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SUPPLEMENTARY METHODS 
 
Cells and cell culture prior to experimental treatments 
 Lymphoblastoid cell lines (LCLs) were obtained for 544 unrelated individuals included 
in the 1000 Genomes study (The 1000 Genomes Project Consortium 2012). All cells were 
ordered from Coriell Institute, and a complete list of the included lines is available in Table S1. 
Live cultures were shipped overnight to Princeton University in randomized batches of 25 (Table 
S1). Two batches of 25 were shipped on Monday and Tuesday of a given week and processed in 
parallel over the following two weeks; after the two-week period, another two batches of 25 
arrived (and so on). 
 Upon arrival of a given batch of 25 samples, cells were incubated overnight in the flasks 
they were shipped in (unopened) at 37°C with 5% CO2. On day 2, cells were pelleted, counted 
using Trypan blue stain and a Countess Automated Cell Counter, and resuspended at a density of 
500,000 cells per mL of cell culture media (RPMI + 10% fetal bovine serum + 1% antibiotic). 
Cells were then checked and split every 48 hours until a total of 14 million cells (12 million for 
our experiments and 2 million for cryopreservation) were obtained for a given line, or until 11 
days had passed, whichever came first. At this time, we seeded 1 million cells in 2.5mL of media 
in each well of a 12 well plate, using one plate per individual. In cases where we had <12 million 
cells on the day of seeding, we plated however many wells we could. The 12 well plates were 
then placed overnight in an incubator and experimental treatments were performed on the 
morning of the following day (see below).  
 We note that cells were not starved of serum prior to treatment. This is sometimes done 
to synchronize all cells to the same cell cycle phase and/or to eliminate any potential effects of 
fetal bovine serum on cellular responses (because serum contains many small molecules and 
proteins and is not well-defined between lots and manufacturers (Zheng et al. 2006)). However, 
the practice of cell starvation can affect cell viability and morphology (Rashid and Coombs 
2019), and we therefore did not include it in our experimental design. We also note that, while it 
was infeasible to use the same lot of serum across the entire experiment, the same lot of serum 
was used to culture all cells from a given individual. Therefore, between-lot differences in serum 
composition would not affect any inferences about within-individual responses. Further, the 
between-individual variables of interest in our study are genotype and ancestry, which were 
completely randomized across cell growth batches (and consequently across serum lots). 
 
Cell treatments 

On the morning of the experiment, a given 12 well plate was removed from the incubator 
and 5 ul of each treatment was added to a predesignated well. Table S2 shows the concentrations 
used for each of the experimental treatments. These concentrations were derived from the 
literature and modified in some cases based on pilot experiments. We note that our goal here was 
to learn about the general properties of genotype x environment interactions, rather than to create 
a realistic cellular model for any individual treatment; thus, in some cases we chose 
concentrations that provoked a gene expression response in our pilot experiments rather than 
concentrations that were physiologically realistic. Because our treatments were dissolved in 
either water or ethanol, we also included these two molecules as controls, for a total of 12 
conditions. We did not monitor cell viability, but based on previous work we believed that the 
concentration of ethanol we used would not have effects toxicity effects. In particular, previous 
work in a variety of cell types has shown that toxicity effects begin at concentrations of ~5% 



 3 

(Nguyen et al. 2020) and this manifests most strongly at time periods greater than 24 hours (Tuoi 
Do et al. 2011). At concentrations similar to ours (<1%), ethanol does not appear to affect cell 
viability or growth (Casañas-Sánchez et al. 2016; Šarc and Lipnik-Štangelj 2009). 

Following the addition of all 12 treatment and control molecules, plates were returned to 
the incubator for 4 hours, after which we spun down the plates for 5 min at 500 g at 4C. We then 
removed the cell culture media and washed the cells twice in cold 1x phosphate-buffered saline, 
spinning each wash for 10 min at 500 g at 4C. Finally, we lysed cells in 400 ul of a homemade 
lysis buffer that was made with the following recipe: 100 mM Tris-HCl at pH 7.5, 500 mM LiCl, 
10 mM EDTA at pH 8, 1% LiDS, 5 mM dithiothreitol (DTT), and 10% beta mercaptoethanol. 
All lysed cells were then frozen at -80C. 

 
RNA extraction and library preparation 
 12 well plates were thawed in batches of 8 or 12, depending on whether we were 
performing RNA extractions for all 12 conditions or just for 8 conditions (which we did for a 
subset of individuals). Depending on the circumstances, 12 conditions from 8 cell lines or 8 
conditions from 12 cell lines were plated on a 96-well plate, with 3 wells randomly left empty as 
negative controls. To avoid introducing new batch effects, the samples that were plated together 
on a given 96-well plate were randomly chosen from a given batch of 50 samples that were 
received and processed during the same two-week period.  
 We used 200 ul of each sample to extract RNA using Zymo’s Quick-RNA 96 kit, 
following the manufacturer’s instructions. RNA extractions were repeated for a given plate if 
there was evidence of contamination in the negative control wells. mRNA-seq libraries were 
prepared using the published TM3’seq protocol (Pallares et al. 2020) and a CyBio FeliX liquid 
handling robot (Analitik Jena). After the final PCR step, 5 ul of each library derived from a given 
cell line (n=8 or 12) were pooled, cleaned using SPRI beads, and quantified with a Qubit 
fluorimeter. The line level pools were then equimolarly combined into a plate level pool, which 
was visualized and quantified on an Agilent TapeStation. The total dataset (n=5223 libraries) 
was sequenced across four runs of the Illumina NovaSeq platform. Each sample was sequenced 
to a mean depth of 2.199 ± 2.731 (SD) million reads using 100bp single end sequencing. 
 
Low level RNA-seq data processing 

Each sample was trimmed for low quality bases and adapter contamination using 
cutadapt (Martin 2011). Trimmed reads were then mapped to the human reference genome 
(hg38) using STAR (Dobin et al. 2013) and filtered for unique mapping. We checked for 
potential ancestry biases in mapability, by asking whether the proportion of reads that uniquely 
map (relative to the total number of reads generated) differed by ancestry and found that this was 
generally not the case. For example, analyzing all samples within one of our sequencing batches 
(n=1344 samples) and using the CEU/CEPH population as the reference, we found that only 
GWD had a significantly lower mapping rate (linear model, beta=-1.96, p=0.0073; Figure S5). 

Using our set of uniquely mapped reads, we counted the number of reads that overlapped 
each gene using HTSeq (Anders 2011) and the GENCODE v25 GTF 
(https://www.gencodegenes.org/human/release_25.html). If a sample had fewer than 250,000 
reads mapped to protein coding genes, we excluded it from further analyses. This filtering step 
left us with 3886 samples and the metadata for these samples is provided in Table S3. Matrices 
of read counts per filtered sample were assembled and exported for further processing. 
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 We translated our raw count data into transcripts per million (TPM), and filtered the 
dataset to exclude non-protein coding genes as well as genes that were lowly expressed in all 
conditions (median TPM<2 in all 12 conditions). This left us with 10157 genes for analysis. 
Next, we used the voom function in the R package limma (Law et al. 2014) to normalize the 
count data. To remove variance attributed to batch and other technical effects, we conducted 
surrogate variable analysis (Leek and Storey 2009) on the voom-normalized data (protecting the 
variance associated with treatment (12-way factor) and population (AFR/EUR)). We then fit 
linear models in limma (Law et al. 2014) and regressed out three surrogate variables, the number 
recommended by the num.sv function. As expected, the three surrogate variables were highly 
correlated with the first 3 principal components of the normalized gene expression matrix 
(Pearson correlation R=-0.944, -0.929, and 0.819, all p<10-16). They were also correlated with 
known technical effects such as total read depth (R between SV1 and SV2 and total read depth=-
0.319 and 0.131, both p<10-16) and sequencing batch (ANOVA of SV2 and sequencing batch: 
F=109.47, p<10-16). Importantly, because cell lines were randomized across all batch effects 
within the experiment, there should be no confounds between batch effects and our variables of 
interest. Principal components analyses of the SV-corrected dataset are presented in Figure S6. 

 
Low level genotype data processing 

We downloaded phased genotype calls, derived from ~30× whole genome sequence data, 
for 454 1000 Genomes Project individuals included in our study (Byrska-Bishop et al. 2021) 
(Table S4). We the used PLINK (Purcell et al. 2007) to remove the following variant types: indels, 
SNPs with >2 alleles, SNPs with MAF<0.05, SNPs called in <50% of individuals, and SNPs out 
of Hardy-Weinberg equilibrium (p<10-6). This filtering left us with 7,205,828 SNPs. We then 
performed LD filtering using the indep-pairwise command in PLINK (Purcell et al. 2007), with a 
window size of 500kb, a step size of 50kb, and an R2 threshold of 0.8. We used these LD-filtered 
SNPs to generate a PCA in PLINK (Purcell et al. 2007) as well as a genetic relatedness matrix 
(GRM) in GCTA (Yang et al. 2011). Finally, to prepare for cis eQTL mapping, we extracted 
1,950,183 LD-filtered SNPs that fell within 500kb of the transcription start or end site of protein 
coding genes. 

 
Understanding the effects of sequence coverage 

Some of our mRNA-seq libraries were sequenced at relatively low coverage. This is 
appropriate for the 3’ biased approach that we used (Pallares et al. 2020), but could still impact 
our ability to identify genetic, ancestry, or treatment effects on gene expression, especially for 
lowly expressed genes. To understand how sequence coverage impacts our results and main 
conclusions, we performed two analyses. First, we compared the log fold changes we see in this 
study in response to Dexamethasone to another study that used the same cell type and 
concentration and a full transcript/higher sequencing coverage approach (Moyerbrailean et al. 
2016). We note that such a comparison is not possible for all treatments, because we do not know 
of other publicly available datasets that used our exact parameters. For the Dexamethasone 
comparison, we estimate extremely similar effect sizes relative to previous work (Pearson 
correlation=0.73, p<10-16; Figure S9). 

Second, we repeated our analyses of ancestry and treatment effects after splitting our 
samples into two datasets: one dataset that contained the samples with the highest read coverages 
and one dataset that contained the samples with the lowest read coverages. We then reran our 
analysis pipeline and compared the results. When we analyzed samples from the lower and upper 
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half of coverages, we estimated extremely similar ancestry and treatment effects: the mean Pearson 
correlation for ancestry and treatment effect sizes estimated in the two datasets was 0.80 ± 0.01 
and 0.50 ± 0.20, respectively (both p<10-16). This is not to say that coverage has no impact on the 
effect sizes we can detect, it will in any dataset. However, we have found that the effect sizes we 
estimate are robust and similar to previous studies as well as our own dataset divided by coverage. 
 
Estimating the heritability of gene expression levels 

We used GCTA and the GRM derived from the dataset of filtered genotypes to estimate 
the heritability of gene expression levels in each cellular environment. We followed the pipeline 
recommended by the authors (https://cnsgenomics.com/software/gcta/#GREMLanalysis) and 
estimated heritability for each of 10,156 genes in each of the 12 cellular environments. We note 
that, given our sample sizes, per-gene heritability estimates are noisy and future studies with larger 
sample sizes will be needed to obtain more accurate gene-specific values in a given cellular 
environment (Visscher et al. 2014). Instead, our goal here was to understand whether the overall 
heritability distributions changed as a function of the cellular environment. To do so, we used a 
Wilcoxon signed-rank test to ask whether mean heritability differed between each treatment-
control pair (see Figure 3 and Table S5). Because we observed upward biases in heritability 
estimates for conditions with the smallest sample sizes, we also 1) repeated the same analysis after 
subsampling each environment to n=100 individuals (performing 5 independent subsamples) and 
2) used linear models to ask whether there was a consistent difference in per-gene heritability 
estimates between treatment and control conditions controlling for sample size. 
 
Enrichment analyses of treatment- and ancestry-associated genes 
 We used gene set enrichment analyses (GSEA) (Subramanian et al. 2005) to ask whether 
certain biological pathways were overrepresented among the set of genes that exhibited the 
strongest evidence for 1) differential expression in response to a given treatment and 2) ancestry-
associated differences in expression. For #1, we sorted our gene list by effect size (output from 
limma) for each treatment effect separately and ran GSEA. For #2, we sorted our gene list by 
median effect size across all conditions, because very few genes exhibiting evidence for ancestry 
effect size heterogeneity across conditions. We assessed the significance of pathway enrichment 
scores via comparison to 1000 random permutations of gene labels across pathways, and controlled 
for multiple hypothesis testing using a Storey-Tibshirani FDR approach (Storey and Tibshirani 
2003). Results are reported in Figure S1, Tables S6, and Table S9. 
 We also tested whether ancestry-associated genes shared between ≥2/3 of all conditions 
(as determined by mashR (Urbut et al. 2019)) were enriched within genes associated with 114 
complex traits and diseases. To do so, we followed the approach of (Findley et al. 2021) and drew 
on publicly available results from Probabilistic Transcriptome Wide Association Studies 
(PTWAS) (Zhang et al. 2020). PTWAS combines eQTL data from GTEx (Aguet et al. 2017) and 
GWAS data from several studies to identify genes that are likely along the causal pathway for a 
given complex trait or disease. We used hypergeometric tests to test for enrichment of ancestry-
associated genes within each PTWAS trait-associated gene set and an FDR approach (Storey and 
Tibshirani 2003) to correct for multiple hypothesis testing. Results are reported in Table S10. 
 
Enrichment analyses of ubiquitous and context-dependent eQTL and eGenes 
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 We performed several enrichment analyses to understand the biology and putative 
phenotypic impacts of SNPs and genes that exhibited ubiquitous (shared across all 12 conditions) 
and context-dependent (condition-specific or shared across 2-11 conditions) eQTL. 

First, to investigate the cellular mechanisms involved in generating ubiquitous and context-
dependent eQTL, we downloaded ATAC-seq data generated for 20 LCLs from Yoruba 1000 
Genomes individuals (Banovich et al. 2018). These data were preprocessed and provided as count 
matrices noting the number of reads mapped to a given region (n=2,533,845 windows) for a given 
individual. To identify strong and repeatable regions of open chromatin, we normalized the count 
matrix using the function voom in the R package limma (Law et al. 2014); we then retained regions 
for which the average normalized read counts were in the upper quartile of the entire dataset, and 
lifted over the region coordinates from hg19 to hg38 using the UCSC liftOver tool (Karolchik et 
al. 2014). Finally, we used BEDTools (Quinlan and Hall 2010) to calculate the proportion of 
ubiquitous and context-dependent eQTL that overlapped with LCL ATAC-seq peaks, and we 
compared these proportions to background expectations derived from counting the proportion of 
all tested SNPs that overlapped with LCL ATAC-seq peaks. We performed these analyses using 
hypergeometric tests. 

Second, we asked whether ubiquitous or context-dependent eQTL were enriched in 
particular chromatin states as annotated by ENCODE for GM12878 LCLs (The ENCODE Project 
Consortium 2012). To do so, we downloaded publicly available ChromHMM annotations for this 
cell type from: 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/. We then 
used Fisher’s exact tests to evaluate whether each group of eQTL (ubiquitous or context-
dependent) was enriched in a given chromatin state relative to all SNPs tested as putative eQTL. 

Third, we asked whether ubiquitous or context-dependent eQTL genes were enriched 
within the set of eGenes identified in unstimulated LCLs by GTEx (Aguet et al. 2017) (i.e., genes 
with at least 1 eQTL identified at a 10% FDR). To do so, we used hypergeometric tests to compare 
our list of ubiquitous or context-dependent eGenes to GTEx eGenes, after first filtering for 
expressed genes that were common to both datasets. We also used hypergeometric tests to ask 
whether context-dependent eGenes that were not identified as eGenes in GTEx, but were identified 
as eGenes in our study, were enriched for genes that were also differentially expressed in our study 
(suggesting that cell perturbations “reveal” new eQTL). For this analysis, we used a combined list 
of all genes that were differentially expressed in any condition (FDR<10% from the limma output).   

Third, we asked whether ubiquitous or context-dependent eGenes were enriched within 
sets of genes associated with 114 complex traits and diseases via PTWAS (Zhang et al. 2020). 
Here, we performed separate hypergeometric tests for each complex trait and each eGene list, and 
corrected for multiple hypothesis testing with a Storey-Tibshirani FDR approach (Storey and 
Tibshirani 2003).  

Fourth, we downloaded the list of genes that are considered to be loss of function, mutation-
intolerant genes, as curated by ExAC (Lek et al. 2016). We then used Fisher’s exact tests and asked 
whether ubiquitous or context-dependent eQTL genes were enriched within the total set of 
mutation-intolerant genes. 

Fifth, we downloaded the GWAS catalog (Hindorff et al. 2009) and filtered for SNPs with 
p<10-8. We then used Fisher’s exact tests to ask whether ubiquitous or context-dependent eQTL 
loci were enriched within the GWAS catalog. 
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SUPPLEMENTARY FIGURES  
 
Figure S1. Gene set enrichment analyses reveal changes in expected gene categories. Results 
from gene set enrichment analyses testing for overrepresentation of particular Gene Ontology 
categories among differentially expressed genes in response to A) Tunicamycin, B) IFNG, C) 
Gardiquimod, and D) B cell activating factor. We focus on these 4 environmental treatments as 
quality control, because we have relatively strong expectations for which biological pathways 
they should affect. In all cases, only the top 15 most significant categories are shown. 
Enrichment maps were created with the emapplot function in the R package enrichplot.  
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Figure S2. Sharing of environmental and ancestry effects on gene expression levels. Plots 
show the degree of correlation between the mashR (Urbut et al. 2019) posterior mean estimates 
for (A) differentially expressed genes in response to a given environmental treatment and (B) 
differentially expressed genes as a function of ancestry (African versus European) in a a given 
cellular environment. 
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Figure S3. Phenotypic differentiation in gene expression (PST) versus genetic differentiation 
(FST) for African versus European samples. Plots show the distribution of PST values for: 1) 
AA genes identified in a given cellular environment (blue) and 2) a same-sized set of randomly 
selected genes (grey). The mean genome-wide FST value comparing genetic divergence between 
African and European samples is noted on the x-axis with an arrow. We find that all AA genes 
exhibit PST > FST in all cellular environments, indicative of diversifying selection (Lamy et al. 
2012; Leinonen et al. 2013). 
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Figure S4. Enrichment of context-dependent and ubiquitous eQTL in particular chromatin 
states. X-axis shows the odds ratio from a Fisher’s exact test asking whether ubiquitous or 
context-dependent eQTL were enriched in particular chromatin states relative to all SNPs tested 
as putative eQTL. Error bars represent 95% confidence intervals and chromatin state names on 
the y-axis are those defined by ENCODE (The ENCODE Project Consortium 2012).  
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Figure S5. Read mapping does not systematically differ as a function of ancestry. Plot 
shows the proportion of reads that uniquely map (relative to the total number of reads generated) 
for all samples within one of our sequencing batches (n=1344 samples). Data are stratified by 
population and abbreviations were assigned by the 1000 Genomes Project as follows: 
GBR=British from England and Scotland; ESN=Esan in Nigeria; FIN=Finnish in Finland; 
GWD=Gambian in Western Division, Mandinka; IBS=Iberian populations in Spain; 
LWK=Luhya in Webuye, Kenya; MSL=Mende in Sierra Leone; TSI=Toscani in Italy; 
YRI=Yoruba in Ibadan, Nigeria; CEU=Utah residents with Northern and Western European 
ancestry from the CEPH collection. Colors indicate populations of European versus African 
ancestry. Using the CEU population as the reference, we found that only GWD had a 
significantly lower mapping rate (linear model, beta=-1.96, p=0.0073). 
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Figure S6. Principal components analyses reveal treatment and ancestry effects. We 
performed principal components analysis on the full, filtrered gene expression dataset (after 
surrogate variables were regressed out to remove technical effects). Top panels show the p-value 
from an analysis of variance testing for (A) treatment or (B) ancestry (African (AFR) versus 
European (EUR)) effects on the top 20 principal components (PCs). The dashed red line 
represents a nominal p-value of 0.05. Relationship between (C) treatment or (D) ancestry and 
principal component loadings for the PCs that were more strongly correlated with a given 
predictor variable.   
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Figure S7. Overview of main analysis pipeline for identifying treatment (green), ancestry 
(red), and genetic (blue) effects on gene expression. Using this workflow, we assigned 
treatment, ancestry, and genetic effects to the following categories: 1) “ubiquitous”, where a 
significant effect was shared across all treatments or environments; 2) “context-dependent”, 
where a significant effect was not shared across all treatments or environments, and 3) a subset 
of context-dependent termed “condition-specific”, where the effect was specific to one treatment 
or environment. 
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Figure S8. Sharing of treatment and ancestry effects after down sampling. To understand 
the impact of variable sample sizes across environments on our conclusions, we repeated the (A) 
treatment and (B) ancestry analyses described in the main text and overviewed in Figure S7 after 
randomly down sampling our data to n=120 per environment. We performed this subsampling 
five times and plotted the number of genes with shared treatment or ancestry effects in each 
analysis. Results are qualitatively similar to what is reported in the main text: most genes (82.4 ± 
 4.7%) have shared responses to only a handful of treatments (≤4); in contrast, almost all genes 
(97.4% ± 2.26%) have consistent ancestry effect across ≥8 environments.  
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Figure S9. Log fold expression changes in response to Dexamethasone are similar in this 
study relative to previous work. Scatterplot was created with the R function “smoothScatter” 
using default parameters, and shows the correlation between the estimated log-fold changes 
estimated in previous work (Moyerbrailean et al. 2016) relative to this study. All genes that 
passed filters in both datasets are shown (n=10,032 genes). 
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Figure S10. Differentially expressed (DE) genes shared between environments. (A) In Figure 
1C, we present a version of panel A that shows that many genes are environment specific, few 
genes have similar effect sizes in 2 environments, and many genes have effect sizes that are 
similar across 3 or more environments. This result is driven by a large number of DEX-specific 
genes. Here we show the same distribution as plotted in Figure 1C, but with DEX excluded from 
the dataset. (B) For each environment, the number of genes included in the N=3 bar in Figure 1C 
is plotted. In combination with Figure 1D, this result emphasizes that many genes in our dataset 
have similar DE effect sizes shared across the group of 3 environmental contaminants (ACRYL, 
BPA, PFOA), or shared across some subset of a group of hormonal and immune treatments 
(GARD, IFNG, BAFF, IGF1). 
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