
1

Supplementary Notes

1. Similarities and differences between detecting mutations and detecting misassemblies

2. The challenge of diploid-aware read mapping

3. Frequency-aware sequence alignment scoring

4. Extended benchmarking of long-read mapping tools

5. Downsampling solid k-mers in non-repetitive regions

6. VerityMap parameters

7. Validation of fragmented haploid and diploid assemblies

8. Summary of benchmarking results

9. Measuring performance of mapping software

10. The choice of k-mer size and the shortest unique substrings

11. Finding a longest path in the compatibility graph

Supplementary Note 1:

“Similarities and differences between detecting mutations and detecting misassemblies”

Although the problems of detecting structural variants (SVs) and detecting misassemblies appear to be

similar, there is an important difference between these two problems. Detecting SVs starts from read

mapping and implicitly assumes that read mapping is a solved problem. For example, Sniffles (Sedlazeck

et al, 2018) assumes that read alignments (e.g., minimap2 alignments) are given and attempts to infer SVs

from these alignments. However, if read alignments are incorrect (like some minimap2 alignments in

highly-repetitive regions), Sniffles will fail. VerityMap attempts to address limitations of existing

mapping tools by generating accurate alignment in highly-repetitive regions that can be further used by

tools like Sniffles for deriving SVs. In fact, Jain et al., Nat Methods, 2022 discuss using Winnowmap2’s

alignments as an input to Sniffles and show that it might produce better SV calls. Below we demonstrate

2

that applying VerityMap results in more accurate mapping than Winnowmap2, suggesting that the SV

calls might be more accurate as well.

To compare VerityMap, Winnowmap2, and minimap2 performance with respect to SV calling, we

launched Sniffles on these three tools to align reads to CHM13 (Supplementary Figure 1, right). Since the

same reads were used to generate the assembly of CHM13, the detected variants likely represent

heterozygous (Het) sites within the otherwise haploid cell line (Nurk et al., 2022). Only SVs supported by

at least 5 reads were reported. 46 SVs were supported by all three tools. VerityMap, Winnowmap2, and

minimap2 made 31, 54, and 9 exclusive SV calls (not supported by other tools), respectively. We

investigated 24 SVs that were not detected using VerityMap alignments but supported by both

Winnowmap2 and Minimap2 alignments. Out of 24 SVs, 3 calls were classified by Sniffles as “BND”

(breakend) and correspond to translocations between chromosomes. VerityMap is not optimized to detect

such events. One SV represents a full duplication of chrM and likely is a false positive call. Three variants

had low read support in VerityMap alignments and therefore were not reported by Sniffles. Five SV calls

were not revealed by Sniffles, but were reported by VerityMap itself using the DistanceDiscordance test.

We manually checked variants detected exclusively by Winnowmap2. First, 4 SV calls had low read

support in VerityMap alignments and therefore were not reported by Sniffles. 7 of the 54 variants were

not revealed by Sniffles, but were reported by VerityMap itself using the DistanceDiscordance test. The

unusually high number of mismatches around some of these variants (Supplementary Figure 1, bottom) in

Winnowmap2’s alignments may suggest that these SVs may have incorrect position and length.

Moreover, numerous variants detected exclusively by Winnowmap2 are located near clumps of

mismatches (not reported by other aligners). Although we cannot claim that these variants are false

positives, the detected clumps of mismatches indicate that they may represent alignment errors in highly

repetitive regions.

At the same time, Sniffles detected several SVs based on VerityMap alignments that were missed by

Winnowmap2 and minimap2. For example, Supplemental Figure 1, left shows an heterozygous insertion

3

of ~2054 bp length in the centromeric region of Chromosome X that was confirmed by a manual

validation of centromeric arrays (Miga et al. 2020). However, minimap2 and Winnowmap2 alignments

missed this variant because of the highly repetitive structure of the centromere. Thus, VerityMap can be

used as an input to SV detection tools (like Sniffles) and VerityMap’s own DistanceDiscordant test can

complement these tools by detecting SVs that these tools missed.

Supplementary Figure 1. Sniffles Variant calling using VerityMap, Winnowmap2, and minimap2.

(Top left) HiFi read alignments to the centromeric region of Chromosome X in the CHM13 cell line. Only

VerityMap detects a Het site of length ~2054 bp that has been confirmed by manual validation of

centromeric array on Chromosome X (Miga et al., 2020). (Top right) Venn diagram that shows the

4

relationship between SVs detected by Sniffles using various mapping tools. (Bottom) Clumps of

mismatches in the alignments reported by Winnowmap2 in Chr13 suggest incorrect length and placement

of the detected SVs.

Supplementary Note 2: “The challenge of diploid-aware read mapping”

Since the definition of a solid k-mer requires that this k-mer appears only in a single contig, the ability of

VerityMap to find a misassembly in a pair of highly similar haplotypes is limited. To illustrate this point,

we consider a pair of substrings StringA and StringB of the same length K in haplotypes A and B

respectively. For any string String, we denote String* — its corresponding (possibly error-prone)

representation in the set of contigs (for simplicity, we assume that String is represented by a single

contig). If StringA* and StringB* are identical,, there exist no solid k-mers in either StringA* or StringB* for

any k ≤ K. However, StringA* and StringB* might be identical in two different scenarios: StringA and

StringB are also identical, or StringA and StringB are different while StringA* = StringB* due to an

overcorrection in the assembly graph. Since there are no solid k-mers in StringA* or StringB*, VerityMap

in haploid mode would report a coverage gap over both strings thus limiting its ability to distinguish

between these two scenarios and potentially detect an erroneous overcorrection.

Alternatively, if StringA = StringB = StringA* ≠ StringB* (for example, if there is an erroneous indel

in StringB*), VerityMap will identify correct solid k-mers in StringA*, erroneous solid k-mers in StringB*,

and subsequently map all reads originating from strings StringA and StringB to StringA* leading to

potentially inflated coverage on StringA* and coverage gap on StringB*. In particular, every solid k-mer in

StringB* that is not shared with any other region of the genome, will not be covered by any reads. Even

though it is theoretically possible to detect such a scenario with VerityMap, it is not straightforward

because it, in turn, requires knowledge that both StringA* and StringB* correspond to the same string in

the underlying genome. However, a clump of solid k-mers in StringB* with little to no coverage identifies

5

either a sequencing drop-out or a misassembly. To distinguish these two scenarios, a user might wish to

utilize an orthogonal sequencing technology (for example, Oxford Nanopores, see Discussion). A

fragmented diploid assembly makes mapping challenging when one haplotype is assembled but the other

haplotype has a gap. In this case, reads from the gapped haplotype may be mapped to the complete

haplotype, triggering an error in VerityMap.

Since the human genome is highly inbred, stretches of DNA that are identical between two

sequences and exceed typical HiFi read length, are rather common (Bankevich et al. 2022). As we show

in Figure 3, VerityMap’s diploid mode is effective for haplotypes that do not share long stretches of

identical DNA, thus providing the first step towards developing a truly diploid-aware and error-exposing

read-mapper.

Supplementary Note 3: “Frequency-aware sequence alignment scoring”

Supplementary Figure 2 presents a contrived yet simple example illustrating the key limitation of the

standard alignment in highly-repetitive regions. It presents a “genome”

AAAAACAAAACGGGGGGGAAAAAAAAAAA with two instances of an imperfect repeat and a

“read” AACAAAAAAAC originating from the green repeat. Even though two rare nucleotides

(represented by two “C” in the genome) “survived” in this read, the optimal alignment of this read to the

blue repeat has larger score (9) than the score of the optimal alignment to the green repeat (8), resulting in

an incorrect mapping. As shown in (Mikheenko et al. 2020), such incorrect mapping are ubiquitous in

ETRs, motivating a need for a new frequency-aware alignment scoring in highly-repetitive regions that

scores matches of rare nucleotides higher than matches of frequent nucleotides (such as “A” in the figure).

6

https://paperpile.com/c/NA3T6e/gk6PV
https://paperpile.com/c/NA3T6e/b2AS7

Supplementary Figure 2. Limitations of standard sequence alignment scoring. A “genome”

AAAAACAAAACGGGGGGGAAAAAAAAA with two instances (green and blue) of an imperfect repeat and a “read”

AACAAAAAAAC originating from the green repeat. Optimal alignment (for simplicity, we use the longest common

subsequence (LCS) scoring with match score 1 and mismatch/indel score 0) to the blue repeat has larger score (9) than the score

of the optimal alignment to the green repeat (8), resulting in an incorrect mapping. However, frequency-aware scoring (with an

increased score for matching rare nucleotides, such as “C”) results in a correct mapping of the read to the green repeat.

Supplementary Figure 3 illustrates how VerityMap implements frequency-aware k-mer scoring.

Supplementary Figure 3. Illustrating the definition of compatible k-mers. Matches of k-mers are compatible if (i) aM < bM

and (ii) aM and bM are synced.

7

Supplementary Note 4: “Extended benchmarking of long-read mapping tools”

Reference sequences:

CHM13 assembly (public release v2.0; https://github.com/marbl/CHM13; GCA_009914755.4; (Nurk et

al. 2022)). ChrY in this file was assembled from sample HG002/NA24385.

Cen10. Centromeric satellite region of Chromosome 10 of CHM13 assembly.

Coordinates: Chr10:34,633,784-46,664,580.

CHM13-Cen10-interim — Cen10 in the interim version of CHM13 assembly predates the earliest

publicly released version v0.9 of the CHM13 assembly.

Cen7. Centromeric satellite regions of Chromosome 7 of CHM13 assembly.

Coordinates: Chr7:55,414,368-68,714,496.

Cen9. Centromeric satellite regions of Chromosome 9 of CHM13 assembly.

Coordinates: Chr9:39,952,789-81,694,033.

CenX. Centromeric satellite regions of Chromosome X of CHM13 assembly.

Coordinates: ChrX:52,820,107-65,927,026.

ASat-X. Alpha satellite region of Chromosome X of CHM13 assembly (ChrX:57,587,233-61,241,121)

HG002 assembly (public release v0.7; [Citation error])

8

https://github.com/marbl/CHM13
https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.4/
https://paperpile.com/c/NA3T6e/s52K4
https://paperpile.com/c/NA3T6e/s52K4
http://127.0.0.1:8080/c/error

ASat-X-HG002. Alpha satellite regions of Chromosome X of HG002 assembly

(ChrX:55,900,000-59,100,000).

Supplementary Table 1 summarizes information about all datasets with artificial misassemblies that

VerityMap was benchmarked against.

ChrXDiploid — a synthetic diploid Chromosome X generated by combining ChrX from CHM13 and

HG002.

Supplementary Table 1. Description of used datasets.

Reference Dataset name Misassembly type Length (kbp) Position (Mbp)

Cen7 Cen7del5 deletion 5 3

Cen7del10 deletion 10 10

Cen7del15 deletion 15 11

Cen7ins5 insertion 5 3

Cen7ins10 insertion 10 10

Cen7ins15 insertion 15 11

Cen9 Cen9del5 deletion 5 40

Cen9del10 deletion 10 20

Cen9tandem tandem duplication 10 20

Cen9dup duplication 10 From 20,
duplicated at 25

Cen9ins5 insertion 5 (Chr1:120,000,000 -
120,005,000)

40

Cen9ins10 insertion 10 (Chr1:120,000,000
- 120,010,000)

20

Cen9reloc relocation 10 From 20, to 30

ASat-X

and

CenX-Diploid
-Switch

Each assembly was cut
at one of canonical
HOR units and merged

Contig1: ASat-X:1-2,097,938 +
ASat-X-HG002:2,089,097-3,200,000

9

ASat-X-
HG002

in such a way to mimic
a haplotype-switch
error.

Contig2: ASat-X-HG002:1-2,089,096 +
ASat-X:2,097,939-3,653,888

Each row corresponds to a reference sequence (first column) with a single artificial misassembly. Second (third)

column shows the dataset name (the type of the introduced misassembly). Fourth (fifth) column indicates the length

(position) of the indel.

Long read datasets:

CHM13-SimHiFi dataset was simulated using pbsim2 (Ono, Asai, and Hamada 2021) with the following

command

./src/pbsim --prefix chm13_sim_hifi --sample-fastq chm13_pacbio_hifi_20kb.fastq

chm13.draft_v2.0.fasta

Cen7Sim dataset was simulated from Cen7 using pbsim2 with the following command

./src/pbsim --prefix cen7_sim --sample-fastq chm13_pacbio_hifi_20kb.fastq cen7.fasta

Cen9Sim dataset was simulated from Cen9 using pbsim2 with the following command

./src/pbsim --prefix cen9_sim --sample-fastq chm13_pacbio_hifi_20kb.fastq cen9.fasta

Cen9Sim-Het dataset was constructed by mixing Cen9Sim dataset with reads simulated from Cen9del10

using pbsim2 with the following commands

./src/pbsim --prefix cen9_sim_del --sample-fastq chm13_pacbio_hifi_20kb.fastq cen9.del.fasta

cat cen9_sim_0001.fastq cen9_sim_del_0001.fastq > chr9_censat_het.fasta.fastq

CenXDiploid-Sim dataset was constructed by mixing reads simulated from ASat-X dataset with reads

simulated from ASat-X-HG002 using pbsim2 with the following commands

10

https://paperpile.com/c/NA3T6e/g0FoL

./src/pbsim --prefix asatx_chm13 --sample-fastq chm13_pacbio_hifi_20kb.fastq ASatX.fasta

./src/pbsim --prefix asatx_hg002 --sample-fastq chm13_pacbio_hifi_20kb.fastq ASatX_HG002.fasta

cat asatx_chm13_0001.fastq asatx_hg002_0001.fastq > cenX.diploid.sim.fastq

CHM13-RealHiFi dataset contains real HiFi (20 kbp library; accession numbers: SRX7897685-8) reads

for the CHM13 sample generated by the T2T Consortium. This dataset is extended by reads originating

from the ChrY of HG002 sample.

ChrXDiploid-RealHiFi dataset contains HiFi reads from CHM13-RealHiFi recruited to ChrXDiploid

using Winnowmap2.

CHM13-LJA is an assembly of ChrXDiploid-RealHiFi reads with LJA (Bankevich et al., 2022).

Supplementary Table 2 benchmarks VerityMap, Winnowmap2, and minimap2 when aligning simulated

reads from the Cen7Sim read-set to the Cen7del5, Cen7del10, Cen7del15, Cen7ins5, Cen7ins10, Cen7ins15

assemblies. Supplementary Table 3 benchmarks VerityMap on the CHM13-SimHiFi dataset. We also

aligned the CHM13-RealHiFi dataset to CHM13 assembly to reveal possible assembly errors and Het

sites (Supplementary Table 4).

We have applied VerityMap in the FragmentedVerityMap mode (Supplementary Note “Validation of

fragmented haploid and diploid assemblies”) for verification of the CHM13-LJA assembly. VerityMap

identified 54 sites with putative misassemblies or heterozygous sites with indel sizes ranging in length

from 6474 bp to 73,449 bp. Supplementary Figure 4 shows several examples of putative misassemblies

detected in the alignments generated by VerityMap. Specifically, Supplementary Figure X, top, contains

an insertion of length ~7132bp that is supported by all bridging reads, indicating a likely misassembly. On

the other hand, Supplementary Figure 4, middle, shows a heterozygous insertion of length 2057bp in

contig 12 that maps to centromere on Chromosome X. Since its length coincides with the length of the

canonical high-order-repeat in this centromere, the insertion likely corresponds to an insertion of a full

11

https://www.ncbi.nlm.nih.gov/sra/?term=SRX789768*+CHM13

tandem repeat unit (Miga et al., 2020, Altemose et al., 2022). We further launched Sniffles (Sedlazeck et

al., 2018) on alignments generated by VerityMap with command

sniffles --input chm13-lja.bam --vcf chm13_lja.1000.vcf
--cluster-merge-pos 50 --minsupport 10 -t 12 --minsvlen 2000

Sniffles reported eight insertion sites — four deletions (lengths 6803, 2026, 2057, 3554 bp) and four

insertions (7404, 6199, 8930, 6079 bp). Although this experiment shows VerityMap’s capability to

identify potential issues in fragmented assemblies, a more extensive benchmark is necessary to rigorously

measure the statistical power of VerityMap when evaluating fragmented haploid or diploid assemblies.

Supplementary Table 2. Benchmarking VerityMap, Winnowmap2, and minimap2 when aligning simulated reads from the

Cen7Sim read-set to the Cen7del5, Cen7del10, Cen7del15, Cen7ins5, Cen7ins10, Cen7ins15 assemblies.

Dataset # correctly / incorrectly mapped reads # alignments correctly / incorrectly
extended through breakpoint

alignments clipped at breakpoint

VerityMap Winnowmap2 minimap2 VerityMap Winnowmap2 minimap2 VerityMap Winnowmap2 minimap2

Cen7del5 12665 / 2 12839 / 17 12839 / 17 14 / 0 0 / 26 1 / 22 7 1 3

Cen7del10 12664 / 2 12854 / 2 12855 / 1 5 / 0 0 / 0 4 / 0 10 9 7

Cen7del15 12665 / 2 12841 / 15 12837 / 19 5 / 0 0 / 0 0 / 0 18 16 16

Cen7ins5 12665 / 2 12856 / 0 12856 / 0 15 / 0 4 / 0 15 / 0 0 0 0

Cen7ins10 12665 / 2 12856 / 0 12856 / 0 16 / 0 8 / 0 15 / 0 0 0 0

Cen7ins15 12665 / 2 12853 / 3 12856 / 0 17 / 0 2 / 0 16 / 0 0 0 0

The concept of a correctly/incorrectly mapped read is defined in Supplementary Note “Measuring performance of mapping

software”. Only primary alignments were taken into account. Total number of reads 12,856. The majority of reads incorrectly

mapped by minimap2 and Winnomap2 have secondary alignments to the correct positions: in cases of nearly perfect duplications,

minimap2 and Winnomap2 might incorrectly choose primary alignments, while VerityMap classifies a read as “unalignable”. The

best value for each column group is in bold.

Supplementary Table 3. Benchmarking VerityMap on the CHM13-SimHiFi dataset.

12

#reads #mapped reads

(%)

#incorrectly

mapped

reads (%)

#unmapped

reads

(%)

assembly

length

#uncovered

bases

(%)

Chr1
137,498 137,041 (99.67%) 7 (0.01%) 457 (0.33%) 248,387,328 229,715 (0.09%)

Chr2
133,994 133,628 (99.73%) 1 (0.00%) 366 (0.27%) 242,696,752 319,001 (0.13%)

Chr3
110,494 110,342 (99.86%) 2 (0.00%) 152 (0.14%) 201,105,948 29,908 (0.01%)

Chr4
106,860 106,495 (99.66%) 2 (0.00%) 365 (0.34%) 193,574,945 268,311 (0.14%)

Chr5
99,647 99,510 (99.86%) 3 (0.00%) 137 (0.14%) 182,045,439 64,688 (0.04%)

Chr6
93,834 93,318 (99.45%) 1 (0.00%) 516 (0.55%) 172,126,628 443,153 (0.26%)

Chr7
88,558 88,311 (99.72%) 0 (0.00%) 247 (0.28%) 160,567,428 50,898 (0.03%)

Chr8
79,644 79,511 (99.83%) 2 (0.00%) 133 (0.17%) 146,259,331 61,728 (0.04%)

Chr9
82,395 80,519 (97.72%) 15 (0.02%) 1,876 (2.28%) 150,617,247 1,303,243 (0.87%)

Chr10
74,169 73,994 (99.76%) 1 (0.00%) 175 (0.24%) 134,758,134 55,485 (0.04%)

Chr11
74,362 74,176 (99.75%) 4 (0.01%) 186 (0.25%) 135,127,769 109,070 (0.08%)

Chr12
73,256 73,161 (99.87%) 1 (0.00%) 95 (0.13%) 133,324,548 14,811 (0.01%)

Chr13
62,184 59,898 (96.32%) 3 (0.00%) 2,286 (3.68%) 113,566,686 3,534,552 (3.11%)

Chr14
55,289 54,779 (99.08%) 5 (0.01%) 510 (0.92%) 101,161,492 685,702 (0.68%)

Chr15
55,312 53,665 (97.02%) 10 (0.02%) 1,647 (2.98%) 99,753,195 2,362,049 (2.37%)

Chr16
53,156 52,570 (98.90%) 8 (0.02%) 586 (1.10%) 96,330,374 137,417 (0.14%)

Chr17
46,280 46,042 (99.49%) 1 (0.00%) 238 (0.51%) 84,276,897 127,915 (0.15%)

Chr18
44,429 43,944 (98.91%) 3 (0.01%) 485 (1.09%) 80,542,538 311,643 (0.39%)

Chr19
34,124 34,062 (99.82%) 0 (0.00%) 62 (0.18%) 61,707,364 9,188 (0.01%)

Chr20
36,684 36,583 (99.72%) 0 (0.00%) 101 (0.28%) 66,210,255 37,219 (0.06%)

13

Chr21
24,977 23,540 (94.25%) 0 (0.00%) 1,437 (5.75%) 45,090,682 2,458,718 (5.45%)

Chr22
28,350 27,716 (97.76%) 4 (0.01%) 634 (2.24%) 51,324,926 868,795 (1.69%)

ChrX
84,614 84,284 (99.61%) 3 (0.00%) 330 (0.39%) 154,259,566 288,607 (0.19%)

ChrY 60,185 57,376 (95.33%) 18 (0.03%) 2809 (4.67%) 62,460,029 1,012,008 (1.62%)

Supplementary Table 4. Benchmarking VerityMap on the CHM13 assembly when aligning real HiFi reads.

mapped reads # Het sites assembly length uncovered bases (bp)

Chr1 457,122 20 248,387,328 21,344 (0.01%)

Chr2 440,316 3 242,696,752 114,112 (0.05%)

Chr3 363,497 0 201,105,948 2,890 (0.00%)

Chr4 348,380 2 193,574,945 129,201 (0.07%)

Chr5 330,073 0 182,045,439 1,993 (0.00%)

Chr6 309,725 3 172,126,628 203,809 (0.12%)

Chr7 288,274 3 160,567,428 2,552 (0.00%)

Chr8 262,933 1 146,259,331 6,363 (0.00%)

Chr9 280,431 8 150,617,247 868,459 (0.58%)

Chr10 242,712 5 134,758,134 10,471 (0.01%)

Chr11 244,050 4 135,127,769 13,192 (0.01%)

Chr12 239,358 1 133,324,548 2,682 (0.00%)

Chr13 193,133 5 113,566,686 256,392 (0.23%)

Chr14 179,606 1 101,161,492 4,365 (0.00%)

Chr15 178,759 5 99,753,195 99,329 (0.10%)

Chr16 178,109 7 96,330,374 20,909 (0.02%)

Chr17 147,723 1 84,276,897 9,531 (0.01%)

Chr18 144,694 2 80,542,538 92,612 (0.11%)

Chr19 103,865 5 61,707,364 5,492 (0.01%)

Chr20 119,269 0 66,210,255 3,208 (0.00%)

14

Chr21 75,810 0 45,090,682 24,647 (0.05%)

Chr22 86,907 5 51,324,926 65,110 (0.13%)

ChrX 269,221 5 154,259,566 32,364 (0.02%)

ChrY 113,893 0 62,460,029 198,722 (0.3%)

Total number of reads: 5,567,158, mapped: 5,483,967 (98.51%). The fraction of uncovered bases does not exceed

0.3% for all chromosomes except Chromosome 9 (0.58%). rDNA arrays with coordinates

Chr13:5,964.549-9,123,208 (length 3,158,660 bp), Chr14:2,109,599-2,707,543 (length 597,945 bp),

Chr15:2,518,973-4,655,338 (length 2,136,366 bp), Chr21:3,132,131-5,512,426 (length 2,380,296 bp),

Chr22:4,796,484-5,509,436 (length 712953 bp) are considered models by the T2T Consortium until longer

sequencing reads enable more accurate reconstruction (Supplementary Note “Assembly of rDNA arrays'' in (Nurk et

al. 2022)). Thus, we do not count bases in these regions as uncovered.

15

https://paperpile.com/c/NA3T6e/s52K4
https://paperpile.com/c/NA3T6e/s52K4

Supplementary Figure 4. Examples of putative misassemblies or Het sites identified in CHM13-LJA

assembly. Top (middle, bottom) suggests an insertion of length ~7kbp (2057bp, 2026+1352bp).

16

Supplementary Note 5: “Downsampling solid k-mers in non-repetitive regions”

Although the highly repetitive regions in the newly complete assembled genome constitute the biggest

challenge for read mapping, they constitute less than 8% of the human genome (Nurk et al. 2022).

Consequently, most k-mers in the genome are solid (~98% of 301-mers in the complete assembly are

solid). Such abundance of solid k-mers in non-repetitive regions inflates the size of the compatibility

graph and thus increases the running time. For each window W of size L (the default value L = 30 kbp),

we define SolidFraction(W) — a fraction of solid k-mers in window W. VerityMap classifies a window W

as non-repetitive if SolidFraction(W) exceeds the threshold MinSolidFraction (the default value

MinSolidFraction = 0.9), and repetitive otherwise. VerityMap selects all solid k-mers in a repetitive

window but downsamples them by selecting L * DownFreq of random rare k-mers in a non-repetitive

window (the default value DownFreq = 0.02). Such downsampling reduces the complexity for indexing of

all solid k-mers compared to alternative approaches. For example, KMC3 does not allow generation of

such a downsampled database and requires generation of the complete database that has O(|Genome|)

memory footprint. The frequency query to such a database has O(|Genome| * k) complexity. On the other

hand, the size of the database that is generated by VerityMap is

O(|Genome| (RepetitiveFraction / L + (1 - RepetitiveFraction))),

where RepetitiveFraction is the proportion of bases of Genome in non-repetitive regions. Since VerityMap

is storing rolling hashes of k-mers in the database (rather than the k-mers themselves), the complexity of a

query to such database is O(|Genome|).

Supplementary Note 6: “VerityMap parameters”

17

https://paperpile.com/c/NA3T6e/s52K4

Parameters of count-min sketch and Bloom filter. VerityMap defines the CMS parameters as follows:

Bits = ⌈log2(MaxRareOccurrences)⌉, CMSNumber = 5, CMSSize =⌈ 2⌈log(|Contig|)⌉eExpBase⌉, where the default

value ExpBase = 0.01.

Main parameters. The main parameters of VerityMap were carefully defined after running the tool on

Cen7Sim dataset and Cen9Sim dataset to optimize the number of incorrectly mapped reads, percent of

uncovered bases in the assembly, and ability to detect the misassemblies (Supplementary Figures 5-6).

Eventually we selected the following parameters:

UniqueScore=3, RareScore=0.1, MisassemblyPenalty=5, MaxRareOccurrences=10, TopScoreProp=0.9.

Supplementary Figure 5. Heatmaps showing the number of unmapped reads (Left), the number of incorrectly mapped

reads (Middle), and the number of reads spanning the deletion where alignments were split in the deletion breakpoint,

preventing further detection of the misassembly (Right). VerityMap was run on Cen9del10 dataset with different parameters.

Blue color corresponds to lower values, red color corresponds to higher values.

18

Supplementary Figure 6. Heatmaps showing the number of unmapped reads (Left), the number of incorrectly mapped

reads (Middle), and the number of reads spanning the deletion where alignments were split in the deletion breakpoint,

preventing further detection of the misassembly (Right). VerityMap was run on Cen7del5 dataset with different parameters.

Blue color corresponds to lower values, red color corresponds to higher values.

Supplementary Note 7: “Validation of fragmented haploid and diploid assemblies”

VerityMap defines a solid k-mer as a rare k-mer that appears in a single contig such that its

reverse-complementary k-mer does not appear in any contig. Although this conservative definition is

reasonable for complete assemblies, it is too restrictive for evaluation of fragmented assemblies or diploid

19

assemblies of highly inbred organisms with long shared stretches of homologous chromosomes sharing

the same sequence.

We define the count of a k-mer in the assembly as the number of times this k-mer appears in the assembly.

We further define the canonical count of a k-mer as the total count of this k-mer and its

reverse-complementary k-mer in the assembly. A k-mer is called canonical-solid if its canonical-count

does not exceed MaxRareOccurences. Importantly, unlike a solid k-mer, a canonical-solid k-mer and its

reverse-complementary k-mer can appear in several contigs (a k-mer and its reverse-complementary

k-mer are simultaneously canonical-solid or not).

Below, we refer to the mode of VerityMap for evaluating fragmented haploid (diploid) assembly as

FragmentedVerityMap (DiploidVerityMap). Both of these modes make use of canonical-solid k-mers

rather than solid k-mers while the definition of compatibility graph remains the same. As described in

Methods subsection “Compatibility graph”, VerityMap assigns the score UniqueScore to all unique

k-mers and the smaller score RareScore to all non-unique solid k-mers in the assembly (default values

UniqueScore = 3 and RareScore = 0.1). The score Score(bM) of a match bM is defined as the score of the

k-mer it represents. FragmentedVerityMap follows the same definition (except using the concept of

canonical-solid k-mers rather than solid k-mers), while DiploidVerityMap introduces an additional

parameter DupScore (default value DupScore = 1) for a match of a duplicate k-mer with canonical count

equal to two. This change is motivated by the fact that most duplicate k-mers in a diploid assembly appear

in long stretches of shared sequence between homologous chromosomes. Such duplicated k-mers would

be unique in a consensus haploid assembly and it appears to be reasonable to assign them a higher score

than for the rest of non-unique canonically-solid k-mers.

Since nearly all k-mers in non-repetitive regions are solid, VerityMap downsamples them to reduce the

memory footprint as described in Supplementary Note “Downsampling solid k-mers in non-repetitive

20

regions”. FragmentedVerityMap and DiploidVerityMap use a slightly different method for downsampling

k-mers that is inspired by a concept of a minimizer (Roberts et al., 2004). For each window W of size L

(the default value L = 30), we select a k-mer Minimizer(W) with the minimal canonical-count among all

canonical-solid k-mers that start in the window W (ties are broken arbitrarily). The default value of L,

while giving relatively modest improvement in running time, substantially reduces memory footprint.

Supplementary Note 8 “Summary of benchmarking results”

Below we define the terms “accurate”, “error-exposing”, and “diploid-aware” in the context of read

mapping tools.

Accurate. We define the origin of a read as the starting position within the genome from where this read

was sequenced or simulated. A read is mapped correctly (incorrectly) if its mapping position is within

MaxBias bp away from its origin (default value 100bp). Accuracy for a mapping tool is defined as the

ratio of correctly mapped reads out of all mapped reads. A mapping tool is called accurate in case of

error-free assemblies if its accuracy exceeds MinAccuracy (default value 99%) and the percent of

unalignable reads does not exceed MaxUnaligned (default value 5%) across a range of error-free

benchmarking datasets. A mapping tool is called partially accurate (corresponds to “+/-” in Table 1) if

these conditions are satisfied only on a subset of considered datasets. Since TandemMapper was designed

for accurate read mapping to HOR arrays (rather than large regions without an HOR-like structure), it

incorrectly mapped many reads in other regions. We thus classify it as partially accurate (or “+/-”) in

terms of accuracy for error-free assemblies. All other considered mapping tools (VerityMap, minimap2,

Winnowmap2) are accurate as observed on a wide range of datasets (see Supplementary Note “Extended

benchmarking of long-read mapping tools”).

21

Error-exposing. A mapping tool is called error-exposing if it is accurate across a range of benchmarking

datasets that contain misassembly breakpoints, and if the proportion of reads that are incorrectly spanning

the breakpoint does not exceed MaxIncorrectErrorExposing (default value 5%). For example, Table 2

shows that VerityMap is the only tool that does not make any incorrect alignments near the misassembly

breakpoints. Table 2, top shows that VerityMap is also substantially more accurate than both minimap2

and Winnowmap2. Moreover, in most cases VerityMap produces more correct mappings across the

misassembly breakpoint. Since a similar scenario is observed in Supplementary Table 2, we refer to

VerityMap as the only error-exposing tool in Table 2.

Diploid-aware. A mapping tool is called (fully) diploid-aware if it is accurate and error-exposing for a

wide range of diploid datasets. It is partially diploid-aware if it is accurate and error-exposing on a limited

range of diploid datasets or its scope is limited to a particular loci. Subsection “VerityMap correctly

distinguishes haplotypes in diploid assemblies and identifies haplotype-switch errors” shows that

VerityMap is the only partially diploid-aware mapping tool. Althoughwe use a single dataset, this dataset

presents a challenging example for any read mapping tool since it contains a haplotype-switch error in a

highly repetitive region of the human genome. Even though VerityMap is only partially diploid-aware, it

presents a step forward towards developing a fully diploid-aware mapping algorithm (see also

Supplementary Note “The challenge of diploid-aware read mapping”).

Supplementary Note 9: “Measuring performance of mapping software”

The following versions of mapping tools are used in all benchmarks

● VerityMap v2.1.1-alpha

● TandemMapper (Mikheenko et al. 2020); https://github.com/ablab/TandemTools, commit ad668d)

● Winnowmap v2.03 (C. Jain et al. 2022, 2020)

● Minimap v2.24-r1122 (Li 2018, 2021).

22

https://paperpile.com/c/NA3T6e/b2AS7
https://github.com/ablab/TandemTools
https://paperpile.com/c/NA3T6e/uPHsw+v7zMT
https://paperpile.com/c/NA3T6e/0cuex+cNaKy

The benchmarking was done on a server with Intel(R) Xeon(R) Platinum 8164 CPU @ 2.00GHz using 30

threads. Winnowmap2 does not respect the threads “-t” parameter, so we limit the resources provided to

it by using taskset command. In order to measure, CPU time and memory usage, we use time

command and report “User time” and “Maximum resident set size”. In all benchmarks the command used

for running

- minimap2 : minimap2 -a -t 30 -x map-hifi {target} {queries}

- Winnowmap2: meryl count k=15 output merylDB {target} && meryl

print greater-than distinct=0.9998 merylDB > repetitive_k15.txt

&& winnowmap -W repetitive_k15.txt -t 30 -ax map-pb {reference}

{target}

- VerityMap: veritymap --reads {queries} {reference} -o

{output_directory} -d hifi

In all benchmarks, a simulated read is considered correctly mapped (otherwise, incorrectly mapped) if its

starting position is within 100 bp from the read simulated position calculated for the top scoring read

alignment. In all benchmarks, we consider only reads and primary read alignments longer than 5 kbp.

23

Supplementary Note 10: “The choice of k-mer size and the shortest unique substrings”

Although the k-mer size selected in TandemMapper (k=19) works well for mapping reads to many ETRs,

it has several drawbacks when applied to more complex genomic regions. Two k-mers from a genome are

called neighbors if they differ in a single position. Neighboring k-mers affect mapping performance since

a single error in the assembly (or a read spanning one of them) may lead to a spurious k-mer match

between the assembly and a read that can potentially lead to a wrong mapping. Since a short genomic

k-mer has a higher chance to have neighbors than a long k-mer, the k-mer-based read mapping tools

should ideally use a large default k-mer size. For example, nearly half (43%) of 19-mers in centromere X

(cenX) have neighboring 19-mers within this centromere. However, neighboring k-mers exist only for

30% of all 31-mers, 8% of 101-mers, and 7% of 301-mers in cenX.

Moreover, using short k-mers can lead to ambiguous alignments even without any errors. A

substring of a genome is unique if it appears only once in this genome. For each position of the genome,

one can compute the shortest unique substring starting at this position and use these substrings for read

mapping. If the length of the shortest unique substring in a particular region exceeds the length of a read

sampled from this region, it is theoretically impossible to unambiguously map this read to the region even

if the read is error-free. In highly repetitive centromeres, the lengths of the shortest unique substrings at

many positions are longer than the average length of a HiFi read (20 kbp) and even exceed 100 kbp at

some positions (Supplementary Figure 7). Given a window length w = 20 kbp and k = 19 bp, only 69% of

windows in Cen9 contain unique k-mers, while for k = 101 (301) bp, 92% (94%) of such windows

contain unique k-mers.

24

Supplementary Figure 7. Length of shortest unique substrings in centromeric regions of the genome. Colors correspond to

various satellites as defined in (Miga et al. 2020): high-order repeat (HOR) arrays of alpha satellites, human satellites (HSAT),

centric satellite transition regions, beta satellites, monomeric alpha satellites. The y-axis shows the length of the shortest unique

k-mer starting at this position. The y-axis in right figures is represented in logarithmic scale to better demonstrate the difference

between HORs, HSATs, and other regions. (Top) Centromere 6 contains one of the most complex HOR arrays in the human

genome (Bzikadze and Pevzner 2020; Nurk et al. 2022). The median (maximum) of the minimal length of a unique k-mer is 12

bp (31 kbp). (Bottom) Centromere 9 contains one of the most complex HSAT arrays in the human genome (Nurk et al. 2022).

Together with the HOR array in centromere 6, Cen9 represented some of the most difficult-to-assemble regions in the human

genome (Nurk et al. 2022). The median (maximum) of the minimal length of a unique k-mer is 126 bp (98 kbp).

Supplementary Note 11: “Finding a longest path in the compatibility graph”

Given a path in an edge-weighted graph, its weight weight(path) is defined as the total weight of all edges

in this path and its range is defined as the distance between its starting and ending positions in the

assembly. We classify a path as valuable if it satisfies the following conditions (i) its weight exceeds

MinWeight, (ii) its range exceeds MinPathRange (the default value = 5 kbp), and (iii) it includes at least

MinUniqueKmers solid k-mers as its vertices (default values MinWeight = 0, MinPathRange = 5 kbp,

MinUniqueKmers= 0).

25

https://paperpile.com/c/NA3T6e/jQlNZ
https://paperpile.com/c/NA3T6e/HavuS+s52K4
https://paperpile.com/c/NA3T6e/s52K4
https://paperpile.com/c/NA3T6e/s52K4

For each read R, VerityMap uses the same dynamic programming approach as in (Mikheenko et

al. 2020) to find a longest path in its compatibility graph. Afterward, it removes edges of the found path

from the compatibility graph and repeats the path finding process iteratively until it either finds two

valuable paths or until it removes all edges in the compatibility graph (in the latter case, it either finds a

single valuable path or no valuable paths). We refer to the top-scoring valuable path for a read R as a

PrimaryPath(R) and to the second top-scoring valuable path (if it exists) as SecondaryPath(R). We

classify a read as alignable if weight(SecondaryPath(R)) / weight(PrimaryPath(R)) does not exceed

TopScoreProp (default value = 0.9) or if the iterative path search returns a single valuable path

PrimaryPath(R). Otherwise, a read is classified as unalignable. For each alignable read, VerityMap

constructs the nucleotide-level alignment between every two consecutive matches in PrimaryPath(R) by

using ksw2 (Li 2018; Suzuki and Kasahara 2018). Table 2 (top left) shows that VerityMap has fewer

incorrectly mapped reads than other mapping tools in the highly repetitive Cen9del10 region.

26

https://paperpile.com/c/NA3T6e/b2AS7
https://paperpile.com/c/NA3T6e/b2AS7
https://paperpile.com/c/NA3T6e/0cuex+JqHUm

