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Supplemental Note 1. Execution details of Seurat, fastMNN, and Harmony. We benchmarked
unCTC against three well-reported integrative analysis methods — Seurat, fastMNN, and
Harmony (Supplemental Table $10). We used Seurat version 4.1.1 and followed two alternative
approaches for integrative analysis of single-cell studies (Butler et al. 2018). As part of the first
approach, we employed Seurat's standard clustering pipeline, while combining individual
scRNA-seq datasets (based on common genes) to construct the input gene expression matrix. This
pipeline is referred to as Vanilla Seurat . We used NormalizeData(), FindVariableFeatures(), and
ScaleData() for normalization, identification of highly variable genes, and scaling the data
respectively, with default parameters. This is followed by the application of FindNeighbors() and
FindClusters(), for clustering the cells. For Study 2, we skipped the normalization step since the
matrices were already TPM normalized. However, we log-transformed the final matrix. We
visualized the data using both UMAP (Figure 3A-C, Figure 5A-C) and PCA (Supplemental Figure
S1A-C, Supplemental Figure S2A-C). We also analyzed scRNA-seq count profiles corresponding
to data used in Study 2. 2D scatter plots of cells were generated using UMAP (Supplemental
Figure S10A-C) and PCA (Supplemental figure S11A-C). In the second approach, we used Seurat’s
integrative analysis pipeline comprising Canonical Correlation Analysis (CCA)/Reciprocal
Principal Component Analysis (RPCA), referred to as Integrative Seurat. We used
NormalizeData() for the normalization of Study 1 data. We log-transformed Study 2 data and
skipped the normalization step. For the integrative analyses of CTC and WBC datasets from
diverse studies, we used SelectIntegrationFeatures() to select the most informative features (i.e.,
genes). The anchors are then computed using the FindIntegrationAnchors() function. We used
Canonical-Correlation Analysis (CCA) and Reciprocal PCA (RPCA) as a reduction method to find
integration anchors with the following parameters: k.anchor = 3, dims = 1:5, k.score = 5 for Study
1 to avoid errors caused by a small number of samples in either dataset. These anchors were
integrated using IntegrateData() function with the k.weight and dims parameters adjusted based
on the sample size of the smallest dataset. In addition, clustering was accomplished using
FindNeighbors() and FindClusters() with their default parameter settings. As a result, a batch-
corrected matrix was generated with CCA (Supplemental Figure S8), and RPCA (Supplemental
Figure S9).

We compared unCTC with fastMNN, which demonstrates the effectiveness of employing MNN's
to correct data batches (Haghverdi et al. 2018). In the case of fastMNN, for both studies, we
incorporated all WBCs and CTCs into a single scRNA-seq matrix based on common genes. To
begin, we used the Seurat preprocessing workflow to filter, normalize, and scale the data. For the
second study, we log-transformed the combined matrix with the addition of 1 pseudo count and
skipped the normalization step. Finally, the RunFastMNN() function was used on the output from
the previous step. We split combined Seurat objects into a list of multiple Seurat objects on the

basis of the data sources. Additionally, the FindNeighbours() and FindClusters() functions are



used to cluster cells. Visualization and evaluation were performed using the batch-corrected
outputs in the UMAP (Figure 3D-F, Figure 5D-F) and mnn (Supplemental Figure S1D-F,
Supplemental Figure S2D-F) spaces. We also analyzed scRNA-seq count profiles corresponding
to data used in Study 2 (Supplemental Figure S10D-F, S11D-F).

The third method, Harmony, aligns cells from distinct batches using an iterative clustering
approach (Korsunsky et al. 2018). All WBCs and CTCs were merged into a single scRNA-seq
matrix based on common genes for both studies. We ran Harmony within the Seurat
preprocessing steps to filter, normalize, and scale the data. Finally, the RunHarmony() function
was used on the output from the previous step, with parameter group.by.vars = data source.
Additionally, the FindNeighbours() and FindClusters() functions were used to cluster cells.
Visualization and evaluations were performed using the batch-corrected outputs in the UMAP
(Figure 3G-I, Figure 5G-I) and harmony (Supplemental Figure S1G-I, Supplemental Figure S2G-
I) spaces. We also analyzed scRNA-seq count profiles corresponding to data used in Study 2
(Supplemental Figure S10G-I, S11G-I).

Supplemental Note 2. Copy number variation analysis at chromosomal p or q arm. For single-cell
expression-based inference of the copy number variation (CNV) landscapes in single cancer cells,
we used the InferCNV R package (Tickle et al. 2019). InferCNV does not implement any batch
correction. As such, we performed separate analyses of Poonia and Ebright CTCs. Internal CD45
cells from a healthy individual (Supplemental Note 3) were used as a reference for Poonia CTCs.
For Ebright et al. CTCs, we considered 1000 randomly sampled cells out of 7121 peripheral blood
mononuclear cells (PBMCs), isolated by density-gradient centrifugation as a control. This dataset
is referred to as the Xu et al. dataset (Xu and Jia 2021). For inferCNV, all data were used in the
raw count form. For both datasets, the InferCNV plots show significant CNVs across CTCs as
compared to the reference scRNA-Seq profiles. CTCs and single cell type for Ebright et al. CTCs.
To infer the location of a particular gain or loss on a chromosome at the p or g-arm level, we used
the cytoband information based on GRCh37 (Barrios and Prieto 2017).

Supplemental Note 3. Processing of CD45+ single cells from a healthy individual. 7.5 ml of blood
(EDTA) was lysed for RBC. Following this, the CD45 cells were stained with CD45 antibody
conjugated to Alexa647 dye (Biolegend, 304020). The CD45 cells were then sorted using Sony
SHB800 Cell Sorter. Subsequently, live cells were again sorted using SH800 by negatively depleting
dead cells that were stained with Zombie Yellow™ Fixable dye (Biolegend, 423103). CD45 live cells
were then captured using the C1 single-cell system (Fluidigm) and processed for whole
transcriptome library preparation using the same chemistry that was used to process the CTCs.

The libraries were sequenced using the Illumina Miseq system using v3 chemistry for 75bp



paired-end reads. 71 out of the 96 sequenced cells, having at least 10,000 raw reads were qualified

for their use as a reference for CNV inference on Poonia et al. CTCs.

Supplemental Note 4. unCTC-based analysis of HNSCC scRNA-seq data of 18 patients. We
subjected single-cell RNA-seq profiles from 18 primary head and neck squamous cell carcinoma
(HNSCC) patients from a previously published study by Puram, Sidharth V., et al. to the unCTC
pipeline (Puram et al. 2017). For our analysis, we discarded 324 cells with unknown annotations.
Among the remaining 5578 cells, 2215 were marked annotated by the authors as malignant and
3363 as non-malignant. unCTC-based analysis of the scRNA-seq data offered clear segregation of
the malignant and non-malignant categories (Figure S7A). unCTC-based clustering revealed four
distinct clusters (Figure 7B). Figure S7C depicts the distribution of the number of malignant and
non-malignant across four clusters obtained from unCTC. We assessed the clustering
performance of unCTC, as compared to Vanilla Seurat. unCTC segregation of the malignant vs.
non-malignant subtypes yielded higher values of Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) (Figure S7D). As indicated in the figure, the cluster purity returned by
unCTC was slightly lower as compared to Vanilla Seurat. On visualizing Stouffer's scores of
combined expression of cell type-specific markers, including epithelial, T, and B lymphocytes, we
observed scores of epithelial markers to be enriched in cluster 0 and cluster 2. This finding
corroborates the original malignant annotations of the cells present in these two clusters (Figure
S7E).

Supplemental Note 5. mRNA-seq library preparation and sequencing. SMARTer" Ultra® Low
RNA Kit for Illumina” Sequencing (Clontech®, 634936) was employed to generate pre-amplified
cDNA. The Polaris cell lysis mixture was used to lyse the selected and sequestered single cells.
The 28 pL cell lysis mix is composed of 8.0 uL of Polaris Lysis Reagent (Fluidigm, 101-1637), 9.6
uL of Polaris Lysis Plus Reagent (Fluidigm, 101-1635), 9.0 pL of 3 SMART CDS Primer II A (12
M, Clontech, 634936), and 1.4 puL of Loading Reagent (20X, Fluidigm, 101-1004). The thermal
profile for single-cell lysis is 37 °C for 5 min, 72 °C for 3 min, 25 °C for 1 min, and hold at 4 °C.
The 48 pL preparation volume for reverse transcription (RT) contains 1X SMARTer Kit 5X First-
Strand Buffer (5X; Clontech, 634936), 2.5-mM SMARTer Kit Dithiothreitol (100 mM; Clontech,
634936), 1 mM SMARTer Kit ANTP Mix (10 mM each; Clontech, 634936), 1.2 uM SMARTer Kit
SMARTer I A Oligonucleotide (12 pM; Clontech, 634936), 1 U/uL SMARTer Kit RNase Inhibitor
(40 U/uL; Clontech, 634936), 10 U/uL. SMARTScribe™ Reverse Transcriptase (100 U/uL; Clontech,
634936), and 3.2 pL of Polaris RT Plus Reagent (Fluidigm, 101-1366). All the concentrations
correspond to those found in the RT chambers inside the Polaris IFC. The thermal protocol for
RT is 42 °C for 90 min (RT), 70 °C for 10 min (enzyme inactivation), and a final hold at 4 °C.

The 90 pL preparation volume for PCR contains 1X Advantage® 2 PCR Buffer [not short amplicon
(SA)|(10X, Clontech, 639206, Advantage 2 PCR Kit), 0.4-mM dNTP Mix (50X/10 mM, Clontech,



639206), 0.48-puM IS PCR Primer (12 uM, Clontech, 639206), 2X Advantage 2 Polymerase Mix (50X,
Clontech, 639206), and 1X Loading Reagent (20X, Fluidigm, 101-1004). All the concentrations
correspond to those found in the PCR chambers inside the Polaris IFC. The thermal protocol for
preamplification consists of 95 °C for 1 min (enzyme activation), five cycles (95 °C for 20 s, 58 °C
for 4 min, and 68 °C for 6 min), nine cycles (95 °C for 20 s, 64 °C for 30 s, and 68 °C for 6 min),
seven cycles (95 °C for 30 s, 64 °C for 30 s, and 68 °C for 7 min), and final extension at 72 °C for
10 min. The preamplified cDNAs are harvested into 48 separate outlets on the Polaris IFC carrier.
The cDNA reaction products were then converted into mRNA-seq libraries using the Nextera®
XT DNA Sample Preparation Kit (Illumina, FC-131-1096 and FC-131-2001, FC-131-2002, FC-131-
2003, and FC-131-2004) following the manufacturer’s instructions with minor modifications.
Specifically, reactions were run at one-quarter of the recommended volume, the tagmentation
step was extended to 10 min, and the extension time during the PCR step was increased from 30
to 60 s. After the PCR step, samples were pooled, cleaned twice with 0.9x Agencourt® AMPure®
XP SPRI beads (Beckman Coulter), eluted in Tris + EDTA buffer, and quantified using a high-
sensitivity DNA chip (Agilent). The pooled library was sequenced on Illumina NextSeq® using
reagent kit v3 (2 x 74 bp paired-end read).

Supplemental Note 6. Preprocessing of scRNA-seq datasets. The unCTC R package accepts
scRNA-seq data in two forms: transcripts per million (TPM) and raw count data. In the first study,
we downloaded scRNA-seq count data from all respective sources. The second study includes
three different datasets, including our own. Ding et al. dataset (TPM) was downloaded from the
Broad Institute's single-cell gateway. Ebright et al. and Poonia et al. datasets were obtained by
processing the associated FASTQ files. We used the FastQC (Andrews 2010) tool to perform
quality checks on both datasets for average percent GC content, mean quality score, and per-
sequence quality score (Andrews 2010). For alignment purposes of the Ebright data set, we used
the hg19 reference genome and hg19 GTF file from Ensembl (release 75) (Howe et al. 2021). To
estimate the expression levels of genes, we used RNA-seq by Expectation-Maximization. v.1.3.1
(RSEM) (Li and Dewey 2011) with two scripts: rsem-prepare-reference and rsem-calculate-
expression. Finally, length-normalized TPM datasets (reporting expression of 57773 transcripts)
were obtained for both studies. Supplemental Figure $13 shows the steps used in preprocessing
the single-cell RNA-seq datasets. For alignment purposes of the Poonia data set, An index for
RNA-seq by expectation maximization (RSEM) was generated based on the hg19/GRCh37.
Compared to GRCh37, GRCh38 altered 8000 nucleotides, negligibly affecting sequences of
functional genes. Our primary claims and conclusions will remain unaltered while using GRCh38
(Guo et al. 2017). RefSeq transcriptome was downloaded from the UCSC Genome Browser
database (Karolchik et al. 2003). Raw read data were aligned directly to this index using
RSEM/Bowtie (Li and Dewey 2011; Langmead 2010). Quantification of gene expression levels in

counts for all genes in all samples was performed using RSEM v1.2.4. Genomic mappings were



performed with TopHat2 v2.0.13 (Kim et al. 2013), and the resulting alignments were used to
calculate genomic mapping percentages. Raw sequencing read data were aligned directly to the
human rRNA sequences NR_003287.1 (28s), NR_003286.1 (18S) and NR_003285.2 (5.8S) using
Bowtie 2 v2.2.4 (Langmead and Salzberg 2012).
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Supplemental Figure S1. Visualization of WBCs and CTCs from Study 1. (A) PCA based
visualization of cells, colored by study using Vanilla Seurat , (B,C) Cells, colored by studies are
visualized using native embedding methods of fastMNN, and Harmony respectively. (D)
Equivalent PCA based visualization of unCTC embeddings. (E-H) Equivalent clusters with all four
methods (I) Summarizing the performance of different methods by comparing clusters with
WBC/CTC annotations.
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Supplemental Figure S2. Clustering of CTCs obtained from the ClearCell® FX - Polaris™ system
with Study 2 scRNA-seq profiles. (A) PCA based visualization of cells, colored by study using
Vanilla Seurat , (B,C) Cells, colored by studies are visualized using native embedding methods of
fastMNN, and Harmony respectively. (D) Equivalent PCA based visualization of unCTC
embeddings. (E-H) Equivalent clusters with all four methods (I) Summarizing performance of

different methods by comparing clusters with WBC/CTC annotations.
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Supplemental Figure S3. Heatmap of differential pathway enrichment scores across four clusters

detected by unCTC. Color bars indicate cluster identity, source data information, as well as

molecular subcategories.
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Supplemental Figure S9. (A-C) Seurat’s reciprocal PCA (RPCA) based integrative analysis of data
from Study 1. Subfigure A shows cells, coloured by studies, B shows cells by clusters, and C shows
the cluster-wise distribution of CTCs and WBCs. (D-F) Similar figures for Study 2.
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Supplemental Figure S10. Clustering and UMAP-based Visualization of scRNA-seq expression
count profile of Study 2. (A-I) Visualization, Clustering, and distribution of CTCs’ and WBCs’
scRNA-seq profiles, using Vanilla Seurat, fastMNN and Harmony respectively. (J-L) Equivalent
figures with unCTC.
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Supplemental Figure S11. (A) PCA based visualization of cells, colored by study using Vanilla

Seurat , (B,C) Cells, colored by studies are visualized using native embedding methods of
fastMNN, and Harmony respectively. (D) Equivalent PCA based visualization of unCTC
embeddings. (E-H) Equivalent clusters with all four methods (I) Summarizing the performance

of different methods by comparing clusters with WBC/CTC annotations.
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Supplemental Figure $13. Computational workflow depicting key steps involved in the generation
of TPM matrix using the scRNA-Seq FASTQ files. Compared to hg19 (or GRCh37), GRCh38
altered only 8000 nucleotides, negligibly affecting sequences of functional genes. Our primary

claims and conclusions will remain unaltered while using GRCh38 (Guo et al. 2017).
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