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Supplementary Figures 
 
 
 

 
 
Supplementary Figure S1. 2-dimensional embeddings of different methods acting on hyperbolic 
space on simulated datasets with various dropout rates. Rows stand for methods, and columns 
stand for various dropout rates. Colors represent branches in the data. 
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Supplementary Figure S2. 2-dimensional embeddings of different methods acting on Euclidean 
space on simulated datasets with various dropout rates. Rows stand for methods, and columns 
stand for various dropout rates. Colors represent branches in the data. 
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Supplementary Figure S3. Embedding quality metrics of different methods with 3 dimensions on 
simulated datasets with various dropout rates. 
  

0.2

0.3

0.4

0.5

0.6

41
.2

 ±
 0

.6
 %

50
.4

 ±
 0

.6
 %

59
.6

 ±
 0

.5
 %

68
.1

 ±
 0

.4
 %

Q
 lo

ca
l

A

0.7

0.8

0.9

41
.2

 ±
 0

.6
 %

50
.4

 ±
 0

.6
 %

59
.6

 ±
 0

.5
 %

68
.1

 ±
 0

.4
 %

Q
 g

lo
ba

l

B

Method
scDHMap

PoincaréMap

scPhere

scvis

PCA

PaCMap

t−SNE

UMAP

PHATE



 4 

 
 
Supplementary Figure S4. (A-B) Embedding quality metrics of scDHMap with ZINB (zero-inflated 
negative binomial) loss, scDHMap with NB (negative binomial) loss, and scDHMap without the 
ZINB model-based decoder on simulated datasets with various dropout rates. (C) Scatter plots of 
Q locals of scDHMap with ZINB loss and NB loss on simulated datasets with various dropout rates. 
The diagonals are also displayed. Small jitters are added to avoid point overlapping. 
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Supplementary Figure S5. Embedding quality metrics of scDHMap with different network 
architectures (4 hidden layers, 3 hidden layers, 2 hidden layers in encoder and decoder) on 
simulated datasets with various dropout rates. 
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Supplementary Figure S6. Embedding quality metrics of scDHMap with and without pretrain on 
simulated datasets with various dropout rates. 
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Supplementary Figure S7. Embedding quality metrics of scDHMap with different perplexities on 
simulated datasets of 59.6 ± 0.5% dropout rates. 
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Supplementary Figure S8. Embedding quality metrics of scDHMap on training and testing sets of 
simulated datasets with various dropout rates. Each dataset is randomly divided into training and 
testing sets by the proportion of 90% and 10%. Embedding quality metrics are calculated on 
training and testing sets separately. 
 
  

0.4

0.6

0.8

41
.2

 ±
 0

.6
 %

50
.4

 ±
 0

.6
 %

59
.6

 ±
 0

.5
 %

68
.1

 ±
 0

.4
 %

Q
 lo

ca
l

A

0.4

0.6

0.8

41
.2

 ±
 0

.6
 %

50
.4

 ±
 0

.6
 %

59
.6

 ±
 0

.5
 %

68
.1

 ±
 0

.4
 %

Q
 g

lo
ba

l

B

Dataset
training data

testing data



 9 

 
 
Supplementary Figure S9. 2-dimensional embeddings of scDHMap of training and testing 
simulated datasets with various dropout rates. Colors represent branches in the data, and dot 
shapes represent the training and testing datasets. 
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Supplementary Figure S10. Running time of scDHMap on simulated datasets with different 
numbers of cells. Each setting was repeated three times, average and standard deviation were 
plotted. Results were obtained on Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz and NVIDIA(R) 
GeForce(TM) RTX 3090 GPU. 
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Supplementary Figure S11. 2-dimensional embeddings of different methods on simulated 
datasets with six different batches. Colors represent branches, and dot shapes represent batches. 
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Supplementary Figure S12. Ablation study of batch alignment. (A-B) Embedding quality metrics 
of models on simulated datasets with six batches. Ten datasets were generated. (C) Silhouette 
coefficient (SIL) for quantifying the batch alignments. Larger values mean better alignments. (D) 
Scatter plot of Q locals of scDHMap and scDHMap without conditional autoencoder. The diagonal 
is also displayed. Small jitters are added to avoid point overlapping. (E) Embedding of scDHMap. 
(F) Embedding of scDHMap without conditional autoencoder. (G) Embedding of scDHMap 
without Harmony. Colors represent branches, and dot shapes represent batches (E-G). 
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Supplementary Figure S13. Embedding qualities of scDHMap and PoincaréMap on simulated 
datasets with three trajectory branches (M1 – M3, M3 – M2, and M3 – M4), boxplot of (A) Q local 
scores and (B) Q global scores. (C) Plots of scDHMap and PoincaréMap embeddings, shapes 
represent branches, and colors from shallow to deep represent the trajectory steps (pseudotime) 
from start to end in each branch. 
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Supplementary Figure S14. AUC (area under the curve) plots of trajectory differential expression 
(DE) analysis on simulated datasets with three branches using scDHMap denoised and raw counts. 
True trajectory orders are used for the DE test. 
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Supplementary Figure S15. Embeddings of scDHMap, PoincaréMap, and scPhere on Paul cells. 
Colors represent different cell types. 
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Supplementary Figure S16. (A) Embedding qualities of different embedding methods on Paul 
cells. (B) Embeddings of PaCMap, t-SNE, UMAP and scPhere of Paul cells. Colors represent 
different cell types. 
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Supplementary Figure S17. (A) The position of the root cell in the scDHMap’e embedding of Paul 
cells. (B) Transform the Poincaré origin to the root cell, and Poincaré pseudotime is defined as 
the geodesic distance between each cell and the root cell. (C) Cell types in the transformed 
embedding. (D) The embedding is divided into two main branches and one short trunk based on 
the Poincaré pseudotime of scDHMap. (E) Marker genes against Poincaré pseudotime plotting in 
branch 2. (F) Marker genes against Poincaré pseudotime plotting in branch 3. Trend lines are 
smoothed by the LOESS regression (E, F). 
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Supplementary Figure S18. (A) Embeddings of scDHMap, Harmony + PoincaréMap, PCA + 
PoincaréMap, and scPhere on the colon epithelial cells. Harmony + PoincaréMap uses Harmony 
corrected PCs as input, PCA + PoincaréMap uses PCs as input. Colors represent cell types. (B) 
Embeddings against different patient IDs. Colors represent patient IDs. (C) Silhouette coefficient 
of scDHMap, Harmony + PoincaréMap, PCA + PoincaréMap, scPhere, and Harmony for batch 
alignment. 
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Supplementary Figure S19. (A) Embedding qualities of different methods on the colon epithelial 
cells. (B) Silhouette coefficient of scDHMap, PaCMap, t-SNE, UMAP, and PHATE for batch 
alignment. All methods used Harmony corrected 50 PCs as the input. (C) Embeddings of PaCMap, 
t-SNE, UMAP, and PHATE of the colon epithelial cells. Colors represent cell types. (D) Embeddings 
against different patient IDs. Colors represent patient IDs. 
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Supplementary Figure S20. scDHMap embedding of the C. elegans embryonic cells with each 
panel representing one embryonic time bin. Colors represent cell types. 
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Supplementary Figure S21. Embeddings of scDHMap, PoincaréMap, and scPhere on the C. 
elegans embryonic cells. (A) Colors represent cell types. (B) Colors represent embryonic time. 
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Supplementary Figure S22. (A) Embedding qualities of different methods on the C. elegans 
embryonic cells. (B, C) Embeddings of PaCMap, t-SNE, UMAP, and PHATE of the C. elegans 
embryonic cells. Colors represent cell types (B). Colors represent embryonic time (C). 
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Supplementary Figure S23. Embeddings of scDHMap with different gamma values of the Cauchy 
kernel on the C. elegans embryonic cells. Colors represent cell types (A). Colors represent 
embryonic time (B). 
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Supplementary Figure S24. Embeddings of different methods on Satpathy’s scATAC-seq data. 
Colors represent cell types. 
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Supplementary Figure S25. Embeddings of specific cell types of different methods on Satpath’s 
scATAC-seq data. Colors represent different cell types. (A) Progenitor cells (cluster 1 – 9) and 
myeloid cells (cluster 10 – 13). (B) Progenitor cells and B cells (cluster 14 – 16). (C) Progenitor 
cells and CD4+ T cells (cluster 21 – 25). (D) Progenitor cells and CD8+ T cells (cluster 26 – 31). HSC, 
hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor; CLP, common 
lymphoid progenitor; MEP, megakaryocyte-erythroid progenitor; BMP, basophil-mast cell 
progenitor. 
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Supplementary Figure S26. Embedding of different methods on four real scRNA-seq data with 
diverse cell types. (A) Embedding quality metrics. (B) K-means clustering performance (we used 
hyperbolic k-means on hyperbolic embeddings) quantified by adjusted Rand index (ARI) and 
normalized mutual information (NMI). (C) Embedding of scDHMap, colors represent cell types. 
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Supplementary Table 1. Comparison of dimensionality reduction methods 
 

Method Low distortion 
of hierarchical 

structures 

Local structural 
preservation 

Global 
structural 

preservation 

Efficient on 
large datasets 

Batch 
correction 

scDHMap ✓ ✓ ✓ ✓ ✓ 
PoincaréMap ✓ ✓ ✓ 

  

scPhere ✓ 
  

✓ ✓ 
scvis 

 
✓ ✓ ✓ 

 

PaCMap 
 

✓ ✓ ✓ 
 

t-SNE 
 

✓ 
 

✓ 
 

UMAP 
 

✓ 
 

✓ 
 

PHATE 
 

✓ ✓ ✓ 
 

Diffusion Map  ✓ ✓ ✓  
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Supplementary Note 1. Summary of published embedding methods of single-
cell genomics data 
 
t-SNE (van der Maaten and Hinton 2008) and UMAP (McInnes et al. 2018) are two popular 
dimensionality reduction methods that have been widely used in single-cell analysis. The main 
idea of t-SNE and UMAP is to retain the distribution of pairwise distances in high dimensions 
when reducing to low-dimensional Euclidean space. These two methods are mainly focused on 
local structure preservation (e.g., the perplexity in t-SNE and the number of nearest neighbors in 
UMAP); therefore, they do not guarantee that the global hierarchical structure will be retained. 
Recently, a manifold learning method PaCMap has been proposed to improve the preservation 
of the global structure, which optimizes the low-dimensional embedding using a combining of 
local neighbor pairs, mid-near pairs, and further pairs (Wang et al. 2021). However, PaCMap is 
not designed for revealing complex hierarchical tree structures either. Diffusion map has been 
developed for defining differentiation trajectories, which uses kernel width for tackling 
uncertainties and dropout events (Haghverdi et al. 2015). However, diffusion map is not 
optimized for visualizing complex hierarchical trees; and more importantly, diffusion map 
typically encodes high dimensional structures in higher dimensions, which makes it not amenable 
to visualization. Graph abstractions (PAGA) provides a high-level graph representation of the 
scRNA-seq data, in which nodes represent partitions or clusters and edges represent the 
relationships between these nodes (Wolf et al. 2019). PAGA does not provide an embedding of 
cellular resolution. PHATE is a dimensionality reduction framework that combines both local 
similarities by using kernel function and global relationships by using diffusion map and generates 
the low-dimensional visualization via metric MDS (Moon et al. 2019). PHATE has been illustrated 
to recover hierarchical structures but is also affected by the distortion in the low-dimensional 
Euclidean space. Monocle applies reversed graph embedding to reduce the data to a tree-like 
topology in a low-dimensional Euclidean space (Qiu et al. 2017), but also undermines the 
visualization of complex trees. Meanwhile, scVI (Lopez et al. 2018) and SAUCIE (Amodio et al. 
2019) are deep learning approaches that use autoencoders to reduce dimensionalities. 
Autoencoders can identify major structural patterns such as clusters in the single-cell data(Tian 
et al. 2019), but there is no guarantee for preserving the pairwise high dimensional similarities. 
Scvis combines the autoencoder with the t-SNE regularization to preserve the pairwise 
similarities, making the model performs dimensionality reduction and structure preservation 
simultaneously (Ding et al. 2018). But scvis is not designed for visualizing the complex hierarchy 
either due to the distortion in the low-dimensional Euclidean space. 
 
  



 30 

Supplementary Note 2. Embedding quality criteria 
 
Lee et al. (Lee and Verleysen 2010) proposed a scale-independent quality criterion for quantifying 
the embedding qualities. Let 𝑋 = {𝑥!}!"#$  be a high-dimensional dataset of N samples and 𝑌 =
{𝑦!}!"#$  be a 2-dimensional representation of this dataset. Let 𝛿!%  denotes the distance from 𝑥!  to 
𝑥%  in the high-dimensional space and 𝑑!%  denotes the distance from 𝑦!  to 𝑦%  in the low-
dimensional space, and 𝛿!% = 𝛿%!  and 𝑑!% = 𝑑%!. The high (𝑅 = +𝜌!%-#&!,%&$) and low-dimensional 

ranks (𝑉 = +𝑟!%-#&!,%&$) between the points can be calculated by the distances: 

𝜌!% = 0+𝑘: 𝛿!( < 𝛿!% 	or	7𝛿!( = 𝛿!% 	and	1 ≤ 𝑘 < 𝑗 ≤ 𝑁?-0 
𝑟!% = 0+𝑘: 𝑑!( < 𝑑!% 	or	7(𝑑!( = 𝑑!% 	and	1 ≤ 𝑘 < 𝑗 ≤ 𝑁?-0 

where |⋅| denotes the cardinality of a set. According to this definition, reflexive ranks are set to 
zero, and non-reflexive ranks are {𝐾 = 1,… ,𝑁 − 1}. 

A co-ranking matrix 𝑸 = {𝑞()}#&(,)&$*# is defined as 
𝑞!% = 0+(𝑖, 𝑗): 𝜌!% = 𝑘	and	𝑟!% = 𝑙-0 

The co-ranking matrix stores the information about how ranks of distances are preserved in 
a given low-dimensional embedding. The co-ranking matrix could be computed 
straightforwardly(Lee and Verleysen 2010) and used to compute the scale-independent quality 
criteria 𝑄$+ for the dimensionality reduction for a given value of 𝐾 = 1,… ,𝑁 − 1 

𝑄$+(𝐾) =
1
𝐾𝑁 M 𝑞()

((,))∈𝕌𝕃𝕂

 

where 𝕌𝕃𝕂 = {1,… , 𝐾} × {1,… , 𝐾} is the upper left corner of the co-ranking matrix. 𝑄$+(𝐾) ∈
[0,1]  accesses the overall embedding quality. Essentially, it measures the preservation of 𝐾 
neighborhoods. A perfect embedding has 𝑄$+(𝐾) = 1 for every 𝐾 = 1,… ,𝑁 − 1. 

The left part of the 𝑄$+(𝐾) curve reflects the local preservation quality and the right part 
of 𝑄$+(𝐾) curve reflects the global preservation quality. To improve the readability, it can be 
divided into two scalar quality criteria Q local and Q global focusing separately on the local and 
global preservation of the embedding  

𝑄)234) =
1

𝐾546	
M 𝑄$+(𝐾)
7"#$	

7"#

 

and  

𝑄9)2:4) =
1

𝑁 − 𝐾546
M 𝑄$+(𝐾)
$*#	

7"7"#$

 

where 𝐾546 defines the split of the 𝑄$+ curve and is automatically computed as 

𝐾546 = argmax
7
(𝑄$+(𝐾) −

𝐾
𝑁 − 1) 

The quantities of Q local and Q global range from 0 to 1 represent bad to good. 
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Supplementary Note 3. Trajectory differential expression test 
 
Raw counts and scDHMap denoised counts are used in tradeSeq (Van den Berge et al. 2020) for 
trajectory differential expression (DE) test. The estimated mean parameters of the ZINB decoder 
of scDHMap are used as denoised counts. We round the mean parameters to integers. The 
parameter for tradeSeq is nknots = 4. 
 
Supplementary Note 4. Branch assignment of Paul cells by the Poincaré 
pseudotime 
 
The origin of the Poincaré embedding of scDHMap on Paul cells is first translated to the 
predefined root. The Poincaré pseudotime is defined as the Poincaré distance between a point 
to the root. Next, we use the Poincaré pseudotime (pt) to divide the embedding into three 
branches (Haghverdi et al. 2016). 

First, we pick the root cell 𝑟#, and we identify a tip 𝑟; which maximizes the Poincaré distance 
to 𝑟#. We then identify the second tip 𝑟< that maximizes the pt(𝑟;, 𝑟<), which means the Poincaré 
distance between 𝑟; and 𝑟<. In brief: 

𝑟; = argmax
6
pt(𝑟#, 𝑥) 

𝑟< = 	argmax
6
pt(𝑟;, 𝑥) 

Now we can perform a pseudotime ordering which orders cells according to the Poincaré 
distance to the tip of a branch (either 𝑟#, 𝑟; and 𝑟<). The ordering on every two branches will 
correlate with each other only on the third branch and anti-correlate on the two branches 
themselves. We will use this property to find a cutoff 𝑥 for each branch. To separate branch 1, 
we first do three independent ordering 𝑂1, 𝑂2, 𝑂3 with assigning 𝑟#, 𝑟;  and 𝑟<  as the root of 
ordering correspondingly. Then, Kendall-tau correlations are used to build a measure of 
concordance between the 𝑂; and 𝑂< ordering from 𝑠# until 𝑥 and their anti-concordance for the 
rest of cells: 

𝐾;,<(𝑥) = Kendal. tau7𝑂2(𝑟#: 𝑥), 𝑂3(𝑟#: 𝑥)?	
−Kendal. tau(𝑂2(𝑥 + 1: 𝑒𝑛𝑑), 𝑂3(𝑥 + 1: 𝑒𝑛𝑑)) 

Finally, the cutoff 𝑥 of branch 1 is found by 
𝑥=# = argmax

6
(𝐾;,<(𝑥) − 𝐾;,<(𝑥 − 1)) 

Other branches follow the similar procedure. Finally, there usually remain sets of cells 
cannot be assigned to a single branch. We denote these cells as unassigned. 
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Supplementary Note 5. Description of scRNA-seq datasets with different cell 
types 
 
10X PBMC dataset (4K PBMCs from a healthy donor) is provided by 10X scRNA-seq platform 
(Zheng et al. 2017), which profiles the transcriptome of the peripheral blood mononuclear cells 
(PBMCs) from a healthy donor. The total number of cells is about 4000. PBMC 4k data is 
downloaded from the website of 10X genomics (https://support.10xgenomics.com/single-cell-
gene-expression/datasets/2.1.0/pbmc4k). We download filtered gene/cell matrix and cell labels 
identified by graph-based clustering (method description: 
https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/output/analysis). 
 
Mouse embryonic stem cells dataset (Klein et al. 2015) is downloaded from GSE65525 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65525). The transcriptomes are 
profiled by the droplet-microfluidic approach for parallel barcoding. Allon M.K. et.al analyzed the 
heterogenous onset of differentiation of mouse embryonic stem cells after leukemia inhibitory 
factor (LIF) withdrawal. We download the read counts matrices of mouse ES cells sample 1, 
mouse ES cells LIF- 2days, mouse ES cells LIF- 4days and mouse ES cells LIF- 7days, and put all 
cells together. The labels of cells are defined as the intervals after LIF withdrawal. 
 
Mouse bladder cells dataset of the Mouse Cell Atlas project (Han et al. 2018) is provided by the 
authors (https://figshare.com/s/865e694ad06d5857db4b). We download the batch gene 
removed raw digital expression matrix of all 400,000 single cells sorted by tissues and the table 
of cell assignments. The authors identified the cell types and described the method in (Han et al. 
2018). From the raw count matrix, we select the cells from bladder tissue. 
 
Worm neuron cells dataset is profiled by sci-RNA-seq (single-cell combinatorial indexing RNA 
sequencing) (Cao et al. 2017). The authors profiled about 50,000 cells from the nematode 
Caenorhabditis elegans at the L2 larval stage and identified the cell types 
(http://atlas.gs.washington.edu/worm-rna/docs/). We select the subset of the neural cells and 
removed the cells with the label of “Unclassified neurons”. As a result, we get 4186 neural cells. 
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Supplementary Note 6. Clustering evaluation metrics  
 
Clustering performance is evaluated by two metrics (Supplementary Figure S26): adjusted Rand 
index(Rand 1971) (ARI) and normalized mutual information(Strehl and Ghosh 2003) (NMI), which 
compare the concordance between predicted labels and the ground-truth labels. The two metrics 
are implemented by the scikit-learn package(Pedregosa et al. 2011). 
 
Rand index(Rand 1971) is a simple measure of agreement between two cluster assignments	𝑈 
and 𝑉. The Adjust Rand Index (ARI) corrects for the lack of a constant value of the Rand index 
when the cluster assignments are selected randomly(Hubert and Arabie 1985). The ARI is 
calculated by four quantities. Specifically, we define 𝑎,  the number of pairs of two objects in the 
same group in both 𝑈 and 𝑉; 𝑏, the number of pairs of two objects in different groups in both	𝑈 
and 𝑉; 𝑐, the number of pairs of two objects in the same group in 𝑈 but in different groups in 𝑉; 
and d, the number of pairs of two objects in different groups in 𝑈 but in the same group in 𝑉. 
The ARI is formally defined as 

ARI = 	
7>;?(𝑎 + 𝑑) − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]

7>;? − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]
 

 
Given the two clustering assignments 𝑈 and 𝑉 on a set of 𝑛 data points, which have 𝐶? and 𝐶@  
clusters, respectively, NMI is defined as mutual information between 𝑈 and 𝑉 divided by the 
entropy of 𝑈 and 𝑉. Specifically, 

NMI = 	
∑ ∑ 0𝑈A ∩ 𝑉B0 	 log

𝑛	0𝑈A ∩ 𝑉B0
0𝑈A0 × 0𝑉B0
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A"#

max	 r−∑ 0𝑈A0
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A"# log
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