Nematode gene annotation by machine learning assisted proteotranscriptomics
enables proteome-wide evolutionary analysis
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Supplemental Figure S1. Genome content and genome assembly contig N50 length of 9
nematodes. (A) Genome content extracted from WormBase genome assembly and gene
annotation files (version WS273). Bar plots show the total genome size in gray and the
proportions of exonic (blue), intronic (orange), and intergenic (yellow) regions for all nine
species that have genome assemblies available. As the data was extracted from assemblies
of varying quality (see Supplemental Table S1) there is no warranty of the accuracy of these
distributions. (B) Genome contiguity of all species that have genome assemblies available in
WormBase (version WS273) plotted as contig N50 lengths.
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Supplemental Figure S2. Distribution of WormBase annotation confirmation level across all
Caenorhabditis species. Categories are (1) predicted (red) - unsupported gene predictions,
(2) partially confirmed (light green) - not all parts of the ORF are confirmed, and (3) confirmed
(dark green) - all parts, translation start and stop site, all coding exons, and exon/intron

junctions are confirmed by experimental data.
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Supplemental Figure S3. Visualization of an example of a fragmented gene model via
Integrative Genomics Viewer (IGV) browser. C. elegans GF (red) and GG (blue) assembled
transcripts were mapped to the C. elegans genomic sequence and are shown side by side
with the respective C. elegans WormBase entry (black) on Chromosome V.
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Supplemental Figure S4. Expression profiles of F54D10.10 and Y34B4A.20 during
developmental stages of C. elegans. (A) F54D10.10 transcript shows expression during
embryonic developmental time-course. (B) Validation of F54D10.10 embryonic expression in
an additional embryonic transcriptome time-course. (C) F54D10.10 expression at the 4 larval
stages. (D) Y34B4A.20 has no expression during early embryonic development. (E)
Y34B4A.20 shows increased expression at the L4 stage.
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Supplemental Figure S5. Results of BUSCO analysis comparing GF and GG assemblies
with the current WormBase annotation of P. pacificus and P. redivivus. The y-axis represents
the counted number of BUSCO genes and the x-axis shows different evaluated assemblies.
Green: complete and single-copy genes; orange: fragmented genes; red: missing genes,
showing that the absence is not an artifact of our methodology.
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Supplemental Figure S6. Validation of P. pacificus fusion bias. (A) Percentage hit length of
WormBase P. pacificus proteins when compared to WormBase C. elegans orthologs
established by blastp. P. pacificus proteins were grouped by the number of proteins needed
to cover the same protein sequence in the Trinity genome-free (GF) assembly (1, 2, 3 or more
proteins, same protein sets and color code as in main Figure 2a). While Wormbase annotated
P. pacificus proteins that are coherent with the GF annotated proteins (overlap with only one
GF annotated protein) show high percentage hit lengths with WormBase C. elegans proteins,
this value decreases significantly for proteins that have signals of falsely predicted fusion
(WormBase proteins with more than one overlapping protein from GF). (B) 2-D kernel density
plot of the percentage hit length of P. pacificus GF proteins when compared to P. pacificus
WormBase and to the C. elegans WormBase annotation. The cloud in the upper left corner
clearly shows GF assembled proteins that seem to be fragmented when compared to the
WormBase P. pacificus proteins; however, these proteins show high percentage hit length
when compared to C. elegans WormBase annotations and hence probably represent artifacts
in the current P. pacificus annotation. (C) 2-D kernel density plot of the percentage hit length
of P. pacificus GF proteins when compared to P. pacificus WormBase and the predicted
percentage hit length based on our machine learning algorithm. The cloud in the upper left
corner again clearly shows GF assembled proteins that seem to be fragmented when
compared to the WormBase P. pacificus proteins, however, show high machine learning
established percentage hit length and might indeed represent artifacts in the P. pacificus
WormBase annotation.
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Supplemental Figure S7. Venn diagrams depicting the overlap between the identified

proteins of WB (WormBase in gray), GF (genome-free in red), and GG (genome-guided in
blue) proteomes for each studied species.
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Supplemental Figure S8. STRINGdb network plot of detected genes specific to the genus
Caenorhabditis. Nodes represent C. elegans proteins with orthologs only in Caenorhabditis
species (absent from all other studied species) and edges represent protein-protein
associations provided by STRINGdb. Node colors distinguish association clusters based on
MCL clustering (see also Supplemental Table 4).
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Supplemental Figure S9. Different levels of adaptive evolution detected in a phylogeny of
nematodes. (A) Density plot of MO model dv/ds (w) values calculated for 5,417 orthologs in 12
nematodes species, evaluated for Rhabditida (blue), Eurhabditis (green), and Caenorhabditis
(red). The median of each group is represented with a dashed line. All distributions show high
levels of purifying selection (w>0) in the majority of the codon sites. The differences in the
medians and shift in the distributions of the values between the different groups emphasize
the decrease in the detection sensitivity of adaptive evolution with an increasing degree of
divergence between species (Caenorhabditis > Eurhabditis > Rhabditida). (B) Assembly
efficiency measured as the number of assembled transcripts that pass the machine learning
completeness prediction of 80% normalized by the total number of sequenced reads used for
the assembly is shown for species divided into gonochoristic and androdioecious mode of
reproduction. Due to missing genome annotations and uncertainty regarding the quality of
some of the existing assemblies only genome-free assembled transcripts are represented. (C)
Terminal branch average dv/ds values across 1-to-1 orthogroups are shown for species
divided into gonochoristic and androdioecious mode of reproduction. (D) Percentages of
orthologous groups under positive selection, grouped by subsets of species included in the
analysis - Rhabditida, Eurabditis, and Caenorhabditis.
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Supplemental Figure $10. Tricarboxylic acid cycle (TCA) KEGG pathway. TCA cycle genes

under positive selection in C. japonica are highlighted in orange. Pathway diagram was
adapted from https://www.kegg.jp/pathway/cel00020.
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Supplemental Figure S11. Analyses of genome-guided dependent biases in C. elegans. (A)
Stacked barplot showing the proportions of C. elegans transcripts that contain introns shorter
(light gray) or longer (dark gray) than 3500 bases in the group of transcripts that are complete
in the genome-free (GF) and the genome-guided (GG) assembly in comparison to those that
show fragmentation in GG. (B) Violin plots showing the distribution of the expression levels of
C. elegans transcripts in the group of transcripts that are complete in the genome-free (GF)
and the genome-guided (GG) assembly in comparison to those that show fragmentation in
GG. (C) Stacked barplot showing the proportions of C. elegans transcripts that were either
filtered out or passed the threshold of 80% completeness as predicted by the applied machine
learning completeness prediction in the groups of transcripts that are complete in the genome-
free (GF) and the genome-guided (GG) assembly in comparison to those that show
fragmentation in GG.
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Supplemental Figure S$12. Correlation between transcript level and protein intensity and
peptide sequence coverage. (A) Density plot of protein intensities measured as a function of
the respective transcript expression level at the transcriptome level measured by RNA-seq.
(B) Density plot of peptide sequence coverage percentage detected as a function of the
respective transcript expression level at the transcriptome level measured by RNA-seq.



