 . 801

g

§ _

'S 5.0 201

o

ko)

§

Z 251 ‘ 10 1

00 |—| § _ . I|—| |—|I 0 ’T Il_|_| — — r l_lI
10 20 30 40 50 0 400 800 1200

Number of mutations

B Euchromatin H3K9
B 507 . o
B
2 1000
5 40 1 L
Q o <
g . 750 -
S 30 . .
g o ele °
g . i‘ . J 500 - . ]
20 - ©
© ° “
5 e 5T . fe 250 . o
-g 101 ° odeo ® oo °
2 * ° 0 * R ° [ e o @
A B C E G A B C E G
Cross
C [ transition [ transversion
Euchromatin H3K9 Whole genome
2.0 1
2
o
c 1.54
xe]
IS
g 1.0+
o
=
T
© 0.51
o

0.0-

Mutation

Figure S11: Mutations that occurred during sexual reproduction. Data is from Wang et al. (2020).
Note that y-axis scales are different in different panels. A) The distribution of the number of mu-
tations in the tetrads in euchromatin and H3K9 methylated domains. B) The number of mutations
per tetrad for the different crosses. C) Spectrum of mutations for different regions of the genome.
Error bars are 95% HPD intervals.

41



transition @ transversion

Euchromatin H3K9

Ratio of meiosis / mitosis relative rates
w

Mutation

Figure S12: Ratios of the relative mutation rates during meiosis over mitosis. Points are medians
and ranges show 95% HPD interval of the ratios. If the interval estimate is higher than one, mutation
rate in meiosis is higher, if the interval estimate is lower than one, mutation rate in mitosis is higher.

=
&

—o—
&
‘.
o
a1

N w
s [ ]
?.
*5?
=
o
abelanod paziewloN

0 25 50 75
%GC content in 100bp windows

Figure S13: Sequencing coverage plotted against GC-content of the genome for the mat A ancestor.
Other samples had similar profiles.

42



IGV - o x

File Genomes View Tracks i Tools pace Help

Supercontig_12.2 H bercontig_12.2:4,299,633-4,299,716| ... B « » @& -y I B S N AR

Neurospora_crassa_... |v

-

84 bp

4239 640 bp 4239 650 bp 4239 660 bp 4239 670 bp 4239 630 bp 4239 630 bp 4239 700 bp 4233 110 bp
| | | | | | | | | | | | | | | | |

ANC1ARG.bam Coverage

ANC1ARG.bam

L11&40.RG.bam Coverage

L11G40.R&.bam

|Seq eeeee #|||TGCG.‘\TGGGCCTG.‘\F\.‘\CGCCTGCT.‘\G.‘lG.‘\.‘l.‘\.‘\.f\.‘\.‘\A.‘\.‘\TT.‘\CGGTG.‘\RCGF\CGC.‘\GTGGTGGTHHRHGTHTCGHTTGRTTGTHR‘;“
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Figure S15: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
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Figure S16: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track is
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of the mutation is 45 as the mutation is located in a repetitive region. This mutation was confirmed
by Sanger sequencing.
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quality of the mutation is 67 as the mutation is located in a repetitive region.
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Figure S19: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 25. Mutation is in chromosome 5, position 1 046 639, in centromeric region. Genotype
quality of the mutation is 45 as the mutation is located in region with reduced mapping quality.
Some reads that do not support the mutation map to this location. However, those reads also have
other changes that are not supported by other reads. This suggest that reads not supporting the
mutation are mapping errors. This mutation was confirmed by Sanger sequencing.
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tion. Genotype quality is 99.
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Figure S21: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 18. Mutation is in chromosome 4, position 5 657 442, in region marked by H3K9

methylation. Genotype quality is 72.

50



GV - o x

File Genomes View

Tracks i Tools p Help

Neurospora_crassa_...

H

Supercontig_lz.7:141.154-141.242‘...‘ ft o« » @& # 3| =RERIRRRRERNRRNA] e

Supercontig_12.7 H

90 bp

141 160 bp 141 170 bp 141 180 bp 141 180 bp 141 200 bp 141 210 bp 141 220 bp 141 230 by 141 240 by
| | | | | | | | | | | | | | | | |

>[[ﬁ|\

ANC2a.RG.bam Coverage

L2140, R .bam

L21340.RéG . bam Coverage

———— 1
T T

]
I

-

-

-

TTACCGGATTTAATTATATAAATCTAATT TAAAGCAATCTAAAGCCTTTTACCCTCAACTTTAGCAGATCTACCTATATTATTACTAT TH

|lsupercontig_12.7:141242 | [ {1100 of 34918

Figure S22: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 21. Mutation is in chromosome 7, position 141 198, in region marked by H3K9 methy-
lation. Genotype quality is 45. Some reads do not support the mutation. However, those reads
have other changes that suggest a read mapping error. This mutation was confirmed by Sanger

sequencing.
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Figure S23: Densities for the length of distributions of SVs simulated using survivor. The charac-
teristics of each simulated set are specified in the supplementary table S6.
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Table S1: Summary of alignment metrics for genomes used in this study. The ancestors used to
start the MA experiment were: B 26708, which is 2489 mat A, and B 26709, which is 2489 mat a.
Lines L1-L20 are mat A and L21-1.40 are mat a.

Natural strains MA lines

Line Number of reads Depth Mapped reads (%) Line Number of reads Depth Mapped reads (%)
10882 30683221 112 87.2 B 26708 15183018 55 98.5
10883 20920000 76 69.7 B 26709 18679696 68 98.3
10884 32294020 118 72.8 L1 13215012 48 98.2
10886 15265173 56 92.7 L2 15658340 57 98.2
10892 32124218 117 62.3 L3 14699884 54 98.3
10904 14718008 54 91.1 L4 16424902 60 98.2
10906 14935778 55 89.7 L5 16328002 60 97.6
10907 32213115 118 68.1 L6 15189850 55 98.3
10908 13924689 51 91.7 L7 14006386 51 98.4
10912 14829204 54 92 L8 13888092 51 98
10914 30158241 110 61.1 L9 14386986 53 98.3
10915 24410441 89 61.1 L10 15458492 56 98.6
10918 40163515 147 65.4 L11 13884490 51 98.1
10923 16231892 59 92 L12 15913482 58 98.2
10925 37031022 135 85.2 L13 20192750 74 97.8
10926 32682749 119 66 L14 17445964 64 98.1
10927 17741573 65 73.1 L15 14776588 54 98.5
10928 15048163 55 92 L16 14562124 53 98
10932 13402421 49 91.1 L17 16043040 59 97.9
10935 22304835 81 81.1 L18 14755826 54 97.7
10937 29757556 109 85.4 L19 13712542 50 98.1
10943 32838278 120 72.8 L20 18685746 68 96.9
10946 17261401 63 90.1 L21 14814794 54 98.5
10948 13835447 50 91 L22 15849832 58 98
10950 14364201 52 98 L23 17528602 64 98.3
10951 13354998 49 89.5 L24 14415798 53 97.8
10983 38349194 140 72.8 L25 14773870 54 98.1
1131 16974127 62 88.7 L26 17436754 64 98.2
1133 14540257 53 88.3 L27 14047860 51 98.2
1165 15095250 55 90 L28 16295790 59 98.3
3210 13681263 50 90.4 L29 16244750 59 98.1
3211 13908534 51 89.4 L30 19847786 72 98.1
3223 14095397 51 92.1 L31 19613222 72 97.9
3943 143993668 525 82.6 L33 33430658 122 97.9
3975 13671543 50 88.8 L34 15456254 56 97.9
4708 14310459 52 87.7 L35 14405808 53 98
4712 12602174 46 86 L36 15567642 57 97.8
4716 18336337 67 86.7 L37 15232240 56 98
4730 15588817 57 87.4 L38 14265830 52 98
4824 12921275 47 88.3 L39 16540462 60 98.1
5910 12494976 46 834 L40 18856392 69 98.3
6203 13266522 48 89.3

851 12956372 47 89.7

8783 15381794 56 88

8790 13205097 48 90.1

8816 15452652 56 89.6

8819 13736103 50 87.5

8845 15868843 58 86.9

8850 12695261 46 89.3
P4452 172179164 628 86.9
P4463 21708426 79 69.7
P4468 21129155 77 68.4
P4471 24828717 91 724
P4476 92452134 337 86.8
P4479 22220857 81 72.5
P4489 34624044 126 72.5
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Table S2: Model comparisons among different models that predict the mutation rate by GC-content
and chromatin modifications. Model terms are different linear model parts, « is the intercept, Sgc
is the slope effect of GC-content, (kg is the effect of H3K9 domain, [x97 is the effect of H3K27
domain, ¢ is the effect of centromeric domain, f; is the interaction effect between GC-content
and H3K9 domain, 35 is the interaction effect between GC-content and centromeric domain, (33 is
the interaction effect between GC-content and H3K27 domain. d;, g;, and ¢; are indicator variables,
and z; is GC-content in percentage points. WAIC = widely applicable information criterion, SE =

standard error.

Model terms WAIC  diff (£ SE) weight
a + Baexi + Brod; + Brargi + Beci + Braid; 454.47  0(0) 0.63
a+ Bacxi + Brodi + Brargi + Boci + Braid; + Brsxigs  456.86  2.39 (2.19) 0.19
a+ Baox; + Brod; + Bec; + Braid, 458.67 4.2 (6.94) 0

a + Baoxi + Brod; 458.84  4.37 (10.59) 0
o+ Baoxi + Brod; + Boci + Braid; + Braxic 460.35  5.88(7.17) 0
o+ Baewi + Brod; + Braid; 495.86  41.39 (19.86) 0
a+ Bacwi + Brod; 496.65 42.18 (22.43) 0
a+ Baor; 546.62  92.15 (33.84) 0

a + Brod; + Pec; 614.83  160.36 (42.53) 0
o+ Prod; 645.82  191.35(49.19) 0
a+ Boci 1290.02 835.55(255.52) 0

o 1689.56  1235.09 (264.15) 0

Table S3: Model estimates for a model predicting mutation rate by GC-content, centromeric, H3K9,
and H3K27 domains, « is the intercept, Sg¢ is the slope effect of GC-content, Sk is the effect of
H3K9me domain, Sgo7 is the effect of the H3K27me3 domain, S¢ is the effect of centromeric

domain, and f3; is the interaction effect between GC-content and H3K9me domain.
Parameter Estimate [95% HPDI]

a —2.61[—3.34, —1.88]
Be 0.51 [0.35, 0.67]

Bk —0.14 [—0.93, 0.63]
Brar 0.32[0.08, 0.55]

Bac —0.06 [—0.08, —0.05]
By 0.02 [0.00, 0.04]
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Table S4: Model comparison among different models that predict the mutation rate by trinucleotide
class and chromatin modifications. Model terms are different linear model parts. « is the intercept,
B, is a vector of effects for the 32 trinucleotide classes, Skg is the effect of H3K9 domain, (o7
is the effect of H3K27 domain, (¢ is the effect of centromeric domain, 3; is the interaction effect
between trinucleotide class and H3K9 domain, 35 is the interaction effect between trinucleotide
class and centromeric domain. d;, g;, and c; are indicator variables, and x is the trinucleotide
class. WAIC = widely applicable information criterion, SE = standard error.

Model terms WAIC diff (£ SE) weight
Bz + Brodi + Brargi + Boc 621.31  0(0) 0.96
By + Brod; + Beoc 627.79  6.47 (6.95) 0.04
Bixy + Brodi + Brargi + Boci + Brogd;  640.35  19.04 (14.69) 0
Bz + Brod; + Boci + Brayd; 647.17  25.85(16.26) 0
ﬁtl’[t] + Brod; + Boc; + 5137[t]dz’ + ﬁjgx[t]ci 652.37 31.06 (18.55) 0
By + Brod; 693.47  72.15(21.8) 0
Brxy) + Brod; + Brepyd; 71779  96.48 (26.11) 0
Brod; + Bec 996.07 374.76 (67.31) 0
Brod; 1043.35 422.04 (67.64) 0
Bee 1370.5 749.19(114.3) 0

a 1776.5 1155.19 (135.53) 0
Bixpy 1916.35 1295.03 (134.38) 0
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Table S5: Natural strains with sequencing data included in this study. Strains were obtained from
FGSC. 33 strains were sequenced in this study and data for 23 strains were obtained from Zhao

et al. (2015).

Strain  Source Strain  Source

10948 This study | P4452 (Zhao et al., 2015)
10886 This study | P4463 (Zhao et al., 2015)
10932 This study | P4468 (Zhao et al., 2015)
1165  This study | P4471 (Zhao et al., 2015)
8816  This study | P4476 (Zhao et al., 2015)
3223 This study | P4479 (Zhao et al., 2015)
8845  This study | 10882 (Zhao et al., 2015)
10908 This study | 10883 (Zhao et al., 2015)
10904 This study | 10884 (Zhao et al., 2015)
851 This study | 10892 (Zhao et al., 2015)
1131  This study | 10907 (Zhao et al., 2015)
8850  This study | 10914 (Zhao et al., 2015)
8819  This study | 10915 (Zhao et al., 2015)
4708  This study | 10918 (Zhao et al., 2015)
4712  This study | 10925 (Zhao et al., 2015)
6203  This study | 10926 (Zhao et al., 2015)
4824  This study | 10927 (Zhao et al., 2015)
8783  This study | 10935 (Zhao et al., 2015)
8790  This study | 10937 (Zhao et al., 2015)
3975  This study | 10943 (Zhao et al., 2015)
10928 This study | 10983 (Zhao et al., 2015)
10912 This study | 3943  (Zhao et al., 2015)
3210  This study | P4489 (Zhao et al., 2015)
10923  This study

10950 This study

10951 This study

10946 This study

3211  This study

10906 This study

5910  This study

4730  This study

1133 This study

4716  This study
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Table S6: Detecting structural variants with different callers from simulated data. Callers tested were DELLY, Lumpy, SVaba, and Pindel.
Different sets are simulations with different numbers of structural variants.

DELLY Lumpy SVaba Pindel
set Deletion Duplication Inversion Translocation Insertion Inv-del Total number of SV sensitivity FDR sensitivity FDR sensitivity FDR sensitivity FDR
1 1 4 4 4 5 0 18 0.90 0 0.90 0.55 0.60 0.60 0.55 0.65
2 7 15 5 8 5 0 40 0.84 0.02 0.84 0.54 0.51 0.55 0.48 0.60
3 8 10 10 15 7 0 50 0.88 0 0.88 0.54 0.64 0.52 0.38 0.61
4 6 20 20 20 14 0 100 0.54 0.33 0.54 0.60 0.36 0.77 0.28 0.94

1433
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Table S7: Calling CNVs on simulated data using either CNVnator with two different bin sizes,
CNV-seq, or both callers together.

Sensitivity score FDR score

CNVnator (1670 bin size) 0.375 0.556
CNVnator (75 bin size) 0.968 0.797
CNV-seq 0.937 0.999
Both callers 0.906 0.482
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