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1. Existing disease module detection method used for comparison

Numerous computational methods have been developed to identify disease modules (de Weerd et
al. 2020; Ulitsky et al. 2010; Bersanelli et al. 2016) by projecting the molecular profiles into the
network and assigning scores/weights to nodes/edges. Those methods can be briefly classified into
three categories: (1) Permutation-based methods (e.g., Hierarchical HotNet (Reyna et al. 2018)
and DOMINO (Levi et al. 2021)), which involve a network randomization process to correct for
typical PPI network biases. (2) Seed-genes-based methods (e.g., DIAMOnD (Ghiassian et al.
2015)), which “grow” the disease module from the seed genes in a local agglomerative process.
(3) Heuristic-based methods, e.g., ModuleDiscoverer (Vlaic et al. 2018), ROBUST (Bernett et al.
2022), attempt to find optimal subgraphs within the molecular interaction network. We compared
our RFIM method with the following five existing methods.

1.1 DIAMOnD.

DIseAse Module Detection (DIAMOnD) algorithm (Ghiassian et al. 2015) starts from a set of seed
genes and prioritizes the other proteins of the interactome for their putative disease relevance.
Therefore, the identified disease module might significantly rely on the initial seed genes. In this
work, we used the implementation of DIAMOnD incorporated in R (Team 2013) package
MODifieR (de Weerd et al. 2020) which can simultaneously use the PPI network and gene-wise
p-values. The number of genes in the disease module in DIAMOnD set to be 5% of the total genes,
just the same as the RFIM. We used the default values for other parameters: seed weight (10); The
p-value cutoff for differentially expressed genes is 0.05 and these significantly expressed genes
were selected as seed genes and the seed genes were excluded from the disease module in
MODifieR (de Weerd et al. 2020).

1.2 ModuleDiscoverer.

ModuleDiscoverer (Vlaic et al. 2018) uses a randomization heuristic-based approximation of the
community structure based on maximal clique enumeration problem. ModuleDiscoverer first
approximates the underlying community structure by iterative enumeration of gene cliques from
random seed genes. Then, the union of all significantly enriched cliques are ensembled into a large
module (Vlaic et al. 2018). Number of permutations is set to be 1,000. Number of times the
algorithm is repeated is set to be 3.

1.3 DOMINO.

DIMINO (Levi et al. 2021) (Discovery of active Modules In Networks using Omics) finds disjoint
connected subnetworks that the active genes are over-represented based on a permutation-based
method that empirically evaluate GO terms. The main steps of DOMINO are: (1) Partition the
network into disjoint and highly connected slices. (2) Detect relevant slices including over-
represented active genes. (3) For each slice, refine it to sub-slice and repartition slice into putative
modules. (4) Final modules are those with over-represented by active genes. The active genes were
selected as genes with p-value lower than 10™%.



1.4 ROBUST.

ROBUST (Bernett et al. 2022) is a disease module mining method via enumeration of diverse
prize-collecting Steiner trees. In naive approach, disease module is identified by running mining
method many times on shuffled input and return the subgraph induced by nodes contained in many
of the return modules. Robust overcome the runtime limitation of naive approach by enumerating
pairwise diverse rather than merely pairwise non-identical disease modules (Bernett et al. 2022).
We used the default parameters for ROBUST: initial fraction 0.25; reduction factor 0.9; number
of Steiner trees to be computed 30 and threshold 0.1.

1.5 Hierarchical HotNet.

Hierarchical HotNet (Reyna et al. 2018) is an algorithm that finds a hierarchy of altered
subnetworks and identify statistically significant subnetworks in the hierarchy. Hierarchical
HotNet (1) combines network topology and node scores, (2) defines a similarity matrix from
network using a random walk, (3) construct a hierarchy of clusters consisting of strongly connected
components and (4) assesses the statistical significance of clusters in the hierarchy. As Hierarchical
HotNet requires much longer computation time, we reduced the number of permutations into 20.

2. Existing optimal subgraphs identification methods.

This type of optimization procedure, i.e., finding optimal subgraphs within the molecular
interaction network, turns out to be computationally intractable in general due to their NP-hard
nature. For example, MWCS and PCST are two classical formalisms of this optimization
procedure.

2.1 Maximum-Weight Connected Subgraph (MWCS).
In cases where we have no prior-knowledge of the edge weights that capture the confidence level

of the protein-protein interactions, we focus on the node weights (i.e., the gene-wise p-values).
The optimization problem is referred to as the MWCS problem, where given a graph G (V, E') with
node weights z;, we try to find the connected subgraph with maximum weight:
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Here z; = ®~1(1 — p;), p;is the p-value of node (gene) i obtained from a genome-wide
association study (GWAS) and ®~* denotes the inverse normal cumulated distribution function
(CDF) that converts the p-values to Z-scores (node weights). Z, is the aggregate score of subgraph
A with size k = |A|, and S, is the normalized score of subgraph A, calculated by comparing Z, to
the distribution of aggregate scores for node sets of size k randomly chosen from the graph. Two
heuristic algorithms have been developed to solve the MWCS problem approximately: (i) the
simulated annealing algorithm (Van Laarhoven and Aarts 1987) and (ii) the greedy search
algorithm (Nacu et al. 2007). The exact solution of the MWCS problem can only be obtained by
solving the corresponding integer linear programming (ILP) problem, which is NP-hard in general.



Dittrich et al. introduced a scalable scoring function with false discovery rate (FDR) as a
meaningful adjustment parameter (Dittrich et al. 2008). The additivity of this logarithmic score
enables them to exactly solve the MWCS problem using an ILP approach (Dittrich et al. 2008; El-
Kebir and Klau 2014). A fundamental limitation of the MWCS formalism is that edge weights are
completely ignored, which might cause serious problems in the presence of many false positive
interactions. Moreover, the MWCS formalism could be confounded by nodes with high degrees,
such as TP53 and UBC, which interact with hundreds of other proteins in the cellular molecular
interactome and hence may make them more likely to be selected in the optimal subgraphs.

2.2 Prize-Collecting Steiner Tree (PCST).
Molecular interaction data (especially PPIs) typically contain large numbers of false positives that
can diminish the predictive power of integrative approaches. To optimally exploit the large amount
of human interaction data that have been generated in the past decade, the detection of optimal
subgraphs of the functional network has been formalized as a PCST problem (Bailly-Bechet et al.
2011): Given a graph G(V, E) with positive node weights (also called node prizes) b; and positive
edge weights (also called edge costs) c,, find the connected subgraph A4 that maximizes the
following objective function:

max Sas With Sy = A Yiev(ay bi — Yeer(a) Ce (2]
Here, the edge costs ¢, ’s are chosen such that edges with high confidence interactions (e.g., protein
interactions verified in small-scale experiments or found in many large-scale datasets) have lower
values with respect to low confidence ones (Bailly-Bechet et al. 2011; Biazzo et al. 2012). The
node prizes are computed as b; = —logp; with p; the p-value of node (gene) i. (Note that b; is, by
definition, positive.) The control parameter A regulates the trade-off between the edge costs and
node prizes, and its value indirectly controls the size of the optimal subgraph A. In spite of its
apparent simplicity, the PCST problem is computationally intractable (NP-hard) (Bailly-Bechet et
al. 2011; Biazzo et al. 2012). A fundamental limitation of the PCST formalism is that there is no
clear theoretical criterion to choose the control parameter A. In practice, one has to solve the PCST
problem for a wide range of 4 values and then use some heuristics to select the best A value (Bailly-
Bechet et al. 2011; Gitter et al. 2014; Balbin et al. 2013). Moreover, by definition, the output of
the PCST formalism is always a tree, i.e., an acyclic connected subgraph. Recently, the PCST
problem has been extended to the prize-collecting Steiner forest (PCSF) problem by introducing
another control parameter, where the optimal subgraph is a set of disjoint tree graphs (Gitter et al.
2014). However, the disease module is not necessarily a tree or a forest graph.
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Supplemental Fig S1: Enrichment analysis for genes in disease module detected from
integrating the GWAS with two interactomes for each phenotype and method. We obtained
the enriched pathways for disease genes using the ReactomePA package (Yu and He 2016) whose
p-values are lower than 0.05 cutoff adjust by False Discovery Rate (FDR). Then, we extracted the
disease-associated genes of each phenotype using the DisGeNET (Pifiero et al. 2016) database and
calculated the precision defined as fraction of enriched pathways with at least two (A) or four (B)
disease-associated genes over all enriched pathways.
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Supplemental Fig S2: KEGG enrichment analysis for genes in disease module detected from
integrating the GWAS with two interactomes for each phenotype and method. We first
extracted the enriched pathways of genes in disease module with p-value cutoff 0.05. Then, we
computed the average p-values of pathways related to the phenotype in KEGG database. KEGG
pathways: asthma: hsa05310; breast cancer: hsa05224; lung cancer: hsa05222, hsa05223;
colorectal cancer: hsa05210; gastric cancer: hsa05226; prostate cancer: hsa05215; CVD: hsa05410,
hsa05412, hsa05414, hsa05416; diabetes: hsa04940 and hsa04930. Note that there are no KEGG
pathways associated with COPD and ovarian cancer; and there are no significant KEGG pathways
(with p<0.05, based on GSEA) associated with breast cancer and gastric cancer. Hence, those four
diseases were not considered here.
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Supplemental Fig S3: Meaningfulness test of disease module identified by RFIM. Two
meaningfulness tests were performed: (A1-A2) KEGG gene set enrichment analysis (GSEA). We
compared the p-value of gene set in the disease module identified from the original PPI network
with that identified from 10 randomized PPI networks generated by each of the following five
random network generators: degree preserving (RDPN), expected degree preserving (rewired),
topology preserving (shuffled), scale-free (scale free) and uniform (uniform). (B1-B2) Overlap
with DisGeNET disease gene. We compared the overlap genes with DisGeNET genes in the
original PPI network with that in 10 randomized PPI networks generated by each of the above five
random network generators. Then we showed the p-values using one-sided one-sample t-test. (A):
STRING and (B) iRefIndex. Node size represents the p-value. KEGG pathways: asthma: hsa05310;
breast cancer: hsa05224; lung cancer: hsa05222, hsa05223; colorectal cancer: hsa05210; gastric
cancer: hsa05226; prostate cancer: hsa05215; CVD: hsa05410, hsa05412, hsa05414, hsa05416;
diabetes: hsa04940 and hsa04930. Note that there are no KEGG pathways associated with COPD
and ovarian cancer; and there are no significant KEGG pathways (with p<0.05, based on GSEA)
associated with breast cancer and gastric cancer. Hence, those four diseases were not considered
here.



Supplemental Fig S4: Subnetworks of genes in the disease module and enriched functional
terms using STRING interactome. (A1-A10): Subnetwork of genes in disease modules of
asthma, breast cancer, colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer,
ovarian cancer and prostate cancer. Genes with p-values lower (higher) than 0.001 are colored with
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red (blue). (B1-B10): Enriched functional terms of genes in disease modules of asthma, breast
cancer, COPD, CVD, diabetes and lung cancer using gprofier2 (Kolberg et al. 2020, 2). (C1-C10):
Top-10 enriched KEGG pathways of genes in the disease modules of asthma, breast cancer,

colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer, ovarian cancer and prostate
cancer.
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Supplemental Fig S5: Subnetworks of genes in the disease module and enriched functional
terms using iRefIndex interactome. (A1-A10): Subnetwork of genes in disease modules of
asthma, breast cancer, colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer,
ovarian cancer and prostate cancer. Genes with p-values lower (higher) than 0.001 are colored with
red (blue). (B1-B10): Enriched functional terms of genes in disease modules of asthma, breast
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cancer, COPD, CVD, diabetes and lung cancer using gprofier2 (Kolberg et al. 2020, 2). (C1-C10)

Top-10 enriched KEGG pathways of genes in the disease modules of asthma, breast cancer,
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