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Additional notes on the method section

Comparison of different TAD-calling methods

We compared TADs identified by 16 TAD-calling methods on seven human cell lines by calculating some
metrics between domain sets or boundary sets, such as the absolute differences of TAD number and
average size, Jaccard index and the Measure of Concordance.

Jaccard index between boundary sets. Here we introduced a modified Jaccard index to evaluate the
similarity between two sets of TAD boundaries A and B:

|A N Bj |A N B|
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where 0 < J(A,B) < 1. Here, we adopt a tolerance radius of 1 bin when defining the intersection between

J(A,B) =

two sets of TAD boundaries. If the distance between two boundaries doesn’t exceed 1 bin, they will be
determined as the shared ones between boundary sets.

Measure of Concordance (MoC) between domain sets. MoC was introduced by Zufferey et al.
(Zufferey et al. 2018) to compare TAD partitions and it is defined as follows:
1, ifN,=Ny=1;
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where P and Q are two domain sets, N, and N, represent the number of TADs contained in these two

MoC(P,Q) =
oC(P.Q) —1), otherwise

sets. P, and Q; are two TADs with domain lengths of ||P;]| and ||Q;||. where ||F;;| denotes the overlap
length between P; and Q;. Here the length indicates the number of base pairs of DNA sequence.

We calculated these metrics mainly for comparison of TADs across methods or across datasets. For
comparison across methods, we kept the dataset the same and calculated the metrics between TADs
identified by different methods. For comparison across datasets, we kept the method the same and
calculated the metrics between TADs found by this method on different Hi-C datasets.

Enrichment of structural proteins at TAD boundaries. For the structural proteins (e.g., CTCF, RAD21,
and SMC), we counted the binding peaks in each 10-kb bin and built up the profile of the median values
around the boundaries identified by a certain method. Then we computed the fold change between their
binding peaks at TAD boundaries versus adjacent flanking regions.

Analyses of TAD separation landscapes of multiple cell lines

For each bin along the genome, we calculated the average boundary scores among seven cell lines
based on their TAD separation landscapes. We sorted these bins by the average scores in ascending
order, and selected some quatrtiles, including 0%, 30%, 44%, 58%, 72%, 86%, and 100%, to divide all
bins into six levels. The bins contained in the first level (0~30%) have a boundary score of 0 and bins
with higher levels would have larger boundary scores. For bins with different levels, we computed the
number of cell lines in which they have non-zero boundary scores and counted the number of
housekeeping genes in each bin, as well as the average number of CTCF binding peaks across cell lines,
and we also calculated the average phastCons scores for DNA sequences of these CTCF binding peaks
(Supplemental Fig. S6A). Besides, we clustered the Hi-C samples from different cell lines based on the
Pearson correlations between their TAD separation landscapes (Fig. 4B) or 1D indicators like DI, IS, and
Cl (Supplemental Fig. S6B).



Two metrics used for the identification of three types of boundary regions
The within-cluster sum of squared error (WCSSE) is the sum of the squared differences between each
sample and its cluster center across all clusters:

K
WCSSE(X,C) = Z Z (2 — )
i=1 XjECi

where K denotes the cluster number, X = {x,, x,, ..., x,,} denotes the set of boundary regions, C; is the i-
th cluster of k-means and y; is the cluster center. The number of clusters that minimize the sum of
squared error can be viewed as optimal.

The silhouette coefficient (SC) is a measure of how similar a sample is to its own cluster compared to
other clusters, i.e.,
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clusters for sample i. The number of clusters that maximize the silhouette coefficient can be viewed as
the optimal one.

Overlap between three types of boundary regions and boundaries reported by individual TAD-
calling method

While other single methods only report the position of a TAD boundary (usually a bin with a fixed length).
Therefore, we can’t divide their boundaries into three types as we defined. But for each boundary region
we got, we examined whether it overlapped with the boundary reported by a single method
(Supplemental Fig. S14E). We found that all three types of boundary regions showed different overlap
ratios among different methods. All methods had a low ratio for the Narrow-weak type, indicating that
they might fail to detect such boundary regions.

Comparison of ConsTADs and other TAD-calling methods

After obtaining the ConsTADs, we compared them with the results of other TAD-calling methods in two
aspects and we found that ConsTADs could reveal more domains with H3K36me3/H3K27me3
differential signal and had the highest agreement with other methods in the classification of DNA
replication domains.

Identification of topological domains with significant H3K36me3/H3K27me3 differential signal

We calculated the average signal of H3K36me3 and H3K27me3 in each 50-kb bin along Chromosome 2
in GM12878 and then got the fold change of signal for each bin by dividing the mean signal across the
whole chromosome. For each bin, we computed the ratio between the H3K36me3 and H3K27me3 fold
change, similarly to Zufferey et al. (Zufferey et al. 2018), we termed them as LR values or LR intervals
and a positive value indicates a bias to H3K36me3, while a negative one indicates a bias to H3K27me3,
and these biases usually stay the same in some consecutive intervals and the positions with altered bias
are recorded. We collected the topological domains identified by all 16 TAD-calling methods as well as
the ConsTADs we defined and calculated the average LR values within each domain and shuffled the LR
intervals 1000 times to derive a null distribution of LR values within domains. For each domain, an
empirical p-value can be calculated by comparing its observed average LR values with the null
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distribution. The p-values for all the domains identified by each TAD-calling method were corrected using
the Benjamini-Hochberg procedure and domains with a corrected p-value smaller than 0.1 were
considered with significant H3K36me3/H3K27me3 differential signal. Domains under 150 kb (three bins
at 50 kb resolution) in length were excluded from this analysis because they were too short
(Supplemental Fig. S15C). We also calculated the distances from all bias-changing points to the
nearest domain boundary for each method (Supplemental Fig. S15D).

Consistency score of the domain replication cluster

Just like the ConsTADs, for each method, the topological domains were divided into five clusters based
on their DNA replication timing, and bins within these domains were also assigned to a certain cluster.
Then for each bin along the chromosome, a consistency score of domain replication cluster was
calculated as the proportion of methods in which the bin has the same cluster assignment as the current
method (Supplemental Fig. S15F).

Exploring boundary probabilities of boundary regions at the single-cell level

We obtained the 3D coordinates for probes representing 250-kb loci on Chromosome 2 of IMR90 single
cells and these coordinates are separated for each imaged chromosomal copy. We first calculated the
3D spatial distances between pairs of imaged chromatin loci and constructed the spatial distance
matrices for every single chromosome. We then identified chromatin domains in single chromosomes
following the procedures proposed by (Su et al. 2020). In this way, we can assign a boundary probability
to each probe, indicating the number of single chromosomes that consider as the domain boundary over
the total number of chromosomes. We then identified the boundary regions on Chromosome 2 of IMR90
with a Hi-C contact map with 50 kb resolution and used the LiftOver (Hinrichs et al. 2006) to convert all
50-kb bins from human genome assembly hgl9 to hg38. For each probe representing a 250-kb locus,
we assigned it a label corresponding to the type of boundary region that covered the largest proportion of
it, and if a probe did not overlap with any boundary regions, it would be defined as non-boundary
(Supplemental Fig. S22E). Besides, for every single chromosome, if the distance between two loci is
below 500nm, they will be considered as contacting each other. Thus, we got the overall proximity
frequency matrix of all these single chromosomes by dividing the contact frequency of each pair of loci
by the total number of single chromosomes (Supplemental Fig. S22F).
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Supplemental Fig. S1. Comparison of TADs identified by the 16 TAD-calling methods on Hi-C data
from different cell lines.



(A) llustration of extracting lowest level domains for hierarchical TADs reported by methods like OnTAD,
HITAD and 3DNetMod. (B) TADs identified by different methods (10 methods here) on the same
chromatin region (Chr 2: 10.45 — 13.55 Mb) of GM12878 and K562. (C, D) Comparison of the number (C)
and average size (D) of TADs identified by 16 methods on Chromosome 2 of eight Hi-C datasets.
Methods are sorted by the average values among eight datasets. (E-H) Comparison of the difference in
the number (E) and size (F) of TADs, as well as the Jaccard index between boundary sets (G) and the
MoC between domain sets (H) across TADs identified by each method and other methods on the same
dataset or across TADs identified by each method on the different datasets. Methods are sorted by the
difference or consistency of TADs across methods. The error bars represent the 95% confidence
intervals.
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Supplemental Fig. S2. Enrichment of TFs in TAD boundaries and illustration of the boundary

voting strategy.

(A) Average profiles for fold changes of CTCF, RAD21, and SMC3 binding peaks around boundaries
identified by DI and deDoc in GM12878 and K562. The fold changes are calculated for each 10-kb bin by
dividing the average peak numbers across the chromosome. (B) Comparison of fold changes of CTCF,

9



RAD21, and SMC3 binding peaks for boundaries identified by the 16 methods between GM12878 and
K562. The fold change for each method is calculated by dividing the signal of the boundary by the
average signal of flanking regions in the profiles shown in (A). The distribution of fold changes for
different methods in GM12878 or K562 are shown and their Pearson correlation coefficients (PCC) are
calculated. (C) lllustration of the boundary voting strategy. Each boundary can contribute one score to
the surrounding bins according to a radius (e.g., a radius of one here). (D) Proportion of 50-kb bins with
different scores on Chromosome 2 of GM12878. (E) The minimum distance between bins with different
scores and the boundaries identified by each method. Two thresholds including five for the score and five
bins for the minimum distance are indicated by vertical and horizontal dotted lines respectively. Dots in
the upper right areas represent high-scoring bins away from the boundaries identified by each method
and the numbers of such dots are shown. A horizontal tiny perturbation is added to each dot to avoid
overlap.
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11



Chr2: 46.9-49.95 Mb (Spectral)

140 160 120 200
150
100 120 13%0
80 60 100
60
60 40 50
20 20 ] 20
Boundary 10]' o 10 . . i - 10 —
score 0 Um 0
46.9 49.9 152.1 154.1 421 46.1 100.2 102.2
Chr2: 8.65-11.2 Mb (Spectral)  Chr2: 113.3-115.35 Mb (HiCDB) Chr2: 42.1-46.15 Mb (ClusterTAD) Chr2: 72.95-75.5 Mb (3DNetMod)
200 200 175
150 150 125
100 100 75
50 50 25
107, 101
0, 0 0
8.65 11.15 113.3 115.3 42.1 46.1 72.95 75.45
Chr2: 26.95-29.0 Mb (deDoc) Chrz: 74 9-78.45 Mb (IS) Chr2: 39.35-42.4 Mb (ICFinder)  Chr2: 70.15-74.2 Mb (HiCseg)
225 120 ‘ 120 100
175
125 80 80 60
40 40
. 75 i 20
. ' ' " 25 o : ot . G e
0 0 9 0
26.95 28.95 74.9 77.9 9.35 42.35 70.15 74.15
Chr2: 210.1-212.15 Mb (deDoc) ~ Chr2: 74.5-78.05 Mb (IS) Chr2: 133.35-135.4 Mb (ICFinder)  Chr2: 43.75-47.1 Mb (HiCseg)
175 160 160
125 :gg 120
75 80
|60 40
25 ‘ 120
10
g 0
2101 212.1 133.35 135.35 4375 46.75

Chr2: 220.4-222.95 Mb (MSTD)

Chr2: 32.1-37.15 Mb (HIiTAD)

Chr2: 230.45-233.5 Mb (DI)

140 160
100 120
60 80
‘ 40
‘ 120
10 107
0 0
220.4 2229 230.45 233.45
Chr2: 6.05-8.6 Mb (MSTD) Chr2: 234.5-237.85 Mb (DI)
160 120
120
80
80
40 40
101
0 0
6.05 8.55 101.9 104.4
Chr2: 231.05-232.9 Mb (CHDF)  Chr2: 231.05-232.9 Mb (CHDF)
i 300 - 175
200 125
100 &
25

0 0
231.05 40.85

232.55 42.85

Chr2: 152.1-154.25 Mb (HICDB) Chr2: 42.1-46.15 Mb (ClusterTAD) Chr2: 100.2-102.25 Mb (3DNetMod)

Chr2: 231.65-233.5 Mb (TopDom)

-

231 65

233 15

Chr2: 136.35-139.7 Mb (TopDom)

Supplemental Fig. S4. Hi-C contact maps around unreliable TADs and missed TADs for different

methods (see Figs. 2D, 2E).

12



A D GM12878 Mbol Chr 2: 37.5 - 41.0 Mb
Chr2:37.5-41.0 Mb Distance-dependent Z-score normalization 375

0.6
0.4 1
0.2

1400

1200

38.5 7 1000

39.5 -0.2 1
-0.4

-0.6

800

39.5 A1 600

40.5

400

40.5 1 200

0.7

E—

e Sample of certain cell type 1000kb

b - —

a0 -
- —
—
—
w’d

0.6 1
800kb

4 --

0.5

R
gy B SN N E—

400kb

'S- L--H---

0.4
0.3 1 ' i
0.2 *

AY] AY] M 0 & sl 0 P ] O
\QQ‘(‘- I\‘JQ\L 105\6- 300% DDQ 6300 660"6' %QQ :\QQQ 'LQQQ

=
=
B |

Contrast p-value for
multi-scale window (kb)
—o

200kb

H= — - — — 4+ — = H— — =

B

v

Original

-
o oo

Boundary

Pearson correlation between multi-scale
contrast p-value and boundary score profile
score

' . Refined

Window size for p-value calculation

= Original [ Refined
H

E -
)
c 0.30- P=385x107| g5 I
TR = = =
=12 e .
c @ _|= e
8
Add operation g 'ga
286
g o
p-value SR -1
p-value = 1 sl —_ cut off %gzﬁ ﬁ ‘ ﬁ ﬁ ﬁ
Add B
Boundary 0 2 4 6 8 10 14 [SE
score 1-score F Average score of boundary region | w Cell types
— C
% o
- K > 1.01 s E
| Filter operation | £ S 018 v
2 0.8 e 2 B
B = 0:.115 ke e
Q ke i — *
Contlrast p-value g 0.6 g %12 — *
p-value = = i t off o @ 5
SKeeph U LFiter - 2 0.4+ 2o
Boundary i ) E 0.24 226
score C 5 P=220x 10713 83
O 9 § S 3
- - 0 2 4 6 8 10 12 14 16 S
| Combine operation | G Distance between boundary regions (#bins}ij Cell types
m
p-value = S ’Z:ui off 14 W T At e £ ® Result of certain method
Fill 4 B gl £ 304 : .
Boundary 2510 2
score 398 &207. —_— .
“’ Combine o % 6 ® | .
g £
834 S 107
L9 » 5 150 SIS
0 T oo
P =
2%2%%%%%% 22 %2%%%%%
%5008 2% 33088025
@ CACS
) D
% R < R

Supplemental Fig. S5. Construction of the TAD separation landscape.

(A) An example of the Hi-C contact map before (left) and after (right) the distance-dependent z-score

normalization. (B) Pearson correlation between the boundary score profile and the contrast p-value

profiles calculated using multi-scale window size. Each dot represents the result for a sample of a certain
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cell type. At each scale, eight samples are involved, including seven cell types GM12878 (with two
replicates), HVEC, HUVEC, IMR90, K562, KBM7, and NHEK. For each sample, the scale with the
highest correlation is chosen for the construction of the TAD separation landscape. (C) Three operations
(Add, Filter, Combine) are used for constructing the TAD separation landscape. The Add operation adds
one score to bins with zero boundary scores but with p-values below the cut-off. The Filter operation
turns the boundary scores to zero for bins with p-values greater than the cut-off, but the boundary scores
for bins in the valleys of the p-value profiles are kept. The Combine operation combines two adjacent
boundary regions separated by one bin gap and the gap will be filled with the average boundary score of
the upper and lower bins. The p-value cut-off is set as 0.05 in this study. (D) The Hi-C contact map of a
region on Chromosome 2 of GM12878 accompanied by the corresponding multi-scale contrast p-value
profiles. The original boundary score profile as well as the refined profile are also shown. The selected
scale of the contrast p-value for constructing the TAD separation landscape is marked red. For each
scale, the p-value cut-off is set as 0.05 (denoted by the horizontal dashed lines). The vertical dashed
lines indicate the positions of refined boundary regions. (E, F) Comparison of the average score
distribution for the boundary regions (E) and the cumulative distributions of the distance between the
adjacent boundary regions (F) before and after refining for the GM12878 Mbol sample. The Kolmogorov-
Smirnov test is used to get the p-value. (G-1) Comparison of the average score for the boundary regions
(G), the distance between the adjacent boundary regions (H), and the distance between centers of the
adjacent boundary regions before and after refining for eight samples from the different cell types. The
Mann-Whitney U tests are performed, * represents p-value < 3 x 10™* and ** represents p-value < 107,
(J) The median length of TAD domains for the 16 TAD-calling methods on eight samples from different
cell types. Each black dot represents the result of a certain method. The median distances between
centers of the adjacent boundary regions before and after refining are shown as red and blue lines on
each bar.
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Supplemental Fig. S6. Analysis of bins with different boundary scores and the clustering of Hi-C
sample.
(A) The relationship between the boundary score level and the conservation of boundary across cell lines,
the average number of CTCF peaks across cell lines, the number of housekeeping genes, and the
conservation of DNA sequence for CTCF binding regions. (B) Clustering of multiple Hi-C samples from
different cell lines based on the Pearson correlation of 1D indicators including IS, DI, and CI.
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confidence intervals in 1000 bootstraps. (C, D) The number (C) and ratio (D) of conserved, cell-type
gained and cell-type lost boundary regions for pairwise comparisons between seven cell lines. The ratios
are calculated based on the unions of the boundary regions between two cell types. The gained and lost
boundary regions are defined in terms of the cell lines in each row. (E) Heatmap of the maximum
boundary scores in the conserved and cell-type specific boundary regions among seven cell lines.
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K562.

(A-C) The aggregated Hi-C contact maps and boundary score profiles around the conserved (A),
GM12878-specific (B), and K562-specific boundaries (C) between GM12878 and K562, as well as
the difference between these aggregated maps. (D) The CTCF peaks profiles around the conserved,
GM12878-specific, K562-specific boundaries. (E) The top 20 TFs enriched in conserved and
GM12878-specific boundaries. (F) The top 20 TFs enriched in conserved and K562-specific
boundaries.
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Supplemental Fig. S9. lllustration of the conserved and cell-type specific boundary regions.
(A, B) The aggregated Hi-C contact maps around the conserved boundary regions (A) and each kind of
cell-type specific boundary regions (B) combined with the average boundary score profiles. The numbers
of the boundary regions are shown above each and the corresponding cell type is marked with a red
frame.
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Supplemental Fig. S10. Boundary regions shared by a part of the seven cell lines.

Numbers of the cell-type specific boundaries or boundaries shared by part of the seven cell lines are
shown above. The examples of Hi-C contact maps centered on boundary regions belonging to certain
types are shown below. These boundary regions are marked by red arrows and cell lines sharing these
boundary regions are marked in red.
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Supplemental Fig. S11. Identification of three types of boundary regions based on the TAD

separation landscapes in seven cell lines.
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(A-G) For each cell line, four images are shown from left to right. Two images on the left depict the
relationships between the within-cluster sum of squared errors or the silhouette coefficient and the
number of clusters for k-means, respectively. The right two show the clustering results of k-means with
the optimal number of clusters and the clustering results according to the selected thresholds for the
length and the average score of boundary region respectively. The best number of clusters is marked by
red arrows and the thresholds for region length and average score are indicated by dashed lines.
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Supplemental Fig. S12. Enrichment analysis of chromatin states and subcompartments for three
types of boundary regions.

(A-C) Fold change profiles of ChromHMM states (A), Segway states (B), and five kinds of
subcompartments (C) calculated for the three types of boundary regions in multiple cell lines. Fold
change is defined as the total length of the state or subcompartment in boundary regions divided by the
expected length of the state across the whole chromosome.
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Supplemental Fig. S13. Enrichment analysis of repeat elements in three types of boundary

regions.

(A-G) Enrichment z-score of repeat elements in three types of boundary regions identified from seven
cell lines. These repeat elements can be divided into seven types, labeled with different colors. (H) The

enrichment of TcMar-Tigger elements is shown separately. The dashed lines indicate the z-score of zero.
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Supplemental Fig. S14. Biological characterization of the three types of boundary regions.

(A) FPKM of genes in the three types of boundary regions in GM12878. (B) Fold change profiles of Repli-

seq wavelet-smoothed signal around the three types of boundaries in GM12878. (C, D) Top 25 TFs from
28



HOMER TF datasets ranked based on their motif enrichment in the open chromatin of the three types of
boundary regions for GM12878 (C) and K562 (D), respectively. The significance of TF enrichment is
calculated with the hypergeometric test by HOMER. The intersections between TFs enriched in the three
types of boundary regions are also shown and the names of the TFs are colored according to the
intersections. (E) The ratio of three types of boundary regions that overlapped with boundaries reported
by 16 TAD-calling methods.

29



A
Chr 2: 20.3 - 21.8 Mb Best match

- = = == -

203 my 3000
2000

20.8 1000

213

()

¥

@ 203 208 213 203 208 213 203 20.8 213
0.25
0.25
-0.75

1°LJLJLR_A_J L_M_A_n_] LJLJLAIL_ALJ
0203 208 213 203 208 213 203 208 213 203 20.8 213

B
o (X 107%) H3K27me3 H3K36me3 Pol2 H3K9ac YY1 H3K9me3
5@ 22 ! ° H he.el 20— ;
£ £ L[R2 ] !
© 1 1 1
® g “ | N IA 10 ] 8.2 E
8 T 20 1 7 ]
? 8 1 \J 20 ; 7.8
N @ H i
g8 | 91 | 7.4
© IS 18 ) H H i 1
3 8 —H8 6 4 7. ! 18— 4
CI | CO ) [ [ S |
20% 100% 20% 20% 100% 20% 20% 100% 20% 20% 100% 20% 20% 100% 20% 20% 100% 20%
domain domain domain domain domain domain
C Number of domains with D
significant differential signal ? -
H3K36me3-biased H3K27me3-biased § @
80 40 0 0 40 80 120 ¥ 8
ConsTADs e
ICFinder @ 5204
TopDom 2 §
HiTAD g £
HICDB 88515
CaTCH S o8
deDoc fed
ST c 2G 10
IS T e
OnTAD 2556
CHDF oo 5
3DNetMod 89
S _gctral 23 - s
Ikseg g & o 0 0 0\0,\0\9\?‘ 2 Y9 o, @ S S \&Y? s
GMAP 25 O ‘< SR ‘?‘\g O o
ClusterTAD (=] 0 &)
E (x 10%) Dendograms of agglomerative clustering F _
5 X
144 £405
121 °g
3 104 _5 304
c ® 3
8 g4 003
2 a
0 6 o %02
4 A £
2 1 g 8:0d
0 8 00
J : Ky
e —— SIS ER LS LN
Cluster5 Cluster4 Cluster3 Cluster2  Cluster1 SPNO be’\(j<\ T KFSTL OQ%?} g
< o

Supplemental Fig. S15. Illustration of boundary matching and additional analysis of biological
features within domains.

(A) Schematic diagram of the boundary matching process to define ConsTADs. For the two selected
adjacent boundary regions (marked by black bars), one bin is selected from each of them, all six
combinations are shown and the selected bins are indicated by the red dashed line. For each
combination, the corresponding domain region, upstream and downstream region is indicated by the
black dashed lines. The combination of bins with the best average rank in terms of the boundary score
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and domain signal enrichment would be selected to form the ConsTADs. (B) Profiles of the remaining six
kinds of biological features within ConsTADs and adjacent regions (see Fig. 6A). (C) Number of domains
with a significant differential signal of H3K36me3 or H3K27me3 for ConsTADs and the 16 TAD-calling
methods. (D) Distribution of the distance between H3K36me3/H3K27me3 LR values changing points to
the nearest domain boundary from the 16 TAD-calling methods and ConsTADs. (E) Dendogram of
agglomerative clustering for ConsTADs based on the DNA replication signal and all these domains are
divided into five clusters (see Fig. 6C). (F) Consistency scores of domain replication clusters for all bins
along Chromosome 2 in GM12878 under each TAD-calling method.
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Supplemental Fig. S16. Biological properties of the five kinds of replication domain clusters.
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(A) Profiles of several biological features within the five domain clusters accompanied by the mean signal
in each domain. (B) Fold change profiles of Segway states (left), five kinds of subcompartments (middle),
and ChromHMM states (right) calculated for the five domain clusters over the background. (C) Profiles of
Repli-seq signal for the six phases of the cell cycle within the five domain clusters. (D and E) The Hi-C
contact maps and the ConsTADs for a region on Chromosome 2 in GM12878 (C) and K562 (D). The
TAD separation landscape, domain type annotation, as well as the profiles of some biological features
are also shown below. Regions corresponding to two genes ITGA4 and NCKAP1 are marked with yellow
shades.
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Supplemental Fig. S17. Genome-wide analysis of five types of replication domains or relative

replication domains.

(A) Fold change profiles of Segway states (left), five kinds of subcompartments (middle), and
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ChromHMM states (right) calculated for the five domain clusters over the background. (B) Profiles of the
Repli-seq signal for the six phases of the cell cycle within the five domain clusters. (C) Five clusters of
ConsTADs with distinct relative DNA replication models, indicating the relative early or late replication
times of chromatin regions within each domain. (D) Mean profiles of relative DNA replication signals for
five clusters of ConsTADs in (C). Arrows indicate the direction of DNA replication from early to late. (E)
Average number of CTCF binding peaks around the upstream and downstream boundary for each
domain in five clusters. Mann-Whitney U tests were performed to get the p-values, * represents p-value <
0.0001. (F) The relationship between the replication timing signal and the CTCF signal for CTCF binding
peaks, all genomic bins, and the ConsTADs boundaries. (G) The relationship between the CTCF signal
and the distance to the origin of replication for CTCF binding peaks, all genomic bins, and the ConsTADs
boundaries. PCC means Pearson correlation coefficient. The origins of replication are defined as the
peaks in the Repli-seq profile.
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Supplemental Fig. S18. Genome-W|de analysis of ConsTADs and five types of repllcatlon domains.
(A) Relative profiles of several biological features within ConsTADs and adjacent regions in GM12878. (B)
Five types of ConsTADs with distinct DNA replication signals accompanied by the variances of Repli-seq
signal, the average RNA-seq signal, and the boundary type components within each type of domains. (C)
Profiles of several biological features within the five domain clusters accompanied by the mean signal in

each domain.
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Supplemental Fig. S19. Evaluation of 16 TAD-calling methods based on the boundary voting

strategy for genome-wide results and the Computation time and RAM used by ConsTADs.
(A and B) Computation time and RAM used by ConsTADs for all chromosomes of GM12878. The Hi-C
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contact maps are generated at 50 kb resolution. (C) Proportion of genome-wide bins with different
boundary scores for GM12878. (D) Proportion of boundaries with different levels of boundary score for
16 methods. Methods are sorted in ascending order by the proportion of boundaries belonging to the first
level (ranging from 1 to 2). (E) Number of boundaries with different levels of boundary score for 16
methods. Methods are sorted in ascending order by the total number of boundaries. (F) Profiles of three
topological indicators (Insulation Score [IS], Directionality Index [DI], Contrast Index [CI]) and profiles of
three structural proteins (CTCF, RAD21, SMC3) within 2-Mb regions centered on boundaries with
different boundary score levels or randomly selected regions. (G) Number of boundaries with different
boundary scores captured or missed by each method. Methods are sorted in ascending order by the
number of captured boundaries.
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Supplemental Fig. S20. Genome-wide identification and analysis of three types of boundary
regions in GM12878.
(A and B) The ratio and number of three types of boundary regions found on all chromosomes for
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GM12878. (C) Aggregated Hi-C contact maps around NSBs (left panel), NWBs (middle panel), and WBs
(right panel), combined with the average boundary score profiles in GM12878. (D) Profiles of three kinds
of numerical indices including CI (left panel), IS (middle panel), and DI (right panel) around different
types of boundaries and randomly selected regions in GM12878. The shaded areas represent the 95%
confidence intervals in 1000 boostraps. (E) Profiles of three kinds of biological signals including CTCF
(left panel), RAD21 (middle panel), and SMC3 (right panel) around different types of boundaries and
randomly selected regions in GM12878. (F) Fold change profiles of multiple types of biological data
constructed for three types of boundary regions in GM12878. (G) Fold change profiles of the Repli-seq
signal around three types of boundaries and randomly selected regions in six phases of the cell cycle:
G1, S1, S2, S3, S4, and G2.
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Supplemental Fig. S21. Genome-wide analysis of three types of boundary regions in GM12878.
(A) Fold change profiles of multiple types of biological data constructed for three types of boundary
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regions in chromosomes 1, 6, 14 and X in GM12878. (B) Fold change profiles of Segway states,
subcompartments, and chromHMM states calculated for the three types of boundary regions in
GM12878. Fold change is defined as the total length of a state or subcompartment in boundary regions
divided by its expected length across the whole chromosome. (C) Enrichment z-score of repeat elements
in three types of boundary regions identified from GM12878. These repeat elements can be divided into
seven types, labeled with different colors. (D) Density of the Alu subfamilies and TcMar-Tigger in three
types of boundaries identified with 50-kb Hi-C data under hgl9 reference genome in GM12878. (E)
Density of the Alu subfamilies and TcMar-Tigger in three types of boundaries identified with 10-kb Hi-C
data under hg38 reference genome in K562. Mann-Whitney U tests were performed between boundary
regions and randomly selected regions, respectively, * represents p-value < 0.01.
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Supplemental Fig. S22. ConsTADs in Hi-C and Micro-C contact maps with 10 kb and 200 bp
resolution and the relationship between boundary type and boundary probability in single cells.
(A) An example of ConsTADs and boundary regions found on the Hi-C contact map of Chromosome 2 in

K562 at 10 kb resolution. (B) Fold change profiles of multiple types of biological data constructed for

three types of boundary regions found on the Hi-C contact map with 10 kb resolution. (C) Contact
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domains found by six representative TAD-calling methods on 200-bp Micro-C contact maps. (D)
ConsTADs and boundary regions found in the same region in (C). (E) Probability of genomic regions
labeled as the three types of boundary regions (or non-boundary ones) acting as TAD boundaries on
Chromosome 2 of IMR90 single cells. (F) A representative proximity frequency matrix of genomic regions
on the 3029 single chromosomes of IMR90 cells and the number of chromosomes in which each
genomic region is defined as a TAD boundary. The label for each region indicating its boundary type is
also shown.
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Supplemental Fig. S23. Comparison of ConsTADs and 16 TAD-calling methods as well as a light
version of ConsTADs with fewer methods.
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(A) Clustering results of ConsTADs and 16 TAD-calling methods based on boundary Jaccard index (left)
and domain measure of concordance (right). (B) Three sets containing part of TAD-calling methods. (C)
The similarity of ConsTADs integrated by all 16 methods and three method sets, clustering results are
based on the Jaccard index (left) and domain measure of concordance (right). (D) The ratio of three
types of boundary regions recovered by results of three method sets. (E) Fold change profiles of multiple
types of biological data constructed for three types of boundary regions based on the method set 2.
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Supplemental Table S1. The details of data used in this study.
See additional file Supplemental_Table_S1.xlIsx

Supplemental Table S2. The parameters used in this study for the 16 TAD-calling methods.
See additional file Supplemental_Table_S2.xlIsx

Supplemental Table S3. Computation time and RAM used by 16 TAD-calling methods and
ConsTADs.

Index Method All time (s) Max time (s) All RAM (GB) Max RAM (GB)

1 OnTAD 35.473 3.72 15.64 0.79

2 Spectral 85 11 71.65 4.08

3 TopDom 85 12 13.984 0.745

4 MSTD 160.460489 18.3561101 1.058 0.046

5 CaTCH 219 26 64.01 3.32

6 IS 226 24 0.998 0.057

7 GMAP 272.44 26.02 34.43 1.87

8 HiCDB 308 308 0.83 0.83

9 deDoc 479 90 253.43 14.33

10 ICFinder 745 79 151.8 6.96

11 HITAD 883 883 4.12 4.12

12 DI 906 78 16.805 0.743

13 HiCseg 1474 355 67.57 4.12

14 CHDF 4043 899 11.02 1.59

15 ClusterTAD 77491 13961 128.68 6.22

16 3DNetMod 132661 8834 5.28 0.27

* ConsTADs 552.8 52.3 3.01 0.39
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