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Supplementary Figure S1. 2-dimensional embeddings of different methods acting on hyperbolic
space on simulated datasets with various dropout rates. Rows stand for methods, and columns
stand for various dropout rates. Colors represent branches in the data.
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Supplementary Figure S2. 2-dimensional embeddings of different methods acting on Euclidean
space on simulated datasets with various dropout rates. Rows stand for methods, and columns
stand for various dropout rates. Colors represent branches in the data.
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Supplementary Figure S3. Embedding quality metrics of different methods with 3 dimensions on
simulated datasets with various dropout rates.
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Supplementary Figure S4. (A-B) Embedding quality metrics of scDHMap with ZINB (zero-inflated
negative binomial) loss, scDHMap with NB (negative binomial) loss, and scDHMap without the
ZINB model-based decoder on simulated datasets with various dropout rates. (C) Scatter plots of
Qlocals of scDHMap with ZINB loss and NB loss on simulated datasets with various dropout rates.
The diagonals are also displayed. Small jitters are added to avoid point overlapping.



T o

Q local
o
2

| )
0.58 1 .o o I . . |
o° o o¢ o°
Q‘O Q“O Q‘I‘) N
¥ % k4 %
v e o ~ Method
N S =y @
v < o <
E scDHMap 4 layers
B E scDHMap 3 layers
083- . . . o . . - .
| | [ | ! | E scDHMap 2 layers
W O HOO 0] e
B o0s1 .
o
> T
g 0.80 1 . . el e . .
0.794
0.78
o° o o¢ o°
Q‘O Q“O Q‘O N
¥ % k4 %
Vv » © ~
= & & &

Supplementary Figure S5. Embedding quality metrics of scDHMap with different network
architectures (4 hidden layers, 3 hidden layers, 2 hidden layers in encoder and decoder) on
simulated datasets with various dropout rates.
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Supplementary Figure S6. Embedding quality metrics of scDHMap with and without pretrain on
simulated datasets with various dropout rates.
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Supplementary Figure S7. Embedding quality metrics of scDHMap with different perplexities on
simulated datasets of 59.6 £ 0.5% dropout rates.
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Supplementary Figure S8. Embedding quality metrics of scDHMap on training and testing sets of
simulated datasets with various dropout rates. Each dataset is randomly divided into training and

testing sets by the proportion of 90% and 10%. Embedding quality metrics are calculated on
training and testing sets separately.
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Supplementary Figure S9. 2-dimensional embeddings of scDHMap of training and testing
simulated datasets with various dropout rates. Colors represent branches in the data, and dot
shapes represent the training and testing datasets.
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Supplementary Figure S10. Running time of scDHMap on simulated datasets with different
numbers of cells. Each setting was repeated three times, average and standard deviation were
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Supplementary Figure S11. 2-dimensional embeddings of different methods on simulated
datasets with six different batches. Colors represent branches, and dot shapes represent batches.
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Supplementary Figure S13. Embedding qualities of scDHMap and PoincaréMap on simulated
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Supplementary Figure S14. AUC (area under the curve) plots of trajectory differential expression

(DE) analysis on simulated datasets with three branches using scDHMap denoised and raw counts.

True trajectory orders are used for the DE test.
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Supplementary Figure S15. Embeddings of scDHMap, PoincaréMap, and scPhere on Paul cells.

Colors represent different cell types.
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Supplementary Figure S16. (A) Embedding qualities of different embedding methods on Paul
cells. (B) Embeddings of PaCMap, t-SNE, UMAP and scPhere of Paul cells. Colors represent

different cell types.
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Supplementary Figure S17. (A) The position of the root cell in the scDHMap’e embedding of Paul
cells. (B) Transform the Poincaré origin to the root cell, and Poincaré pseudotime is defined as
the geodesic distance between each cell and the root cell. (C) Cell types in the transformed
embedding. (D) The embedding is divided into two main branches and one short trunk based on
the Poincaré pseudotime of scDHMap. (E) Marker genes against Poincaré pseudotime plotting in
branch 2. (F) Marker genes against Poincaré pseudotime plotting in branch 3. Trend lines are

smoothed by the LOESS regression (E, F).
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Supplementary Figure S18. (A) Embeddings of scDHMap, Harmony + PoincaréMap, PCA +
PoincaréMap, and scPhere on the colon epithelial cells. Harmony + PoincaréMap uses Harmony
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alignment.
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Supplementary Figure S22. (A) Embedding qualities of different methods on the C. elegans
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embryonic cells. Colors represent cell types (B). Colors represent embryonic time (C).
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Supplementary Figure $24. Embeddings of different methods on Satpathy’s scATAC-seq data.
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Supplementary Figure $25. Embeddings of specific cell types of different methods on Satpath’s
scATAC-seq data. Colors represent different cell types. (A) Progenitor cells (cluster 1 — 9) and
myeloid cells (cluster 10 — 13). (B) Progenitor cells and B cells (cluster 14 — 16). (C) Progenitor
cells and CD4* T cells (cluster 21 — 25). (D) Progenitor cells and CD8* T cells (cluster 26 — 31). HSC,
hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor; CLP, common
lymphoid progenitor; MEP, megakaryocyte-erythroid progenitor; BMP, basophil-mast cell
progenitor.
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Supplementary Figure $26. Embedding of different methods on four real scRNA-seq data with
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Supplementary Table 1. Comparison of dimensionality reduction methods
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Supplementary Note 1. Summary of published embedding methods of single-
cell genomics data

t-SNE (van der Maaten and Hinton 2008) and UMAP (Mclnnes et al. 2018) are two popular
dimensionality reduction methods that have been widely used in single-cell analysis. The main
idea of t-SNE and UMAP is to retain the distribution of pairwise distances in high dimensions
when reducing to low-dimensional Euclidean space. These two methods are mainly focused on
local structure preservation (e.g., the perplexity in t-SNE and the number of nearest neighbors in
UMAP); therefore, they do not guarantee that the global hierarchical structure will be retained.
Recently, a manifold learning method PaCMap has been proposed to improve the preservation
of the global structure, which optimizes the low-dimensional embedding using a combining of
local neighbor pairs, mid-near pairs, and further pairs (Wang et al. 2021). However, PaCMap is
not designed for revealing complex hierarchical tree structures either. Diffusion map has been
developed for defining differentiation trajectories, which uses kernel width for tackling
uncertainties and dropout events (Haghverdi et al. 2015). However, diffusion map is not
optimized for visualizing complex hierarchical trees; and more importantly, diffusion map
typically encodes high dimensional structures in higher dimensions, which makes it not amenable
to visualization. Graph abstractions (PAGA) provides a high-level graph representation of the
scRNA-seq data, in which nodes represent partitions or clusters and edges represent the
relationships between these nodes (Wolf et al. 2019). PAGA does not provide an embedding of
cellular resolution. PHATE is a dimensionality reduction framework that combines both local
similarities by using kernel function and global relationships by using diffusion map and generates
the low-dimensional visualization via metric MDS (Moon et al. 2019). PHATE has been illustrated
to recover hierarchical structures but is also affected by the distortion in the low-dimensional
Euclidean space. Monocle applies reversed graph embedding to reduce the data to a tree-like
topology in a low-dimensional Euclidean space (Qiu et al. 2017), but also undermines the
visualization of complex trees. Meanwhile, scVI (Lopez et al. 2018) and SAUCIE (Amodio et al.
2019) are deep learning approaches that use autoencoders to reduce dimensionalities.
Autoencoders can identify major structural patterns such as clusters in the single-cell data(Tian
et al. 2019), but there is no guarantee for preserving the pairwise high dimensional similarities.
Scvis combines the autoencoder with the t-SNE regularization to preserve the pairwise
similarities, making the model performs dimensionality reduction and structure preservation
simultaneously (Ding et al. 2018). But scvis is not designed for visualizing the complex hierarchy
either due to the distortion in the low-dimensional Euclidean space.
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Supplementary Note 2. Embedding quality criteria

Lee et al. (Lee and Verleysen 2010) proposed a scale-independent quality criterion for quantifying
the embedding qualities. Let X = {xi}?’=1 be a high-dimensional dataset of N samples andY =
{y;})_, be a 2-dimensional representation of this dataset. Let d;j denotes the distance from x; to
x;j in the high-dimensional space and d;; denotes the distance from y; to y; in the low-
dimensional space, and 6;; = §;; and d;; = d;. The high (R = {pij}lsi,jsN) and low-dimensional

ranks (V = {rij}1<ij<N) between the points can be calculated by the distances:

pij = [{k: 8y < 8;jor (8 =8;;and 1 <k <j < N)}|
r; = |{k:dy < djjor((dy =djjand1 <k <j<N)}|
where |-| denotes the cardinality of a set. According to this definition, reflexive ranks are set to
zero, and non-reflexive ranks are {K = 1, ..., N — 1}.
A co-ranking matrix @ = {qx;}1<,1<n-1 is defined as
qi; = [{@.)): pij = k and ry; = 1}
The co-ranking matrix stores the information about how ranks of distances are preserved in
a given low-dimensional embedding. The co-ranking matrix could be computed
straightforwardly(Lee and Verleysen 2010) and used to compute the scale-independent quality
criteria Qyx for the dimensionality reduction for a given valueof K =1,...,N — 1

Qvx(K) = % Z Ak
(k,1)EULK
where ULk = {1, ..., K} X {1, ..., K} is the upper left corner of the co-ranking matrix. Qyx(K) €
[0,1] accesses the overall embedding quality. Essentially, it measures the preservation of K
neighborhoods. A perfect embedding has Qyx(K) = 1 foreveryK =1,...,N — 1.

The left part of the Qyx(K) curve reflects the local preservation quality and the right part
of Qux(K) curve reflects the global preservation quality. To improve the readability, it can be
divided into two scalar quality criteria Q local and Q global focusing separately on the local and
global preservation of the embedding

Kmax

1
Qlocal = m Z QNX(K)
K

=1
and

where K, ., defines the split of the Qyx curve and is automatically computed as

K
Kinax = arg mI?X(QNX (K) — m)

The quantities of Q local and Q global range from 0 to 1 represent bad to good.
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Supplementary Note 3. Trajectory differential expression test

Raw counts and scDHMap denoised counts are used in tradeSeq (Van den Berge et al. 2020) for
trajectory differential expression (DE) test. The estimated mean parameters of the ZINB decoder
of scDHMap are used as denoised counts. We round the mean parameters to integers. The
parameter for tradeSeq is nknots = 4.

Supplementary Note 4. Branch assignment of Paul cells by the Poincaré
pseudotime

The origin of the Poincaré embedding of scDHMap on Paul cells is first translated to the
predefined root. The Poincaré pseudotime is defined as the Poincaré distance between a point
to the root. Next, we use the Poincaré pseudotime (pt) to divide the embedding into three
branches (Haghverdi et al. 2016).

First, we pick the root cell r;, and we identify a tip 7, which maximizes the Poincaré distance
to r;. We then identify the second tip 13 that maximizes the pt(ry, 13), which means the Poincaré
distance between r, and 3. In brief:

r, = argmax pt(ry, x)
13 = argmax pt(ry, x)

Now we can perform a pseudotime ordering which orders cells according to the Poincaré
distance to the tip of a branch (either 1y, 1, and r3). The ordering on every two branches will
correlate with each other only on the third branch and anti-correlate on the two branches
themselves. We will use this property to find a cutoff x for each branch. To separate branch 1,
we first do three independent ordering 01, 02, O3 with assigning r;, 1, and 13 as the root of
ordering correspondingly. Then, Kendall-tau correlations are used to build a measure of
concordance between the 0, and 05 ordering from s; until x and their anti-concordance for the
rest of cells:

K, 3(x) = Kendal. tau(OZ(rl: x),03(ry: x))
—Kendal. tau(02(x + 1: end), 03(x + 1:end))
Finally, the cutoff x of branch 1 is found by
Xp1 = arg mfx(K2,3 (x) — K33(x — 1))

Other branches follow the similar procedure. Finally, there usually remain sets of cells

cannot be assigned to a single branch. We denote these cells as unassigned.
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Supplementary Note 5. Description of scRNA-seq datasets with different cell
types

10X PBMC dataset (4K PBMCs from a healthy donor) is provided by 10X scRNA-seq platform
(Zheng et al. 2017), which profiles the transcriptome of the peripheral blood mononuclear cells
(PBMCs) from a healthy donor. The total number of cells is about 4000. PBMC 4k data is
downloaded from the website of 10X genomics (https://support.10xgenomics.com/single-cell-

gene-expression/datasets/2.1.0/pbmc4k). We download filtered gene/cell matrix and cell labels
identified by graph-based clustering (method description:
https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/output/analysis).

Mouse embryonic stem cells dataset (Klein et al. 2015) is downloaded from GSE65525
(https://www.nchi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65525). The transcriptomes are
profiled by the droplet-microfluidic approach for parallel barcoding. Allon M.K. et.al analyzed the
heterogenous onset of differentiation of mouse embryonic stem cells after leukemia inhibitory

factor (LIF) withdrawal. We download the read counts matrices of mouse ES cells sample 1,
mouse ES cells LIF- 2days, mouse ES cells LIF- 4days and mouse ES cells LIF- 7days, and put all
cells together. The labels of cells are defined as the intervals after LIF withdrawal.

Mouse bladder cells dataset of the Mouse Cell Atlas project (Han et al. 2018) is provided by the
authors (https://figshare.com/s/865e694ad06d5857db4b). We download the batch gene
removed raw digital expression matrix of all 400,000 single cells sorted by tissues and the table
of cell assignments. The authors identified the cell types and described the method in (Han et al.
2018). From the raw count matrix, we select the cells from bladder tissue.

Worm neuron cells dataset is profiled by sci-RNA-seq (single-cell combinatorial indexing RNA
sequencing) (Cao et al. 2017). The authors profiled about 50,000 cells from the nematode
Caenorhabditis elegans at the L2 larval stage and identified the cell types
(http://atlas.gs.washington.edu/worm-rna/docs/). We select the subset of the neural cells and

removed the cells with the label of “Unclassified neurons”. As a result, we get 4186 neural cells.
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Supplementary Note 6. Clustering evaluation metrics

Clustering performance is evaluated by two metrics (Supplementary Figure S26): adjusted Rand
index(Rand 1971) (ARI) and normalized mutual information(Strehl and Ghosh 2003) (NMI), which
compare the concordance between predicted labels and the ground-truth labels. The two metrics
are implemented by the scikit-learn package(Pedregosa et al. 2011).

Rand index(Rand 1971) is a simple measure of agreement between two cluster assignments U
and V. The Adjust Rand Index (ARI) corrects for the lack of a constant value of the Rand index
when the cluster assignments are selected randomly(Hubert and Arabie 1985). The ARI is
calculated by four quantities. Specifically, we define a, the number of pairs of two objects in the
same group in both U and V; b, the number of pairs of two objects in different groups in both U
and V; ¢, the number of pairs of two objects in the same group in U but in different groups in V;
and d, the number of pairs of two objects in different groups in U but in the same group in V.
The ARl is formally defined as
C)a+d —[(a+b)a+c)+ (c+d)(b+d)]
(O -l@+b)a+o)+ (c+d)b+d)

ARI

Given the two clustering assignments U and V on a set of n data points, which have Cy and Cy,
clusters, respectively, NMlI is defined as mutual information between U and V divided by the

Cy wCy n Uanq'
Zp=1zq=1|Up n Vql log |Up| X |Vq|

entropy of U and V. Specifically,

NMI =

U V.
max (— Z,C,leUpl log|n—p| ,— Zg‘;l|Vq| logln—q|>
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