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Supplemental Note 1. Execution details of Seurat, fastMNN, and Harmony. We benchmarked 
unCTC against three well-reported integrative analysis methods — Seurat, fastMNN, and  
Harmony (Supplemental Table S10). We used Seurat version 4.1.1 and followed two alternative 
approaches for integrative analysis of single-cell studies (Butler et al. 2018). As part of the first 
approach, we employed Seurat's standard clustering pipeline, while combining individual 
scRNA-seq datasets (based on common genes) to construct the input gene expression matrix. This 
pipeline is referred to as Vanilla Seurat . We used NormalizeData(), FindVariableFeatures(), and 
ScaleData() for normalization, identification of highly variable genes, and scaling the data 
respectively, with default parameters. This is followed by the application of FindNeighbors() and 
FindClusters(), for clustering the cells. For Study 2, we skipped the normalization step since the 
matrices were already TPM normalized. However, we log-transformed the final matrix. We 
visualized the data using both UMAP (Figure 3A-C, Figure 5A-C) and PCA (Supplemental Figure 
S1A-C, Supplemental Figure S2A-C). We also analyzed scRNA-seq count profiles corresponding 
to data used in Study 2. 2D scatter plots of cells were generated using UMAP (Supplemental 
Figure S10A-C) and PCA (Supplemental figure S11A-C). In the second approach, we used Seurat’s 
integrative analysis pipeline comprising Canonical Correlation Analysis (CCA)/Reciprocal 
Principal Component Analysis (RPCA), referred to as Integrative Seurat. We used 
NormalizeData() for the normalization of Study 1 data. We log-transformed Study 2 data and 
skipped the normalization step. For the integrative analyses of CTC and WBC datasets from 
diverse studies, we used SelectIntegrationFeatures() to select the most informative features (i.e., 
genes). The anchors are then computed using the FindIntegrationAnchors() function. We used 
Canonical-Correlation Analysis (CCA) and Reciprocal PCA (RPCA) as a reduction method to find 
integration anchors with the following parameters: k.anchor = 3, dims = 1:5, k.score = 5 for Study 
1 to avoid errors caused by a small number of samples in either dataset. These anchors were 
integrated using IntegrateData() function with the k.weight and dims parameters adjusted based 
on the sample size of the smallest dataset. In addition, clustering was accomplished using 
FindNeighbors() and FindClusters() with their default parameter settings. As a result, a batch-
corrected matrix was generated with CCA (Supplemental Figure S8), and RPCA (Supplemental 
Figure S9). 
 
We compared unCTC with fastMNN, which demonstrates the effectiveness of employing MNNs 
to correct data batches (Haghverdi et al. 2018). In the case of fastMNN, for both studies, we 
incorporated all WBCs and CTCs into a single scRNA-seq matrix based on common genes. To 
begin, we used the Seurat preprocessing workflow to filter, normalize, and scale the data. For the 
second study, we log-transformed the combined matrix with the addition of 1 pseudo count and 
skipped the normalization step. Finally, the RunFastMNN() function was used on the output from 
the previous step. We split combined Seurat objects into a list of multiple Seurat objects on the 
basis of the data sources. Additionally, the FindNeighbours() and FindClusters() functions are 



 

used to cluster cells. Visualization and evaluation were performed using the batch-corrected 
outputs in the UMAP (Figure 3D-F, Figure 5D-F) and mnn (Supplemental Figure S1D-F, 
Supplemental Figure S2D-F) spaces. We also analyzed scRNA-seq count profiles corresponding 
to data used in Study 2 (Supplemental Figure S10D-F, S11D-F).  
 
The third method, Harmony, aligns cells from distinct batches using an iterative clustering 
approach (Korsunsky et al. 2018). All WBCs and CTCs were merged into a single scRNA-seq 
matrix based on common genes for both studies. We ran Harmony within the Seurat 
preprocessing steps to filter, normalize, and scale the data. Finally, the RunHarmony() function 
was used on the output from the previous step, with parameter group.by.vars = data source. 
Additionally, the FindNeighbours() and FindClusters() functions were used to cluster cells. 
Visualization and evaluations were performed using the batch-corrected outputs in the UMAP 
(Figure 3G-I, Figure 5G-I) and harmony (Supplemental Figure S1G-I, Supplemental Figure S2G-
I) spaces. We also analyzed scRNA-seq count profiles corresponding to data used in Study 2 
(Supplemental Figure S10G-I, S11G-I). 
 
Supplemental Note 2. Copy number variation analysis at chromosomal p or q arm. For single-cell 
expression-based inference of the copy number variation (CNV) landscapes in single cancer cells, 
we used the InferCNV R package (Tickle et al. 2019). InferCNV does not implement any batch 
correction. As such, we performed separate analyses of Poonia and Ebright CTCs. Internal CD45 
cells from a healthy individual (Supplemental Note 3) were used as a reference for Poonia CTCs. 
For Ebright et al. CTCs,  we considered 1000 randomly sampled cells out of 7121 peripheral blood 
mononuclear cells (PBMCs), isolated by density-gradient centrifugation as a control. This dataset 
is referred to as the Xu et al. dataset (Xu and Jia 2021). For inferCNV, all data were used in the 
raw count form. For both datasets, the InferCNV plots show significant CNVs across CTCs as 
compared to the reference scRNA-Seq profiles. CTCs and single cell type for Ebright et al. CTCs. 
To infer the location of a particular gain or loss on a chromosome at the p or q-arm level, we used 
the cytoband information based on GRCh37 (Barrios and Prieto 2017). 

Supplemental Note 3.  Processing of CD45+ single cells from a healthy individual. 7.5 ml of blood 
(EDTA) was lysed for RBC. Following this, the CD45 cells were stained with CD45 antibody 
conjugated to Alexa647 dye (Biolegend, 304020). The CD45 cells were then sorted using Sony 
SH800 Cell Sorter. Subsequently, live cells were again sorted using SH800 by negatively depleting 
dead cells that were stained with Zombie Yellow™ Fixable dye (Biolegend, 423103). CD45 live cells 
were then captured using the C1 single-cell system (Fluidigm) and processed for whole 
transcriptome library preparation using the same chemistry that was used to process the CTCs. 
The libraries were sequenced using the Illumina Miseq system using v3 chemistry for 75bp 



 

paired-end reads. 71 out of the 96 sequenced cells, having at least 10,000 raw reads were qualified 
for their use as a reference for CNV inference on Poonia et al. CTCs.  

Supplemental Note 4. unCTC-based analysis of HNSCC scRNA-seq data of 18 patients.  We 
subjected single-cell RNA-seq profiles from 18 primary head and neck squamous cell carcinoma 
(HNSCC) patients from a previously published study by Puram, Sidharth V., et al. to the unCTC 
pipeline (Puram et al. 2017). For our analysis, we discarded 324 cells with unknown annotations. 
Among the remaining 5578 cells, 2215 were marked annotated by the authors as malignant and 
3363 as non-malignant. unCTC-based analysis of the scRNA-seq data offered clear segregation of 
the malignant and non-malignant categories (Figure S7A). unCTC-based clustering revealed four 
distinct clusters (Figure 7B). Figure S7C depicts the distribution of the number of malignant and 
non-malignant across four clusters obtained from unCTC. We assessed the clustering 
performance of unCTC, as compared to Vanilla Seurat. unCTC segregation of the malignant vs. 
non-malignant subtypes yielded higher values of Adjusted Rand Index (ARI) and Normalized 
Mutual Information (NMI) (Figure S7D). As indicated in the figure, the cluster purity returned by 
unCTC was slightly lower as compared to Vanilla Seurat. On visualizing Stouffer's scores of 
combined expression of cell type-specific markers, including epithelial, T, and B lymphocytes, we 
observed scores of epithelial markers to be enriched in cluster 0 and cluster 2. This finding 
corroborates the original malignant annotations of the cells present in these two clusters (Figure 
S7E).  
 
Supplemental Note 5. mRNA-seq library preparation and sequencing. SMARTer® Ultra® Low 
RNA Kit for Illumina® Sequencing (Clontech®, 634936) was employed to generate pre-amplified 
cDNA. The Polaris cell lysis mixture was used to lyse the selected and sequestered single cells. 
The 28 μL cell lysis mix is composed of  8.0 μL of Polaris Lysis Reagent (Fluidigm, 101-1637), 9.6 
μL of Polaris  Lysis Plus Reagent (Fluidigm, 101-1635), 9.0 μL of 3 SMART CDS Primer II A (12 
M, Clontech, 634936), and 1.4 μL of Loading Reagent (20X, Fluidigm, 101-1004).  The thermal 
profile for single-cell lysis is 37 °C for 5 min, 72 °C for 3 min, 25 °C for 1 min, and hold at 4 °C. 
The 48 μL preparation volume for reverse transcription (RT) contains 1X SMARTer Kit 5X First-
Strand Buffer (5X; Clontech, 634936), 2.5-mM SMARTer Kit Dithiothreitol (100 mM; Clontech, 
634936), 1 mM SMARTer Kit dNTP Mix (10 mM each; Clontech, 634936), 1.2 μM SMARTer Kit 
SMARTer II A Oligonucleotide (12 μM; Clontech, 634936), 1 U/μL SMARTer Kit RNase Inhibitor 
(40 U/μL; Clontech, 634936), 10 U/μL SMARTScribe™ Reverse Transcriptase (100 U/μL; Clontech, 
634936), and 3.2 μL of Polaris RT Plus Reagent (Fluidigm, 101-1366). All the concentrations 
correspond to those found in the RT chambers inside the Polaris IFC. The thermal protocol for 
RT is 42 °C for 90 min (RT), 70 °C for 10 min (enzyme inactivation), and a final hold at 4 °C. 

The 90 μL preparation volume for PCR contains 1X Advantage® 2 PCR Buffer [not short amplicon 
(SA)](10X, Clontech, 639206, Advantage 2 PCR Kit), 0.4-mM dNTP Mix (50X/10 mM, Clontech, 



 

639206), 0.48-μM IS PCR Primer (12 μM, Clontech, 639206), 2X Advantage 2 Polymerase Mix (50X, 
Clontech, 639206), and 1X Loading Reagent (20X, Fluidigm, 101-1004). All the concentrations 
correspond to those found in the PCR chambers inside the Polaris IFC. The thermal protocol for 
preamplification consists of 95 °C for 1 min (enzyme activation), five cycles (95 °C for 20 s, 58 °C 
for 4 min, and 68 °C for 6 min), nine cycles (95 °C for 20 s, 64 °C for 30 s, and 68 °C for 6 min), 
seven cycles (95 °C for 30 s, 64 °C for 30 s, and 68 °C for 7 min), and final extension at 72 °C for 
10 min. The preamplified cDNAs are harvested into 48 separate outlets on the Polaris IFC carrier. 
The cDNA reaction products were then converted into mRNA-seq libraries using the Nextera® 
XT DNA Sample Preparation Kit (Illumina, FC-131-1096 and FC-131-2001, FC-131-2002, FC-131-
2003, and FC-131-2004) following the manufacturer’s instructions with minor modifications. 
Specifically, reactions were run at one-quarter of the recommended volume, the tagmentation 
step was extended to 10 min, and the extension time during the PCR step was increased from 30 
to 60 s. After the PCR step, samples were pooled, cleaned twice with 0.9× Agencourt® AMPure® 
XP SPRI beads (Beckman Coulter), eluted in Tris + EDTA buffer, and quantified using a high-
sensitivity DNA chip (Agilent). The pooled library was sequenced on Illumina NextSeq® using 
reagent kit v3 (2 × 74 bp paired-end read).  

Supplemental Note 6. Preprocessing of scRNA-seq datasets. The unCTC R package accepts 
scRNA-seq data in two forms: transcripts per million (TPM) and raw count data. In the first study, 
we downloaded scRNA-seq count data from all respective sources. The second study includes 
three different datasets, including our own. Ding et al. dataset (TPM) was downloaded from the 
Broad Institute's single-cell gateway. Ebright et al. and Poonia et al. datasets were obtained by 
processing the associated FASTQ files. We used the FastQC (Andrews 2010) tool to perform 
quality checks on both datasets for average percent GC content, mean quality score, and per-
sequence quality score (Andrews 2010). For alignment purposes of the Ebright data set, we used 
the hg19 reference genome and hg19 GTF file from Ensembl (release 75) (Howe et al. 2021). To 
estimate the expression levels of genes, we used RNA-seq by Expectation-Maximization. v.1.3.1 
(RSEM) (Li and Dewey 2011) with two scripts: rsem-prepare-reference and rsem-calculate-
expression. Finally, length-normalized TPM datasets (reporting expression of 57773 transcripts) 
were obtained for both studies. Supplemental Figure S13 shows the steps used in preprocessing 
the single-cell RNA-seq datasets. For alignment purposes of the Poonia data set, An index for 
RNA-seq by expectation maximization (RSEM) was generated based on the hg19/GRCh37. 
Compared to GRCh37, GRCh38 altered 8000 nucleotides, negligibly affecting sequences of 
functional genes. Our primary claims and conclusions will remain unaltered while using GRCh38 
(Guo et al. 2017). RefSeq transcriptome was downloaded from the UCSC Genome Browser 
database (Karolchik et al. 2003). Raw read data were aligned directly to this index using 
RSEM/Bowtie (Li and Dewey 2011; Langmead 2010). Quantification of gene expression levels in 
counts for all genes in all samples was performed using RSEM v1.2.4. Genomic mappings were 



 

performed with TopHat2 v2.0.13 (Kim et al. 2013), and the resulting alignments were used to 
calculate genomic mapping percentages. Raw sequencing read data were aligned directly to the 
human rRNA sequences NR_003287.1 (28s), NR_003286.1 (18S) and NR_003285.2 (5.8S) using 
Bowtie 2 v2.2.4 (Langmead and Salzberg 2012). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Supplemental Figure S1. Visualization of WBCs and CTCs from Study 1. (A) PCA based 
visualization of cells, colored by study using Vanilla Seurat , (B,C) Cells, colored by studies are 
visualized using native embedding methods of fastMNN, and Harmony respectively. (D) 
Equivalent PCA based visualization of unCTC embeddings. (E-H) Equivalent clusters with all four 
methods (I) Summarizing the performance of different methods by comparing clusters with 
WBC/CTC annotations. 



 

 
 

Supplemental Figure S2. Clustering of CTCs obtained from the ClearCell® FX - PolarisTM system 
with Study 2 scRNA-seq profiles.  (A) PCA based visualization of cells, colored by study using 
Vanilla Seurat , (B,C) Cells, colored by studies are visualized using native embedding methods of 
fastMNN, and Harmony respectively. (D) Equivalent PCA based visualization of unCTC 
embeddings. (E-H) Equivalent clusters with all four methods (I) Summarizing performance of 
different methods by comparing clusters with WBC/CTC annotations. 



 

 
 

 
Supplemental Figure S3. Heatmap of differential pathway enrichment scores across four clusters 
detected by unCTC. Color bars indicate cluster identity, source data information, as well as 
molecular subcategories. 
 



 

 
 
Supplemental Figure S4. Analysis of Poonia et al. RNA-seq count data. (A) UMAP projection of 
Poonia et al. CTCs based on pathway scores. We observe two apparent ER+/PR+/HER2- 
subpopulations and spatial segregation of TNBCs. (B) Heatmap depicting differential gene 
expression for ClearCell® FX and PolarisTM selected CTCs across three molecular subtypes. We 
used the Limma (Ritchie et al. 2015) package with its voom (Law et al. 2014) method for differential 
gene expression analysis with default parameter settings.  



 

 
Supplemental Figure S5. (A) Box plot depicting the distribution of Stouffer’s scores (Stouffer et al. 
1949) associated with genesets specific to immune cells and breast epithelia (Supplemental Table 
S4). Cluster 0 shows enrichment of immune cell-specific markers, whereas the remaining clusters 
show enrichment of markers specific to breast epithelia. (B, C) Box plots depicting differential 
enrichment of select immune cell markers i.e. PTPRC and NKG7, respectively. (D, E) Box plots 
depicting differential enrichment of select epithelial markers i.e. EPCAM and KRT18, 
respectively. 
 
 



 

 
 
Supplemental Figure S6. Heatmap of Copy number variation obtained from inferCNV ((Tickle et 
al. 2019) tool in malignant cell  (CTCs) from Ebright et al. dataset. Xu et al. PBMC data was used 
as a reference (WBC) dataset. 
 
 
 
 
 



 

 
 
Supplemental Figure S7. (A) UMAP-based visualization of HNSCC data obtained through the 
unCTC pipeline.  (B) Visualization of clusters obtained through unCTC. (C) Barplot shows the 
distribution of malignant and non-malignant across clusters obtained from unCTC. (D) Barplot 
showing ARI, NMI, and cluster purity for unCTC and Vanilla Seurat. (E) Boxplots depicting the 
distribution of Stouffer’s scores computed based on known B cell, T cell, and epithelial cell 
markers, respectively, for cells in each of the unCTC-identified clusters.  



 

 
 

 
 
Supplemental Figure S8. (A-C) Seurat’s canonical correlation (cca) based integrative analysis of 
data from Study 1. Subfigure A shows cells, coloured by studies, B shows cells by clusters, and C 
shows the cluster-wise distribution of CTCs and WBCs. (D-F) Similar figures for Study 2. 
 



 

 
Supplemental Figure S9. (A-C) Seurat’s reciprocal PCA (RPCA) based integrative analysis of data 
from Study 1. Subfigure A shows cells, coloured by studies, B shows cells by clusters, and C shows 
the cluster-wise distribution of CTCs and WBCs. (D-F) Similar figures for Study 2. 
 
 
 
 



 

 
Supplemental Figure S10. Clustering and UMAP-based Visualization of scRNA-seq expression 
count profile of Study 2. (A-I) Visualization, Clustering, and  distribution of CTCs’ and WBCs’ 
scRNA-seq profiles, using Vanilla Seurat, fastMNN and Harmony respectively. (J-L) Equivalent 
figures with unCTC. 



 

 
Supplemental Figure S11. (A) PCA based visualization of cells, colored by study using Vanilla 
Seurat , (B,C) Cells, colored by studies are visualized using native embedding methods of 
fastMNN, and Harmony respectively. (D) Equivalent PCA based visualization of unCTC 
embeddings. (E-H) Equivalent clusters with all four methods (I) Summarizing the performance 
of different methods by comparing clusters with WBC/CTC annotations. 
  
 



 

 
 
 
 
 

 
Supplemental Figure S12. Average of gene-specific read counts across Poonia and Ebright CTCs. 
 
 
 



 

 
Supplemental Figure S13. Computational workflow depicting key steps involved in the generation 
of TPM matrix using the scRNA-Seq FASTQ files. Compared to hg19 (or GRCh37), GRCh38 
altered only 8000 nucleotides, negligibly affecting sequences of functional genes. Our primary 
claims and conclusions will remain unaltered while using GRCh38 (Guo et al. 2017). 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 



 

 

Andrews S. 2010. Babraham bioinformatics-FastQC a quality control tool for high throughput 
sequence data. URL: https://www bioinformatics babraham ac uk/projects/fastqc. 

Barrios D, Prieto C. 2017. D3GB: An Interactive Genome Browser for R, Python, and WordPress. 
J Comput Biol 24: 447–449. 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 
36: 411–420. 

Guo Y, Dai Y, Yu H, Zhao S, Samuels DC, Shyr Y. 2017. Improvements and impacts of GRCh38 
human reference on high throughput sequencing data analysis. Genomics 109: 83–90. 

Haghverdi L, Lun ATL, Morgan MD, Marioni JC. 2018. Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36: 
421–427. 

Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, 
Bennett R, Bhai J, et al. 2021. Ensembl 2021. Nucleic Acids Res 49: D884–D891. 

Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, 
Sugnet CW, Thomas DJ, et al. 2003. The UCSC Genome Browser Database. Nucleic Acids 
Res 31: 51–54. 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate 
alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 
Genome Biol 14: R36. 

Korsunsky F, Fan J, Slowikowski K, Zhang F, Wei K. 2018. Fast, sensitive, and flexible 
integration of single cell data with Harmony. bioRxiv, 461954. 

Langmead B. 2010. Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics 
Chapter 11: Unit 11.7. 

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 
357–359. 

Law CW, Chen Y, Shi W, Smyth GK. 2014. voom: Precision weights unlock linear model analysis 
tools for RNA-seq read counts. Genome Biol 15: R29. 

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or 



 

without a reference genome. BMC Bioinformatics 12: 323. 

Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, 
Emerick KS, et al. 2017. Single-Cell Transcriptomic Analysis of Primary and Metastatic 
Tumor Ecosystems in Head and Neck Cancer. Cell 171: 1611–1624.e24. 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 
Res 43: e47. 

Stouffer SA, Suchman EA, Devinney LC, Star SA, Williams RM Jr. 1949. The American soldier: 
Adjustment during army life. (Studies in social psychology in World War II), Vol. 1. 1: 599. 

Tickle T, Tirosh I, Georgescu C, Brown M, Haas B. 2019. inferCNV of the Trinity CTAT 
Project. Klarman Cell Observatory, Broad Institute of MIT and Harvard. 

 


