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Supplementary methods786

Mutation accumulation experiment787

We started the MA experiment with two different strains: 2489 mat A and 2489 mat a. We have788

previously generated these strains by backcrossing mating type mat a from strain 4200 into 2489789

nine times (Kronholm et al., 2020). The strains differ in their mating types, but should share over790

98% of the rest of their genetic background. Their Fungal Genetics Stock Center ID’s are: B791

26708 and B 26709. We used 20 lines for both these strains, giving 40 MA lines in total. We used792

two different mating types to later have the possibility to perform crosses between the MA lines.793

However, for this study the mating types of the lines do not matter as all propagation was asexual.794

Common protocols for culturing N. crassa were followed, and sorbose plates were used to795

induce colonial morphology on plates (Davis and de Serres, 1970). The experiment was started by796

picking a single colony from a sorbose plate for both ancestors and transferring that colony into a797

75×12 mm test tube with flat surface of 1 mL of Vogel’s Medium (VM) with 1.5% agar and 1.5%798

sucrose (Metzenberg, 2003). Tubes were incubated at 25 ◦C for 3 days to allow conidia (asexual799

spores) to develop. Then we picked small amount of conidia with a loop into a tube with 1.4 mL of800

0.01% Tween-80, we then pipetted 1 µL of this conidial suspension into a 50 µL water droplet on801

a sorbose plate and spread it. We incubated the plates at room temperature for 2 days and picked802

single colonies to establish the MA lines. The MA lines were transferred the same way, so that a803

single colony was always picked randomly from a sorbose plate to propagate the MA line (Figure804

1B). We tested that 2 days of incubation was enough time for all colonies to appear on plates.805

Combining the time of 2 days on plates and 3 days in a tube, a single transfer took 5 days. We806

propagated the MA lines for 40 transfers, the ancestors and the MA lines were stored frozen in807

suspended animation until sequencing.808

2



Estimating the number of mitoses in the MA experiment809

To estimate the mutation rate per mitosis, we needed to estimate how many mitoses happened in810

the MA lines during the experiment. To estimate the number of mitoses that happened during one811

transfer, we needed to obtain data about the number of nuclei present in each phase of a transfer:812

in a colony on a sorbose plate, in the mycelium in a test tube, and the conidia produced in the test813

tube. To estimate the density of nuclei per µm2 of hyphae we used the strain mat A his-3+::Pccg-814

1-hH1+-sgfp+ (FGSC# 9518) which expressed a green fluorescent protein that had been fused into815

histone H1 (Freitag et al., 2004). We grew the strain on plates with either normal VM medium or816

sorbose medium, cut out a piece of the agar, and mounted it on a glass coverslip using the inverted817

agar block method (Lichius and Zeilinger, 2019). We used Congo Red to stain cell walls: a 20818

µL droplet with 2 µM Congo Red was pipetted to a glass coverslip and an agar block with the side819

carrying the mycelium was placed face down in the droplet.820

Samples were imaged with a Nikon A1R confocal microscope, GFP was excited with a 488821

nm laser and detected with a 515/30 emission filter, Congo Red was excited with a 561 nm laser822

and detected with a 595/50 emission filter. Plan apochromat air objectives 20x (numerical aperture823

0.75) and 40x (numerical aperture 0.95) were used. Laser power was set as low as possible to avoid824

saturated pixels. We imaged vertical stacks of the mycelium, and used imageJ2 (Rueden et al.,825

2017) to measure the area covered by hyphae in sections of the image, and counted the number of826

nuclei in these areas (Figure 1C).827

We then estimated the number of nuclei in the different phases of a transfer, and calculated the828

number of mitoses that the MA lines went through. The number of nuclei can only increase when829

the old nuclei divide. If we know the number of initial nuclei and the number of nuclei at time t,830

we can calculate the number of mitoses, m, that separate these time points from the equation831

m = log2

(
nt

ni

)
(S1)832

where ni is the initial number of nuclei, and nt the number of nuclei at time t. Thus, in order to833
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estimate number of mitoses that happened in the MA lines during one transfer, we need to count834

how many nuclei were present in the colonies on sorbose plates that were picked and transferred835

to slants, and how many nuclei were in the mycelium that formed in the test tube, and finally how836

many nuclei were in the conidia that formed in the test tube (Figure 1B). This allows us to calculate837

how many mitoses happened during one transfer of the MA experiment, from one spore to a spore.838

There are multiple sources of uncertainty in these calculations, so we used a Bayesian framework839

to do the calculations using posterior distributions of the estimates to incorporate all sources of840

uncertainty in the final estimate.841

Nuclei were counted from the microscope images using Fiji2 version 2.0.0-rc-54/1.51g (Schin-842

delin et al., 2012). Short sections of mycelium were surrounded with the rectangular selection843

tool and the area inside was measured. All nuclei with more than 50% of their diameter inside844

the selection were counted manually. Multiple sections were counted from each image, with no845

overlap. In some fainter images, the contrast was enhanced with the enhance contrast tool, with846

the default value 0.3% saturated pixels and no histogram equalization. To estimate the number847

of nuclei in a given area of hyphae, we used the counts of nuclei and the hyphal areas measured848

from the microscope images to obtain the number of nuclei per µm2. We had images for both VM849

and sorbose plates, in total we collected 519 measurements. To estimate average density of nuclei850

for VM and sorbose we used a model where we allowed standard deviations to differ for VM and851

sorbose media:852

yi ∼ N(µi, σi) (S2)

µi = ρ+ βsxi

log(σi) = ασ + βσxi

ρ, βs ∼ N(0, 0.1)

ασ, βσ ∼ hT(3, 0, 10)
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where yi is the ith density measurement, ρ is the intercept, βs is the effect of sorbose medium, xi853

an indicator variable for sorbose, ασ is the intercept for standard deviation, and βσ is the effect of854

sorbose medium on standard deviation. The average density of nuclei in VM medium is ρ and the855

density of nuclei in sorbose is obtained as ρs = ρ+ βs.856

To estimate the average size of colonies on sorbose plates, we plated conidia on sorbose plates857

as in the MA experiment and photographed the plates. Millimeter paper was used as a scale.858

Colony area was measured from these images with ImageJ2 version 2.0.0-rc-43/1.50e. The pixels859

per millimeter calibration value was set by measuring the number of pixels per 1 mm of millimeter860

paper. The images were enhanced with the sharpen tool to make the colony outlines more distinct.861

The colony area was measured using the elliptical selection tool. We used 10 different genotypes862

from different MA lines and timepoints in this experiment, including the 2 ancestors. We collected863

a dataset with 482 area measurements. To estimate the average colony size, we fitted a multilevel864

model865

yi ∼ N(µi, σ) (S3)

µi = αg[i]

αg ∼ N(ᾱ, σg)

ᾱ ∼ N(0, 3)

σ, σg ∼ hT(3, 0, 10)

where yi is the ith area measurement, ᾱ is the overall mean, αj is the mean for jth genotype, σg866

is the genotype standard deviation, and σ is the error standard deviation. Standard deviations had867

a weakly informative prior, which was the half-location scale version of Student’s t-distribution,868

where 3 is the degrees of freedom, 0 is the location, and 10 is the scale parameter. We estimated869
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the number of nuclei in a sorbose plate colony, ns, as870

ns = ᾱ× 106 × ρs (S4)871

the average colony size is multiplied by 106 to transform the unit from mm2 to µm2.872

Once the sorbose colony is transferred to the test tube, the mycelium will cover the surface of873

the growth media. We estimated the number of nuclei present in the mycelium, nv by multiplying874

the surface of the media in the test tube with the density of nuclei in the hyphae in VM medium:875

nv = π(d/2)2 × 106 × ρ (S5)876

where d is the diameter of the test tubes (in mm) used in the experiment, area is multiplied by 106877

to transform the unit to µm2.878

To estimate the number of conidia produced by the mycelium in the test tube, we counted879

conidia by suspending them in 1 mL of 0.01% Tween-80, making a 10000-fold dilution of the880

suspension, and plating 10 µL of the dilution on sorbose plates. We counted the colonies that were881

formed, and estimated the original number of conidia produced. We used 10 different genotypes,882

including the ancestors from the MA experiment to estimate produced conidia. We collected 71883

measurements, the model was884

yi ∼ N(µi, σ) (S6)

µi = νg[i]

νg ∼ N(ν̄, σg)

ν̄ ∼ hT(3, 40, 21)

σ, σg ∼ hT(3, 0, 21)

where yi is the ith conidial number measurement, ν̄ is the overall mean, αj is the mean for jth885
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genotype, σg is the genotype standard deviation, and σ is the error standard deviation. Priors886

followed Student’s t-distribution. The number of nuclei contained by the conidia, nc was estimated887

as888

nc = 2ν̄ (S7)889

since the mode of nuclei in conidia of N. crassa is two.890

The number of mitotic divisions separating two time points can be calculated from equation

S1. First, we need to calculate the number of divisions that happened when a single spore grows

to a colony on sorbose plate, then the number of divisions when the colony grows to a lawn of

mycelium in the test tube, and finally the number of divisions it takes to form the final number of

conidia. Thus, using the posterior distributions of numbers of nuclei in the different phases of the

transfer and equation S1, we can calculate the number of mitoses that happen during a transfer, m,

as:

m = log2

(ns

2

)
+ log2

(
ns + nv

ns

)
+ log2

(
ns + nv + nc

ns + nv

)
which simplifies to891

m = log2 (ns + nv + nc)− 1 (S8)892

this estimate of the number of mitoses incorporates all sources of measurement error since posterior893

distributions are used in every step of the calculations.894

DNA extraction895

To get high quality DNA for sequencing, the natural strains, MA lines, and the ancestors were896

grown in 5 mL of liquid VM for two days at 25 ◦C with shaking. We harvested the mycelium897

and freeze dried it over night in a lyophilizer. Dried mycelium was then ground with a glass bead898

in Qiagen Tissue Lyzer for two times 20 s with frequency of 25 s−1. Then 500 µL of extrac-899

tion buffer was added (10 mM Tris pH 8, 0.1 M EDTA, 150 mM NaCl, and 2% SDS), and the900

powdered tissue dissolved by shaking. Then samples were extracted with 750 µL of 25:24:1 Phe-901

nol:Chloroform:Isoamylalcohol and keeping the aqueous phase. We added 2 µL of RNAse A (10902
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mg/mL) and 50 U of RNAse I to each sample and incubated them for 1 h at 37 ◦C. Samples were903

then extracted with 750 µL of chloroform, 1 mL of 100% ethanol was added, and DNA was pre-904

cipitated for 1 h at −20 ◦C. Then DNA was pelleted with centrifugation at 4 ◦C, ethanol aspirated,905

pellet washed with 70% ethanol, and air dried. We then added 77.5 µL of TE-buffer to elute the906

samples and incubated at 37 ◦C to help dissolve the pellets. We observed that occasional small907

DNA fragments would remain in the samples and to remove these we did a polyethyleneglycol908

precipitation: we added 12.5 µL of 4 M NaCl, mixed and added 12 µL 50% PEG (P3350), mixed909

and precipitated DNA over night at 4 ◦C. DNA was then pelleted with centrifugation and the super-910

natant aspirated, the pellet was washed twice with 70% ethanol, and aspirated. Pellets were eluted911

to 55 µL of TE-buffer as above. DNA concentrations were measured with the Qubit Broad Range912

Kit, and DNA quality was checked by running 2 µL of the sample on an 0.8% agarose gel.913

Read mapping and genotyping914

To be able to map reads to the mating type locus in the mat a strains, we included the mating type915

a region, as well as the mitochondrial genome, as additional contigs. Reads were mapped using916

BWA-MEM version 0.7.12-r1039 with default parameters (Li, 2013). Alignment files were sorted917

and indexed with samtools and read groups were added with picardtools. See table S1 for alignment918

metrics.919

We used the GATK version 4.2.0.0 (McKenna et al., 2010) pipeline to call single nucleotide920

mutations (SNMs) and small indels. First, we ran Haplotypecaller for each sample individually to921

make a g.vcf file. Haplotypecaller was run with otherwise default parameters, emitting all sites,922

and in diploid mode. We then consolidated all of the samples together into a database using the923

GenomicsBDImport function in GATK. Samples were then jointly genotyped with the Genotype-924

GVCFs function to produce a vcf file with all samples.925

We used wormtable version 0.1.5 (Kelleher et al., 2013) to convert the vcf file into an indexed926

database and then a custom Python script to filter for high quality sites. For a site to be included927

as a candidate mutation, first we required the genotypes of the ancestor and the MA line to differ928
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for that site. Second, the site had to have five or more reads from both the ancestor and the sample.929

Third, the site had to have genotype quality greater or equal to 30 for both the ancestor and the930

sample, and finally sites that were called heterozygous in either the ancestor or the sample were931

excluded. There was also a filter that a site could not be called as a mutation if all of the MA lines932

had the same genotype. Sites were considered as invariant if their reference genotype quality was933

greater or equal to 30.934

To produce the final dataset of curated mutations, we checked all candidate mutations manually935

by inspecting the alignments from BWA and or Haplotypecaller in IGV (Thorvaldsdóttir et al.,936

2013). Based on our manual inspection our filtering criteria were stringent enough, for our high937

coverage haploid genomes, to remove mapping errors and leave only real mutations, as only very938

few candidate mutations had to be rejected based on manual inspection and most mutations were939

unambiguous.940

For genotyping SNPs in the strains sampled from natural populations, the above pipeline was941

used to call the genotypes. Other variants than SNPs were excluded. For a site to be included, it942

had to be polymorphic in the sample, with a mean read depth five or greater, genotype quality 30943

or greater, and mapping quality 40 or greater across all samples. Then these same criteria were944

applied for each individual sample, and if a sample failed to meet the quality filters, its genotype945

was recorded as missing data. Heterozygous sites were excluded. Sites were also excluded if > 90%946

of samples had missing data. Sites were called as monomorphic if the mean reference genotype947

quality was 30 or greater and read depth 5 of greater across all samples. Then these same criteria948

were applied to individual samples, genotypes were recorded as missing data if a sample did not949

pass the filters.950

Genotyping structural variants951

There are several algorithms available to detect structural variants (SVs) from short-read sequenc-952

ing data. However, because this kind of data is prone to base calling and alignment errors, none953

of the available computational algorithms can accurately and sensitively detect all types and sizes954
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of SVs (Kosugi et al., 2019). To overcome this limitation it is common to use several algorithms955

and merge their outputs to increase sensitivity and precision. First, we assessed the performance of956

four different SVs algorithms (DELLY, Lumpy, PINDEL and SVaba) using simulated data.957

We evaluated the performance of different SV callers on simulated data created using SUR-958

VIVOR version 1.0.7 (Jeffares et al., 2017). SURVIVOR simulates SVs by first modifying a fasta959

reference file by randomly altering locations according to given parameters of length and number960

of different SVs types (insertions, deletions, duplications, inversions and translocations). Reads are961

simulated based on the modified fasta and SVs are detected using the preferred SV caller. Finally962

SURVIVOR compares the SVs detected against the known simulated SVs, based on this FDR and963

sensitivity can be calculated.964

We simulated four sets with 18, 40, 50 and 120 structural variants with a mutation rate of 0.001965

on the reference genome (assembly NC12). The number of each type of SV simulated in each set is966

presented in the table S6. In set number four we simulated 20 complex SVs in which inversions and967

deletions occur in the same location. For duplications the min and max length parameter was set to968

100-1000 bp, for INDELs 20-500 bp, for translocations 1000-3000 bp and for inversions 600-800969

bp.970

The SV length distribution across our four simulated sets were very similar (Figure S23), and971

the distribution coincides with ones reported in the literature, which indicates that short SVs are972

more common than large ones (Jeffares et al., 2017). The number of reads, the error rate and973

the coverage of the simulated data represent our sequenced reads. The inflated number of SV per974

genome is for testing purposes.975

Based on the modified fasta we created 150 bp pair end reads with an error rate of 0.003% and976

a mean coverage of 30X using DWGSIM version 0.1.11 (Homer, 2021). Simulated reads were977

then aligned to the reference genome using BWA-MEM (Li, 2013) with default parameters, and978

SVs were called using DELLY version 0.8.7, LUMPY version 0.2.13, PINDEL version 0.2.5b9979

and SVaba version 1.1.0 (Rausch et al., 2012; Layer et al., 2014; Ye et al., 2009; Wala et al.,980

2018). Finally, we used SURVIVOR to evaluate the performance of each SV caller. The SV calls981
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were considered correct if the simulated and detected SVs were 1) of the same type 2) on same982

chromosome and 3) both start and stop locations were within 50 bp. The callers that performed the983

best were DELLY and LUMPY as they showed high sensitivity score and low false discovery rate984

(FDR) score (Table S6), and they were selected to call SVs on the MA lines.985

For calling SVs in the MA lines we first aligned the reads to the reference genome using BWA-986

MEM, excluded duplicated reads with SAMBLASTER version 0.1.26 (Faust and Hall, 2014),987

and extracted the discordant paired-end and split-read alignments using SAMTOOLS version 1.9988

(Danecek et al., 2021). DELLY was used as indicated in the recommended workflow (Rausch et al.,989

2012). For LUMPY the read and insert lengths were extracted from alignment files using SAM-990

TOOLS and the SVs were genotyped using SVTyper version 0.7.1 (Chiang et al., 2015). To filter991

out SVs that were present in the ancestor we used SnpSift version 5.0e (Cingolani et al., 2012). We992

removed those calls with a genotype quality score lower than 30 and read depth below 10. The anal-993

ysis with both callers were carried out in somatic-germline mode, considering MA line as somatic994

and the ancestor as the germline. The signature of a translocation are reads with discordant mate995

pairs, where both mates are consistantly mapped to other chromosomes for example. Translocation996

length was determined from the break points of these discordant reads. All of the SVs detected by997

each caller were manually verified by inspecting the alignment files in IGV.998

Genotyping copy number variants999

To evaluate the performance of copy number variant (CNV) detection algorithms, we simulated 321000

CNVs using SECNVs version 2.7.1 (Xing et al., 2020), then simulated 150 bp paired end reads with1001

an error rate of 0.03% and a mean coverage of 30X using DWGSIM. We scanned for copy number1002

variants (CNVs) using two detection programs, CNVnator version 0.4.1 (Abyzov et al., 2011) and1003

CNV-seq version 0.2-7 (Xie and Tammi, 2009). CNV-seq was used with default parameters while1004

CNVnator was used with two different bin sizes, 75 and 1670. Bins of 75 bp allowed the detection1005

of small events, while bins of 1670 bp, which is the average gene length of N. crassa (Galagan1006

et al., 2003), allowed the detection larger-scale events. Both callers togetherperformed better that1007

11



any of the callers individually by showing the lowest FDR rate score of 0.482, and good sensitivity1008

score of 0.906 (Table S7).1009

For genotyping CNVs in the MA lines we excluded MA line sites if the start or stop location of1010

these where within 500 bp of any site detected in the ancestor. Also, we only retained the sites that1011

were detected by both callers CNVnator and CNVseq (if 1000 bp or less overlapped at the start or1012

end location). The remaining sites were manually verified by inspecting the alignment file in IGV.1013

However, we did not find any evidence of copy number changes in the MA lines.1014

Chromatin modifications1015

To determine regions of the genome where chromatin modifications occur, ChIP-seq reads for1016

H3K9me3, H3K27me3, and H3K36me2 were aligned to the reference genome using BWA-MEM,1017

and duplicate reads were removed by Picard tools. Domains of chromatin modifications were iden-1018

tified using RSEG 0.4.9 (Song and Smith, 2011). Data for centromeric regions were obtained from1019

Smith et al. (2011) and coordinate corrections for NC12 from Wang et al. (2020). The centromeric1020

regions were defined based on the presence of centromeric histone 3 variant: CENPA. Smith et al.1021

(2011) collected ChIP-seq data against CENPA and other centromeric proteins. Centromeric se-1022

quences in N. crassa are composed of AT-rich sequences of degraded transposable elements. How-1023

ever, the repeat arrays are heterogenous due to action of RIP, making almost all sequence suffi-1024

ciently unique to be able to map short reads to the genome (Smith et al., 2011).1025

Furthermore, we used the data of the duplicated regions that were defined by Wang et al. (2020).1026

Wang et al. (2020) identified duplicated regions using BLAST, with the criteria of at least 100 bp1027

alignment length and at least 65% sequence identity.1028

Analysis of relative mutation rate for different classes1029

For cases where the relative mutation rates were computed for different classes of mutations the1030

model was:1031
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yi ∼ Poisson(λi) (S9)

log(λi) = log τj + α[j]

α[j] ∼ N(0, 10)

where τj is an offset term for class j that allows taking into account differences in the abundance1032

of certain classes (McElreath, 2015), such as higher frequency of A’s and T’s than G’s and C’s in1033

the genome. Priors for different predictors remained the same as in equation 1. Furthermore, if1034

we calculate the expected number of mutations for different classes under the assumption that all1035

mutations in all classes are equally likely, as τj = fjn, where fj is the frequency of class j and1036

n is the total number of observed mutations, and use τj , the expected number of mutations, as the1037

offset parameter, then exp(α[j]) yields the relative mutation rate of class j. Since all estimates for1038

different classes come from the same model, they are simultaneous comparisons in the statistical1039

sense.1040

Mutation rate variation across the genome1041

To model the effects of epigenetic domains and GC-content on mutation rate we used the following1042

model:1043

yi ∼ Poisson(λi) (S10)

log(λi) = log τi + α + βGCxi + βK9di + βK27gi + βCci + βIxidi

α, β ∼ N(0, 10)
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where yi is the number of mutations a class of i intervals contained, τi is the number of class i inter-1044

vals in total, xi the GC-content of those intervals, di indicates presence or absence of H3K9me3, gi1045

indicates presence or absence of H3K27me3, and ci indicates presence or absence of centromeric1046

region. β coefficients are the corresponding effects and α is the intercept.1047

Model selection was a combination of biological and statistical reasoning, and we tested mod-1048

els representing plausible biological hypotheses. For instance, we had a clear biological reason to1049

expect that GC-content influences mutation rate, and we saw a large improvement in model pre-1050

dictions when GC-content was included in the model. Therefore we did not further test models1051

without GC-content and with different combinations of other terms. Furthermore, the only bio-1052

logically realistic interactions are those involving GC-content and one of the domains. There are1053

no regions where H3K27me3 and centromeric regions overlap, or regions where H3K9me3 and1054

centromeric regions do not overlap, hence statistical interactions between domains are not possible1055

in our data. Tested models are shown in Table S2, model comparisons were done using the widely1056

applicable information criterion (WAIC) (McElreath, 2015; Vehtari et al., 2017).1057

When we assessed how well did the mutation model predict the natural genetic variation we1058

used the predicted mutation rates from model S10 as a response and θW calculated from a popula-1059

tion sample of strains as a predictor in a simple regression model. Bayesian version of R2 (Gelman1060

et al., 2019) was used to assess the model fit.1061

We could not asses the effect of duplicated regions defined by Wang et al. (2020) independently1062

of H3K9me3 regions. Nearly all duplicated regions overlapped with H3K9me3 regions (Figure1063

2). Those regions that were marked as duplicates, but which did not overlap with H3K9me3 or1064

H3K27me3, contained mainly mutations in microsatellite repeats. Only 10 point mutations were1065

observed in these regions, which was not enough to obtain reasonable estimates of independent1066

effect of duplicated regions on mutation rate. Of those 10 point mutations, 3 were C:G → T:A tran-1067

sitions. As C → T transitions were not over-represented, action of RIP is unlikely to be responsible1068

for these mutations, which is expected as RIP is active only during meiosis.1069
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Effects of local sequence context1070

To analyze effects of local base composition on the mutation rate, we estimated the effects of the1071

trinucleotides from a model that included the effects of the epigenetic domains. First, we extracted1072

the adjacent basepairs for every point mutation. There are 64 different trinucleotides, but as we1073

cannot know in which strand the mutation originally occurred we grouped the trinucleotides into1074

32 different classes based on sequence complementarity. For example, trinucleotides ATA and TAT1075

are complementary and were grouped. Then we counted how many times a given trinucleotide1076

occurs in the genome in all three reading frames. Relative mutation rate was analyzed using the1077

following model:1078

yi ∼ Poisson(λi) (S11)

log(λi) = log τt + βtx[t] + βK9dt + βK27gt + βCct

β ∼ N(0, 10)

We compared different linear models (Table S4) with the same reasoning as above. We did not1079

include an intercept in this model, as we wanted to obtain estimates for all trinucleotide classes,1080

and not set one class as the intercept against which the others are compared. This does not alter any1081

biological conclusions.1082

We further investigated how the flanking base pairs influenced the relative mutation rates of1083

the trinucleotides. We extracted estimates of the relative mutation rates for the trinucleotides from1084

model S11, and used these as a response in a model where we predicted relative mutation rates with1085

the identities of the flanking base pairs and the mutating base. Since our estimates of the relative1086

mutation rates contain uncertainty, we included the estimated error of the relative mutation rates in1087

the model. The model was:1088
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yobs,i ∼ N(yest,i, ysd,i) (S12)

yest,i ∼ N(µi, σ)

µi = α + βbxi + β5zi + β3gi + βI5xizi + βI3xigi

α, β ∼ N(0, 10)

σ ∼ hT(3, 0, 10)

where yobs,i is the median of ith observed relative mutation rate, ysd,i is the observed standard1089

deviation of the ith relative mutation rate, yest,i is the ith estimated relative mutation rate, α is the1090

intercept, βb is the effect of C:G relative to A:T for the mutating base, β5 is the effect of C:G relative1091

to A:T for the 5’ flanking base pair, β3 is the effect of C:G relative to A:T for the 3’ flanking base1092

pair, βI5 is the interaction effect of 5’ CG when the mutating base is C:G, and βI3 is the interaction1093

effect of 3’ C:G when the mutating base pair is C:G. xi, zi, and gi are indicators whether the basepair1094

is C:G. We used the half location-scale version of Student’s t-distribution as a prior for the standard1095

deviation with 3 degree’s of freedom, location 0, and scale 10.1096

Supplementary results1097

Accuracy of mutation calling1098

Estimating mutation rates and particularly estimating differences in the mutation rate in different1099

parts of the genome requires accurate mutation calls. As some regions of the genome, such as cen-1100

tromeric regions, may contain repetitive sequences it is important to verify that the mutations are1101

called accurately in all regions of the genome, and that no region has an excess of false positive mu-1102

tations. First, we examined sequencing coverage throughout the genome, GC-content does have an1103

effect on sequencing coverage as regions of low GC can be preferentially amplified during library1104

construction, and we observed slight elevation on normalized coverage around 35% GC (Figure1105
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S13). However, overall we observed that sequencing coverage was rather uniform across regions1106

of different GC-content (Figure S13). Centromeric regions and regions marked by H3K9me3 have1107

low GC-content, and while we did observe that coverage went down in regions of < 15% GC,1108

those regions constitute a very small fraction of the genome. Next, we explored the accuracy of our1109

mutation calls after the mutations had been called by our pipeline and manually inspected in IGV.1110

We observed that overwhelming majority of mutations had the highest possible genotype quality1111

score determined by the GATK pipeline (Figure S1). Median genotype quality for mutations was1112

the highest possible value of 99, and only 8.6% of mutations had genotype quality less than 801113

and only 1.9% less than 50. Distribution of quality scores was similar in different regions of the1114

genome (Figure S1). While there was slightly more mutations that had lower quality scores than1115

99 in regions marked by H3K9me3 and in centromeric regions than in euchromatic regions (Figure1116

S1), overwhelming majority of mutations in those regions have the highest genotype quality score1117

of 99.1118

If most of the mutations had genotype quality scores of 99, then what kind of confidence we1119

have in those mutation calls? We illustrate genotype quality scores with alignments viewed in1120

IGV that show mutations in different regions of the genome and different genotype quality scores1121

(Figure S14, S15, S16, S17, S18, S19, S20, S21, S22). When mutations had genotype quality1122

score of 99 they were unambiguous (Figure S14, S17, S20). When genotype qualities were around1123

70 mutations could still be distinguished from unambiguously, even if few reads did not support1124

the mutation or the mutations were in repetitive regions. When mutation genotype qualities were1125

around 45 this was usually a sign that the region had lower mapping quality due to repeats or1126

duplications (Figure S16, S19, S22). Despite of this, even in these regions, real mutations could1127

be distinguished from mapping errors by looking at which reads supported the mutation and which1128

did not (Figure S19, S22).1129

We have also provided screenshots of the alignments showing mutations viewed in IGV for a1130

random sample of mutations. We selected mutations randomly, by first splitting the mutations into1131

three genomic domains: H3K9me3, centromeric, and euchromatic, then drew a random sample of1132
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30 from each pool, for a total of 90 mutations (see supplementary file S2). Information about the1133

sampled mutations can be found in supplementary file S1.1134

The reason we chose first to do Sanger-verification for the mutations with the lowest genotype1135

qualities was because for mutations with genotype quality of 99, there was no doubt that these were1136

real mutations. We verified 23 base pair changes, of which 12 were in complex mutations and 111137

as single nucleotide mutations. Of the 11 SNMs 5 were in regions marked by H3K9 (excluding1138

centromes), 3 in centromeric regions, and 3 in euchromatin. Of the 12 base pair changes in complex1139

mutations, 3 mutations were in H3K9 regions (5 base changes in total), 1 mutation in centromeric1140

region (2 base pair changes), and 3 mutations in euchromatin (5 base pair changes). In the second1141

verification set we sequenced 15 randomly sampled mutations from each genomic region (euchro-1142

matin, H3K9me3, and centromeric). One mutation located in centromeric region failed to amplify1143

by PCR, the remaining 44 mutations were all confirmed. In summary, we confirmed point muta-1144

tions by Sanger sequencing in centromeric, H3K9me3, and euchromatic regions. We confirmed1145

all point mutations where PCR-amplification and Sanger sequencing were successful, so we never1146

detected a false positive point mutation.1147

Why were the genotype qualities of the mutations so good in our experiment? There are several1148

factors in this study that contributed excellent genotype calls. First, the ancestors for the MA lines1149

were derived from line 2489 (synonym OR74a), which was the strain used for the original genome1150

project (Galagan et al., 2003). Therefore, the reference genome used for read mapping corresponds1151

to the genome of the MA line ancestors. This is seen in alignment metrics as 98% reads are mapped1152

to the genome in the ancestors and MA lines (Table S1). As such, there are likely not many reads1153

that would erroneously map to an incorrect location because their true source of origin was missing1154

from the reference genome. Second, as explained in the introduction, repetitive sequences tend1155

to diverge from each other in N. crassa due to the action of RIP. RIP does not induce the exact1156

same mutations to the duplications, so over time duplicated arrays, such as those often found in1157

centromeric regions, tend to diverge from one another, to the extent that short reads can be mapped1158

to the genome in regions where it is not often possible to the same extent in other species (Smith1159
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et al., 2011). Third, the small genome of N. crassa made it possible to sequence the samples to1160

a high depth, on average over 50x in many samples (Table S1). This allowed us to discriminate1161

between true mutations and mapping errors. With this kind of sequencing depth, sequencing errors1162

are simply not an issue anymore and they have no impact on calling the mutations, e.g. Figure S181163

shows a mutation in repetitive region that as a consequence has higher frequency of sequencing1164

errors, but with so many reads identifying the real mutation is not a problem. Finally, N. crassa1165

is haploid. Combined with high sequencing depth, this makes identifying mutations easy. The1166

only important errors are read mapping errors that may cause some sites to appear as heterozy-1167

gous. But as heterozygous sites are not expected to occur in our experiment we can filter out sites1168

called as heterozygous. We did inspect heterozygous sites manually, as it is possible that some1169

mutations could have been present in a heterokaryotic state (nuclei with different genotypes in the1170

same mycelium). However, we did not find any evidence of true mutations in heterokaryotic state.1171

Whenever sites appeared as heterozygous, multiple sites were found close together (Figure S19),1172

indicating that read mapping errors were the more likely explanation. Because of these factors,1173

our study differs substantially from studies that need to call heterozygous sites from data with low1174

sequencing depth and the problem of calling genotypes correctly is of different nature.1175

In summary, overwhelming majority of mutations that our pipeline detected had the highest1176

possible genotype quality of 99, and this was true in regions of the genome with potentially more1177

repetitive and duplicated regions like in centromeric regions and regions marked by H3K9 methy-1178

lation. Those mutations that had genotype quality of 99 were unambiguously real mutations. Thus,1179

even if we would filter out every mutation with genotype quality less than 99, we would still de-1180

tect the observed pattern that mutation rate was higher in regions marked by H3K9 trimethylation1181

and in centromeric regions. Differential mutation calling in different regions of the genome cannot1182

explain the observed results.1183
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Simulating variation in mutation rate1184

Despite our very high genotype qualities, we attempted to further understand could repetitive se-1185

quences or other sequence features of heterochromatin in the N. crassa genome hinder our ability1186

to correctly estimate differences in mutation rates in different regions of the genome. We simulated1187

data under two different scenarios. First, we simulated a scenario where mutation rate was set to1188

be higher in H3K9me3 domains, with a rate of 2 × 10−5 mutations per site, compared to the rest1189

of the genome, with a rate of 3 × 10−6 mutations per site. In the second scenario, we simulated1190

a uniform mutation rate across the genome, with a rate of 2 × 10−6 mutations per site. We simu-1191

lated mutations to the N. crassa genome using the program Mutation-Simulator (Kühl et al., 2021).1192

We simulated 40 different MA lines for each scenario with a transition / transversion rate of 1.08.1193

We then generated simulated reads from these simulated genomes, using DWGSM (Homer, 2021),1194

with 30X sequencing depth and read length of 150 bp. We tried to imitate the conditions of our real1195

sequenced data, so we set the standard deviation of the base quality scores to two and the per base1196

sequencing error rate to 0.003. The ancestor of the MA lines was simulated by generating reads1197

from the reference genome of N. crassa. To call the simulated mutations from the simulated reads,1198

we ran the same pipeline as we used for the experimental data. Thus, we had two simulated scenar-1199

ios, and for each scenario we had information about the true number of mutations that happened in1200

the simulation, and number of mutations we called with our pipeline from the simulated read data.1201

In the scenario with the higher mutation rate in H3K9me3 regions, we ended up with a total of1202

1759 mutations, of which 719 were in H3K9me3 domains, 990 in euchromatin, and 50 in unspecific1203

domains. With our pipeline we detected a total of 1705 mutations, of which 692 were in H3K9me31204

domains, 964 in euchromatin and 49 in unspecific domains. All of the called mutations were true1205

positives. However, we failed to call 54 true mutations, that is, these were false negatives. In a1206

similar manner, in the scenario with the uniform mutation rate, we ended up with a total of 30781207

mutations, of which 562 were in H3K9me3 domains, 2245 in euchromatin, and 271 in unspecific1208

domains. Our pipeline detected 2978 mutations in total, of which 535 were in H3K9 domains, 21771209

in euchromatin, and 266 in unspecific domains. Again, there were no false positive calls. We failed1210
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to detect 100 mutations in this set. In general, the number of false negatives was higher in H3K9me31211

regions, with proportion of false negatives 3.75% and 4.80% in H3K9me3 regions, and 2.62% and1212

3.02% in euchromatin in for the different and uniform mutation rate scenarios respectively.1213

We found that the estimated mutation rate was higher in H3K9me3 regions in the scenario where1214

the true mutation rate was higher in H3K9me3 (Figure S2), the mutation rate ratio of H3K9me31215

/ euchromatin was 3.39 [3.06, 3.72]. This mutation rate ratio was not statistically different from1216

the one calculated from the true simulated mutations: the difference was 0.28 [-0.15, 0.74], which1217

includes zero in the interval estimate. Furthermore, when we simulated a uniform mutation rate1218

across the genome, we found no difference among called and true datasets (Figure S2). The muta-1219

tion rate ratio of H3K9me3 / euchromatin was 1.15 [1.05, 1.27], there was no statistical difference1220

in the rate ratios between called and true simulated mutations: difference was 0.08 [-0.05, 0.23],1221

which includes zero in the interval estimate.1222

With this simulation data we show that our pipeline can confidently detect a difference in mu-1223

tation rates in different regions of the genome. This shows that sequence features of the H3K9me31224

regions, such as repetitive sequences, do not interfere with mutation calling in a manner that would1225

lead to gross biases in mutation rate estimates in the different domains. While simulated read data1226

cannot capture all of the properties of real data, because of sequences missing from the reference1227

or assembly errors, it does give us confidence that we will be able to detect a real difference in mu-1228

tation rates. Moreover, since we did not observe any false positive mutations, we are confident that1229

mutation calling cannot generate spurious results in our case. We did observe slightly higher pro-1230

portions of false negative mutations in H3K9me3 regions. However, if this bias is true for real data,1231

this would make our estimate of the elevated mutation rate in H3K9me3 regions more conservative.1232

Robustness of relationship between θW and predicted mutation rate1233

We wanted to evaluate the robustness of the observed relationship between θ and the predicted1234

mutation rate. One potential issue is that there are windows in the genome, especially for small1235

window sizes, where the observed θ is zero. Since zero is the minimum value that θ can obtain, and1236
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there is a clumping of θ = 0 observations in the data, this violates the assumption that response is1237

gaussian and could lead to biased estimates. However, since there so many data points, the model1238

may be robust to observations where θ = 0. First, we tested the effect of window size, calculating1239

θ over longer windows reduced the number of windows where θ = 0. Increasing window size1240

slightly improves the amount of variation explained by the model (Figure S5). Thus, results are1241

robust the to different window sizes.1242

Then we tested whether the results were robust to different models. Data that can take zero or1243

positive values, but is clumped at zero, can be modeled in different ways. One possibility is Tobit1244

regression. Tobit regression is a type of censored regression, where observations are assumed to1245

have an underlying gaussian distribution, but appear as zeros if yi ≤ 0 (Min and Agresti, 2002).1246

We used a conventional Tobit regression and robust Tobit regression, for both cases the results1247

were very similar to an ordinary regression model (Figure S6). Then, we tested a log-normal1248

hurdle model. In this model the response distribution is a mixture of two processes, one models the1249

probability that the observation is larger then zero, and the other is a log-normal gaussian model1250

(Min and Agresti, 2002). For the hurdle model, we also observed that that the relationship between1251

θ and predicted mutation rate was positive (Figure S6). Therefore, our results are robust to the1252

clumping at zero phenomenon.1253

Next, we tested whether the action of RIP could explain the relationship between θ and pre-1254

dicted mutation rate. If level of genetic diversity is very high in H3K9me3 regions due to C → T1255

transitions induced by RIP, we want to make sure that this phenomenon does not solely cause the1256

relationship between θ and predicted mutation rate. We cannot determine the exact contribution of1257

RIP to genetic diversity, because we do not know the ancestral states of the SNPs and therefore can-1258

not distinguish between C:G → T:A and A:T → G:C transitions. Furthermore, we would need to1259

know the population recombination rate to estimate the number of meiotic divisions for every mito-1260

sis and thus the frequency of RIP. Therefore, we looked at the relationship between θ and predicted1261

mutation rate within each of the genomic domains, and observed a positive relationship between θ1262

and predicted mutation rate within each of the domains. Although, the effect was weak within cen-1263
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tromeric domains (Figure S7A). We then filtered the SNP dataset to include only transversions and1264

calculated θ across the genome. There was a positive relationship between θ for transversions only1265

and the predicted mutation rate within all domains except H3K9me3 (Figure S7B). These results1266

show that while RIP probably has a large contribution to genetic diversity in regions of H3K9me3,1267

it does not solely drive the relationship between θ and predicted mutation rate.1268

Re-analysis of data from Wang et al. 20201269

Wang et al. (2020) estimated the rate of spontaneous mutation during meiosis in N. crassa. During1270

meiosis a genome defence mechanism called repeat-induced point mutation (RIP) induces mainly1271

C → T transitions in duplicated regions of the genome resulting in a very high overall mutation1272

rate (Wang et al., 2020). While not made explicit by Wang et al. (2020), the duplicated regions1273

correspond almost completely to the H3K9 trimethylated domains. In order to better compare our1274

results for asexual mutation rate in different domains to the sexual mutation rate estimated in their1275

study, we re-analyzed the data from Wang et al. (2020) provided in their supplementary material,1276

and included the information about chromatin domains. Their data are comprised of mutations in1277

sequenced tetrads, which correspond to the products of a single meiosis. We included only those1278

tetrads originating from crosses between non-mutant strains. This leaves 67 tetrads in the data that1279

originate from five different crosses.1280

First we split the mutations to those that occurred in euchromatin and to those that occurred in1281

H3K9 trimethylated domains. We observed that the numbers of mutations occurring in euchromatin1282

and H3K9me3 domains for a given tetrad had very different distributions (Figure S11A), number of1283

mutations occurring per tetrad in the H3K9me3 domains had a very long tail. When we examined1284

the number of mutations per tetrad by cross, we observed a median of 22 mutations that occurred1285

in euchromatic regions per tetrad, with some differences among the five crosses. However, the1286

variation among tetrads from the different crosses was similar (Figure S11B). However, there were1287

a median of 38 mutations that occurred in the H3K9me3 domains per tetrad, but a huge variation1288

among tetrads, even within tetrads from a single cross (Figure S11B). For example, some tetrads1289
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from the same cross had 20 to 40 mutations, while others could have hundreds. In cross E the1290

range of mutations was from 27 in one tetrad to 1187 in another. Variation among mutations in the1291

H3K9me3 domains per tetrad suggest that while there probably were some genetic influences on1292

the mutation rate in the different crosses, there was substantial heterogeneity in the activation of1293

RIP that was independent of genetic effects.1294

We calculated the mutation rate per meiosis for the euchromatic regions of the genome using a1295

multilevel model with cross as a random factor. The model was1296

yi ∼ Poisson(λi) (S13)

log(λi) = ᾱ + αc[i]

ᾱ ∼ N(0, 10)

αc ∼ N(0, σc)

σc ∼ hT(3, 0, 10)

where yi is the number of mutations in euchromatic regions in the ith tetrad, ᾱ is the average inter-1297

cept, αc is deviation from average intercept for each cross, and σc is the cross standard deviation.1298

Prior for σc was the half-location scale version of Student’s t-distribution, with 3 degrees of free-1299

dom, location 0, and scale 10. Based on posterior predictive checks, this model fitted the data.1300

Mutation rate was calculated from posterior distribution of ᾱ as1301

µ =
exp(ᾱ)

Nnt

(S14)1302

where N is the number of called nucleotides, and nt is the number of tetrads. The mutation rate in1303

euchromatic regions during sexual reproduction was 1.07 [0.6, 1.67 ] ×10−8 mutations / meiosis /1304

bp.1305

The data for mutations that occurred in the H3K9me3 domains are clearly overdispersed. To1306
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calculate the mutation rate per meiosis for the H3K9me3 domains we also modelled the heterogene-1307

ity among the tetrads. We fitted a gamma-poisson model, also called a negative binomial model, to1308

the data. A gamma-poisson model allows each observation, a tetrad in our case, to have a different1309

poisson rate allowing us to model this heterogeneity in observed rates (McElreath, 2015). We fitted1310

a model1311

yi ∼ Gamma-Poisson(λi, ϕ) (S15)

log(λi) = ᾱ + αc[i]

ᾱ ∼ N(0, 10)

αc ∼ N(0, σc)

σc ∼ hT(3, 0, 10)

ϕ ∼ Γ(0.01, 0.01)

where yi is the number of mutations in the H3K9me3 domains in the ith tetrad, ϕ is the dispersion1312

parameter, and other parameters were same as above. The prior for ϕ was a gamma distribution1313

with shape of 0.01 and scale 0.01. Posterior predictive check indicated that the model fit the data1314

reasonably well. The mutation rate was calculated from the average intercept as above. The muta-1315

tion rate in H3K9 trimethylated regions during sexual reproduction was 2.54 [0.11, 7.55 ] ×10−7
1316

mutations / meiosis / bp. As a result of rate heterogeneity there is quite a bit of uncertainty in the1317

estimate. The ratio of mutation rates in the H3K9me3 regions over the euchromatic regions was1318

23.7 [0.99, 76.38]. While the 95% interval of the ratio slightly overlaps one due to large uncertainly1319

in mutation rate in the H3K9me3 regions, mutation rate those regions seems higher.1320

We examined the spectrum of mutations that occurred in the euchromatic and the H3K9me3 re-1321

gions separately, in the same way we did for asexual mutations. We observed that in the H3K9me31322

regions there was a substantial over-representation of C:G → T:A transitions due to the action of1323

RIP (Figure S11C). However, the mutation spectra that occurred in euchromatic regions was much1324
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more similar to the one we observed during asexual reproduction in euchromatic regions. There1325

was no difference in the relative mutation rate of C:G → T:A transitions during sexual and asexual1326

reproduction in euchromatic regions. Some of the transversions did have different relative rates:1327

A:T → C:G, and C:G → G:C transversions had higher rate during sexual reproduction, while C:G1328

→ A:T transversions had a lower relative mutation rate during sexual reproduction (Figure S12).1329

Our analysis gives somewhat different results compared to those of Wang et al. (2020), who1330

only calculated mutation rates across the whole genome, and did not take variation among tetrads1331

or crosses into account. We do find higher mutation rates during sexual reproduction than during1332

asexual reproduction, suggesting that in N. crassa meiosis is mutagenic in addition to the RIP ef-1333

fect in the H3K9me3 domains. However, the mutation rate per meiosis was much smaller than1334

that estimated by Wang et al. (2020). The H3K9 trimethylated regions contain mainly degraded1335

transposable elements, and are quite gene poor. If we compare non-synonymous mutations in eu-1336

chromatic and H3K9me3 regions, of those mutations that occurred in euchromatic regions 22.16%1337

were non-synonymous, while only 0.17% of mutations were non-synonymous in H3K9 methylated1338

regions. Thus, the very high mutation rate observed in H3K9 regions due to action of RIP, does1339

not necessarily translate into a high genetic load. We suggest that the mutation load during sexual1340

reproduction in N. crassa may not be as high as it has been suggested by Wang et al. (2020).1341

Supplementary References1342

Abyzov, A., Urban, A. E., Snyder, M., and Gerstein, M., 2011. CNVnator: An approach to dis-1343

cover, genotype, and characterize typical and atypical CNVs from family and population genome1344

sequencing. Genome Research, 21(6):974–984.1345

Chiang, C., Layer, R. M., Faust, G. G., Lindberg, M. R., Rose, D. B., Garrison, E. P., Marth,1346

G. T., Quinlan, A. R., and Hall, I. M., 2015. Speedseq: ultra-fast personal genome analysis and1347

interpretation. Nature Methods, 12(10):966–968.1348

Cingolani, P., Platts, A., Coon, M., Nguyen, T., Wang, L., Land, S., Lu, X., and Ruden, D., 2012. A1349

26



program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff:1350

SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2):80–92.1351

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,1352

Keane, T., McCarthy, S. A., Davies, R. M., et al., 2021. Twelve years of SAMtools and BCFtools.1353

GigaScience, 10(2). giab008.1354

Davis, R. H. and de Serres, F. J., 1970. Genetic and microbiological research techniques for Neu-1355

rospora crassa. Methods in Enzymology, 17:79–143.1356

Faust, G. G. and Hall, I. M., 2014. SAMBLASTER: fast duplicate marking and structural variant1357

read extraction. Bioinformatics, 30(17):2503–2505.1358

Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U., and Read, N. D., 2004. GFP as a tool1359

to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora1360

crassa. Fungal Genetics and Biology, 41(10):897–910.1361

Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W.,1362

Ma, L.-J., Smirnov, S., Purcell, S., et al., 2003. The genome sequence of the filamentous fungus1363

Neurospora crassa. Nature, 422(6934):859–868.1364

Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A., 2019. R-squared for Bayesian regression1365

models. The American Statistician, 73(3):307–309.1366

Homer, N., 2021. DWGSIM: Whole genome simulator for next-generation sequencing. github1367

repository.1368

Jeffares, D. C., Jolly, C., Hoti, M., Speed, D., Shaw, L., Rallis, C., Balloux, F., Dessimoz, C.,1369

Bähler, J., and Sedlazeck, F. J., et al., 2017. Transient structural variations have strong effects on1370

quantitative traits and reproductive isolation in fission yeast. Nature Communications, 8:14061.1371

Kelleher, J., Ness, R. W., and Halligan, D. L., 2013. Processing genome scale tabular data with1372

wormtable. BMC Bioinformatics, 14(1):1–5.1373

27



Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M., and Kamatani, Y., 2019. Comprehensive1374

evaluation of structural variation detection algorithms for whole genome sequencing. Genome1375

Biology, 20(1):117.1376

Kronholm, I., Ormsby, T., McNaught, K. J., Selker, E. U., and Ketola, T., 2020. Marked Neurospora1377

crassa strains for competition experiments and Bayesian methods for fitness estimates. G3:1378

Genes|Genomes|Genetics, 10:1261–1270.1379

Kühl, M., Stich, B., and Ries, D., 2021. Mutation-Simulator: fine-grained simulation of random1380

mutations in any genome. Bioinformatics, 37(4):568–569.1381

Layer, R. M., Chiang, C., Quinlan, A. R., and Hall, I. M., 2014. LUMPY: a probabilistic framework1382

for structural variant discovery. Genome Biology, 15(6):R84.1383

Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.1384

arXiv:1303.3997 [q-bio.GN], .1385

Lichius, A. and Zeilinger, S., 2019. Application of membrane and cell wall selective fluorescent1386

dyes for live-cell imaging of filamentous fungi. JoVE, (153):e60613.1387

McElreath, R., 2015. Statistical Rethinking - A Bayesian course with examples in R and Stan. CRC1388

Press, New York.1389

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K.,1390

Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The Genome Analysis Toolkit: a MapReduce1391

framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9):1297–1392

1303.1393

Metzenberg, R. L., 2003. Vogel’s medium N salts: Avoiding the need for ammonium nitrate.1394

Fungal Genetics Newsletter, 50:14.1395

Min, Y. and Agresti, A. a., 2002. Modeling nonnegative data with clumping at zero: A survey.1396

JIRSS, 1(1):7–33.1397

28



Rausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V., and Korbel, J. O., 2012. DELLY:1398

structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics,1399

28(18):i333–i339.1400

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., and1401

Eliceiri, K. W., 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC1402

Bioinformatics, 18(1):529.1403

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,1404

Rueden, C., Saalfeld, S., Schmid, B., et al., 2012. Fiji: an open-source platform for biological-1405

image analysis. Nature Methods, 9(7):676–682.1406

Smith, K. M., Phatale, P. A., Sullivan, C. M., Pomraning, K. R., and Freitag, M., 2011. Heterochro-1407

matin is required for normal distribution of Neurospora crassa CenH3. Molecular and Cellular1408

Biology, 31(12):2528–2542.1409

Song, Q. and Smith, A. D., 2011. Identifying dispersed epigenomic domains from ChIP-Seq data.1410

Bioinformatics, 27(6):870–871.1411

Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P., 2013. Integrative Genomics Viewer (IGV):1412

high-performance genomics data visualization and exploration. Briefings in Bioinformatics,1413

14(2):178–192.1414

Vehtari, A., Gelman, A., and Gabry, J., 2017. Practical Bayesian model evaluation using leave-one-1415

out cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432.1416

Wala, J. A., Bandopadhayay, P., Greenwald, N. F., O’Rourke, R., Sharpe, T., Stewart, C., Schu-1417

macher, S., Li, Y., Weischenfeldt, J., Yao, X., et al., 2018. SvABa: genome-wide detection of1418

structural variants and indels by local assembly. Genome Research, 28(4):581–591.1419

Wang, L., Sun, Y., Sun, X., Yu, L., Xue, L., He, Z., Huang, J., Tian, D., Hurst, L. D., and Yang,1420

S., et al., 2020. Repeat-induced point mutation in Neurospora crassa causes the highest known1421

mutation rate and mutational burden of any cellular life. Genome Biology, 21(1):142.1422

29



Xie, C. and Tammi, M. T., 2009. CNV-seq, a new method to detect copy number variation using1423

high-throughput sequencing. BMC Bioinformatics, 10(1):80.1424

Xing, Y., Dabney, A. R., Li, X., Wang, G., Gill, C. A., and Casola, C., 2020. SECNVs: a simulator1425

of copy number variants and whole-exome sequences from reference genomes. Frontiers in1426

Genetics, 11:82.1427

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., and Ning, Z., 2009. Pindel: a pattern growth1428

approach to detect break points of large deletions and medium sized insertions from paired-end1429

short reads. Bioinformatics, 25(21):2865–2871.1430

30



Supplementary Figures1431

0

200

400

600

800

30 40 50 60 70 80 90 100

Mutation genotype quality

co
un

t

Whole genome

0

50

100

150

200

250

30 40 50 60 70 80 90 100

Mutation genotype quality

co
un

t

Euchromatin

0

100

200

300

30 40 50 60 70 80 90 100

Mutation genotype quality

co
un

t

H3K9 exc. cent.

0

50

100

150

30 40 50 60 70 80 90 100

Mutation genotype quality

co
un

t

Centromeric

Figure S1: Distribution of genotype qualities of observed mutations given by GATK. Distributions
are shown for the whole genome, euchromatin, H3K9me3 domains excluding centromeric regions,
and centromeric regions.
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Figure S3: Mutation spectra for the MA line 21. A) Relative mutation rates. B) Ratios of relative
mutation rates for line 21 / rest of the MA lines. Intervals for C:G → A:T transversions and C:G
→ T:A transitions barely overlap one.
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Figure S4: GC-content and relative mutation rate within domains. Relative mutation rates for
windows of 200 bp binned for GC-content at 2.5 percentage point intervals. Ticks on the horizontal
axis are at the end points of intervals. Note that y-axis is on a log10 scale, the dashed line indicates
relative mutation rate of one. Some bins did not contain any mutations, so estimates are missing for
those bins. A) Euchromatic regions B) H3K9me3 domains C) H3K27me3 domains D) Centromeric
regions. 34
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Figure S5: Effect of window size on regression between the predicted mutation rate and the observed nucleotide polymorphism in natural
populations. Results have been calculated for different window sizes. n is the number of windows, β is the slope of the regression line,
and R2 is the Baysian R2 value, a measure of model fit.
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Figure S7: Regression between the predicted mutation rate and the observed nucleotide polymor-
phism within different regions of the genome. Window size was set to 1000 bp in both panels,
as there are large number of windows where θ = 0 for small window sizes in the transversions
only data. n = 40459, β is the slope of the regression line. A) θ has been calculated for all
SNPs, R2 = 0.32 [0.32, 0.33]. B) θ has been calculated only for SNPs that represent transversions,
R2 = 0.29 [0.28, 0.30].
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Figure S8: Observerved deviations of trinucleotide frequencies from expectations for different parts
of the genome. Observed trinucleotide frequencies were divided by their expected frequencies
based on GC-content. The dashed line shows the expected ratio of one.
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Figure S9: A) Relative mutation rates for the 32 different trinucleotide classes. B) Model estimates
for relative mutation rates for centromeric, H3K9me3 and H3K27me3 domains from the trinu-
cleotide model. Estimates are medians and range shows 95% HPD intervals.
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Figure S11: Mutations that occurred during sexual reproduction. Data is from Wang et al. (2020).
Note that y-axis scales are different in different panels. A) The distribution of the number of mu-
tations in the tetrads in euchromatin and H3K9 methylated domains. B) The number of mutations
per tetrad for the different crosses. C) Spectrum of mutations for different regions of the genome.
Error bars are 95% HPD intervals.
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Figure S12: Ratios of the relative mutation rates during meiosis over mitosis. Points are medians
and ranges show 95% HPD interval of the ratios. If the interval estimate is higher than one, mutation
rate in meiosis is higher, if the interval estimate is lower than one, mutation rate in mitosis is higher.
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Figure S13: Sequencing coverage plotted against GC-content of the genome for the mat A ancestor.
Other samples had similar profiles.

42



Figure S14: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track is
MA line 11. Mutation is in chromosome 2, position 4 299 675, in euchromatin. Genotype quality
of the mutation is 99.
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Figure S15: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 1. Mutation is in chromosome 4, position 5 520 332, in euchromatin. Genotype quality
of the mutation is 75.
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Figure S16: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track is
MA line 25. Mutation is in chromosome 1, position 7 379 443, in euchromatin. Genotype quality
of the mutation is 45 as the mutation is located in a repetitive region. This mutation was confirmed
by Sanger sequencing.
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Figure S17: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 10. Mutation is in chromosome 4, position 903 059, in centromeric region. Genotype
quality of the mutation is 99.
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Figure S18: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 13. Mutation is in chromosome 1, position 3 924 538, in centromeric region. Genotype
quality of the mutation is 67 as the mutation is located in a repetitive region.
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Figure S19: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 25. Mutation is in chromosome 5, position 1 046 639, in centromeric region. Genotype
quality of the mutation is 45 as the mutation is located in region with reduced mapping quality.
Some reads that do not support the mutation map to this location. However, those reads also have
other changes that are not supported by other reads. This suggest that reads not supporting the
mutation are mapping errors. This mutation was confirmed by Sanger sequencing.
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Figure S20: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track is
MA line 10. Mutation is in chromosome 5, position 597 516, in region marked by H3K9 methyla-
tion. Genotype quality is 99.
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Figure S21: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 18. Mutation is in chromosome 4, position 5 657 442, in region marked by H3K9
methylation. Genotype quality is 72.
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Figure S22: Screenshot of a mutation viewed in IGV. Upper track is the ancestor and lower track
is MA line 21. Mutation is in chromosome 7, position 141 198, in region marked by H3K9 methy-
lation. Genotype quality is 45. Some reads do not support the mutation. However, those reads
have other changes that suggest a read mapping error. This mutation was confirmed by Sanger
sequencing.
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Figure S23: Densities for the length of distributions of SVs simulated using survivor. The charac-
teristics of each simulated set are specified in the supplementary table S6.
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Table S1: Summary of alignment metrics for genomes used in this study. The ancestors used to
start the MA experiment were: B 26708, which is 2489 mat A, and B 26709, which is 2489 mat a.
Lines L1–L20 are mat A and L21–L40 are mat a.

Natural strains MA lines
Line Number of reads Depth Mapped reads (%) Line Number of reads Depth Mapped reads (%)

10882 30683221 112 87.2 B 26708 15183018 55 98.5
10883 20920000 76 69.7 B 26709 18679696 68 98.3
10884 32294020 118 72.8 L1 13215012 48 98.2
10886 15265173 56 92.7 L2 15658340 57 98.2
10892 32124218 117 62.3 L3 14699884 54 98.3
10904 14718008 54 91.1 L4 16424902 60 98.2
10906 14935778 55 89.7 L5 16328002 60 97.6
10907 32213115 118 68.1 L6 15189850 55 98.3
10908 13924689 51 91.7 L7 14006386 51 98.4
10912 14829204 54 92 L8 13888092 51 98
10914 30158241 110 61.1 L9 14386986 53 98.3
10915 24410441 89 61.1 L10 15458492 56 98.6
10918 40163515 147 65.4 L11 13884490 51 98.1
10923 16231892 59 92 L12 15913482 58 98.2
10925 37031022 135 85.2 L13 20192750 74 97.8
10926 32682749 119 66 L14 17445964 64 98.1
10927 17741573 65 73.1 L15 14776588 54 98.5
10928 15048163 55 92 L16 14562124 53 98
10932 13402421 49 91.1 L17 16043040 59 97.9
10935 22304835 81 81.1 L18 14755826 54 97.7
10937 29757556 109 85.4 L19 13712542 50 98.1
10943 32838278 120 72.8 L20 18685746 68 96.9
10946 17261401 63 90.1 L21 14814794 54 98.5
10948 13835447 50 91 L22 15849832 58 98
10950 14364201 52 98 L23 17528602 64 98.3
10951 13354998 49 89.5 L24 14415798 53 97.8
10983 38349194 140 72.8 L25 14773870 54 98.1
1131 16974127 62 88.7 L26 17436754 64 98.2
1133 14540257 53 88.3 L27 14047860 51 98.2
1165 15095250 55 90 L28 16295790 59 98.3
3210 13681263 50 90.4 L29 16244750 59 98.1
3211 13908534 51 89.4 L30 19847786 72 98.1
3223 14095397 51 92.1 L31 19613222 72 97.9
3943 143993668 525 82.6 L33 33430658 122 97.9
3975 13671543 50 88.8 L34 15456254 56 97.9
4708 14310459 52 87.7 L35 14405808 53 98
4712 12602174 46 86 L36 15567642 57 97.8
4716 18336337 67 86.7 L37 15232240 56 98
4730 15588817 57 87.4 L38 14265830 52 98
4824 12921275 47 88.3 L39 16540462 60 98.1
5910 12494976 46 83.4 L40 18856392 69 98.3
6203 13266522 48 89.3
851 12956372 47 89.7

8783 15381794 56 88
8790 13205097 48 90.1
8816 15452652 56 89.6
8819 13736103 50 87.5
8845 15868843 58 86.9
8850 12695261 46 89.3

P4452 172179164 628 86.9
P4463 21708426 79 69.7
P4468 21129155 77 68.4
P4471 24828717 91 72.4
P4476 92452134 337 86.8
P4479 22220857 81 72.5
P4489 34624044 126 72.5
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Table S2: Model comparisons among different models that predict the mutation rate by GC-content
and chromatin modifications. Model terms are different linear model parts, α is the intercept, βGC

is the slope effect of GC-content, βK9 is the effect of H3K9 domain, βK27 is the effect of H3K27
domain, βC is the effect of centromeric domain, βI is the interaction effect between GC-content
and H3K9 domain, βI2 is the interaction effect between GC-content and centromeric domain, βI3 is
the interaction effect between GC-content and H3K27 domain. di, gi, and ci are indicator variables,
and xi is GC-content in percentage points. WAIC = widely applicable information criterion, SE =
standard error.
Model terms WAIC diff (± SE) weight
α + βGCxi + βK9di + βK27gi + βCci + βIxidi 454.47 0 (0) 0.63
α + βGCxi + βK9di + βK27gi + βCci + βIxidi + βI3xigi 456.86 2.39 (2.19) 0.19
α + βGCxi + βK9di + βCci + βIxidi 458.67 4.2 (6.94) 0
α + βGCxi + βK9di 458.84 4.37 (10.59) 0
α + βGCxi + βK9di + βCci + βIxidi + βI2xici 460.35 5.88 (7.17) 0
α + βGCxi + βK9di + βIxidi 495.86 41.39 (19.86) 0
α + βGCxi + βK9di 496.65 42.18 (22.43) 0
α + βGCxi 546.62 92.15 (33.84) 0
α + βK9di + βCci 614.83 160.36 (42.53) 0
α + βK9di 645.82 191.35 (49.19) 0
α + βCci 1290.02 835.55 (255.52) 0
α 1689.56 1235.09 (264.15) 0

Table S3: Model estimates for a model predicting mutation rate by GC-content, centromeric, H3K9,
and H3K27 domains, α is the intercept, βGC is the slope effect of GC-content, βK9 is the effect of
H3K9me domain, βK27 is the effect of the H3K27me3 domain, βC is the effect of centromeric
domain, and βI is the interaction effect between GC-content and H3K9me domain.

Parameter Estimate [95% HPDI]
α −2.61 [−3.34, −1.88]
βC 0.51 [0.35, 0.67]
βK9 −0.14 [−0.93, 0.63]
βK27 0.32 [0.08, 0.55]
βGC −0.06 [−0.08, −0.05]
βI 0.02 [0.00, 0.04]
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Table S4: Model comparison among different models that predict the mutation rate by trinucleotide
class and chromatin modifications. Model terms are different linear model parts. α is the intercept,
βt is a vector of effects for the 32 trinucleotide classes, βK9 is the effect of H3K9 domain, βK27

is the effect of H3K27 domain, βC is the effect of centromeric domain, βI is the interaction effect
between trinucleotide class and H3K9 domain, βI2 is the interaction effect between trinucleotide
class and centromeric domain. di, gi, and ci are indicator variables, and x[t] is the trinucleotide
class. WAIC = widely applicable information criterion, SE = standard error.

Model terms WAIC diff (± SE) weight
βtx[t] + βK9di + βK27gi + βCci 621.31 0 (0) 0.96
βtx[t] + βK9di + βCci 627.79 6.47 (6.95) 0.04
βtx[t] + βK9di + βK27gi + βCci + βIx[t]di 640.35 19.04 (14.69) 0
βtx[t] + βK9di + βCci + βIx[t]di 647.17 25.85 (16.26) 0
βtx[t] + βK9di + βCci + βIx[t]di + βI2x[t]ci 652.37 31.06 (18.55) 0
βtx[t] + βK9di 693.47 72.15 (21.8) 0
βtx[t] + βK9di + βIx[t]di 717.79 96.48 (26.11) 0
βK9di + βCci 996.07 374.76 (67.31) 0
βK9di 1043.35 422.04 (67.64) 0
βCci 1370.5 749.19 (114.3) 0
α 1776.5 1155.19 (135.53) 0
βtx[t] 1916.35 1295.03 (134.38) 0
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Table S5: Natural strains with sequencing data included in this study. Strains were obtained from
FGSC. 33 strains were sequenced in this study and data for 23 strains were obtained from Zhao
et al. (2015).

Strain Source Strain Source
10948 This study P4452 (Zhao et al., 2015)
10886 This study P4463 (Zhao et al., 2015)
10932 This study P4468 (Zhao et al., 2015)
1165 This study P4471 (Zhao et al., 2015)
8816 This study P4476 (Zhao et al., 2015)
3223 This study P4479 (Zhao et al., 2015)
8845 This study 10882 (Zhao et al., 2015)
10908 This study 10883 (Zhao et al., 2015)
10904 This study 10884 (Zhao et al., 2015)
851 This study 10892 (Zhao et al., 2015)
1131 This study 10907 (Zhao et al., 2015)
8850 This study 10914 (Zhao et al., 2015)
8819 This study 10915 (Zhao et al., 2015)
4708 This study 10918 (Zhao et al., 2015)
4712 This study 10925 (Zhao et al., 2015)
6203 This study 10926 (Zhao et al., 2015)
4824 This study 10927 (Zhao et al., 2015)
8783 This study 10935 (Zhao et al., 2015)
8790 This study 10937 (Zhao et al., 2015)
3975 This study 10943 (Zhao et al., 2015)
10928 This study 10983 (Zhao et al., 2015)
10912 This study 3943 (Zhao et al., 2015)
3210 This study P4489 (Zhao et al., 2015)
10923 This study
10950 This study
10951 This study
10946 This study
3211 This study
10906 This study
5910 This study
4730 This study
1133 This study
4716 This study
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Table S6: Detecting structural variants with different callers from simulated data. Callers tested were DELLY, Lumpy, SVaba, and Pindel.
Different sets are simulations with different numbers of structural variants.

DELLY Lumpy SVaba Pindel
set Deletion Duplication Inversion Translocation Insertion Inv-del Total number of SV sensitivity FDR sensitivity FDR sensitivity FDR sensitivity FDR
1 1 4 4 4 5 0 18 0.90 0 0.90 0.55 0.60 0.60 0.55 0.65
2 7 15 5 8 5 0 40 0.84 0.02 0.84 0.54 0.51 0.55 0.48 0.60
3 8 10 10 15 7 0 50 0.88 0 0.88 0.54 0.64 0.52 0.38 0.61
4 6 20 20 20 14 0 100 0.54 0.33 0.54 0.60 0.36 0.77 0.28 0.94

1433
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Table S7: Calling CNVs on simulated data using either CNVnator with two different bin sizes,
CNV-seq, or both callers together.

Sensitivity score FDR score
CNVnator (1670 bin size) 0.375 0.556
CNVnator (75 bin size) 0.968 0.797
CNV-seq 0.937 0.999
Both callers 0.906 0.482
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