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1. Existing disease module detection method used for comparison 

Numerous computational methods have been developed to identify disease modules (de Weerd et 
al. 2020; Ulitsky et al. 2010; Bersanelli et al. 2016) by projecting the molecular profiles into the 
network and assigning scores/weights to nodes/edges. Those methods can be briefly classified into 
three categories: (1) Permutation-based methods (e.g., Hierarchical HotNet (Reyna et al. 2018) 
and DOMINO (Levi et al. 2021)), which involve a network randomization process to correct for 
typical PPI network biases. (2) Seed-genes-based methods (e.g., DIAMOnD (Ghiassian et al. 
2015)), which “grow” the disease module from the seed genes in a local agglomerative process. 
(3) Heuristic-based methods, e.g., ModuleDiscoverer (Vlaic et al. 2018), ROBUST (Bernett et al. 
2022), attempt to find optimal subgraphs within the molecular interaction network. We compared 
our RFIM method with the following five existing methods. 
1.1 DIAMOnD.  
DIseAse Module Detection (DIAMOnD) algorithm (Ghiassian et al. 2015) starts from a set of seed 
genes and prioritizes the other proteins of the interactome for their putative disease relevance. 
Therefore, the identified disease module might significantly rely on the initial seed genes. In this 
work, we used the implementation of DIAMOnD incorporated in R (Team 2013) package 
MODifieR (de Weerd et al. 2020) which can simultaneously use the PPI network and gene-wise 
p-values. The number of genes in the disease module in DIAMOnD set to be 5% of the total genes, 
just the same as the RFIM. We used the default values for other parameters: seed weight (10);  The 
p-value cutoff for differentially expressed genes is 0.05 and these significantly expressed genes 
were selected as seed genes and the seed genes were excluded from the disease module in 
MODifieR (de Weerd et al. 2020). 
 
1.2 ModuleDiscoverer.  
ModuleDiscoverer (Vlaic et al. 2018) uses a randomization heuristic-based approximation of the 
community structure based on maximal clique enumeration problem. ModuleDiscoverer first 
approximates the underlying community structure by iterative enumeration of gene cliques from 
random seed genes. Then, the union of all significantly enriched cliques are ensembled into a large 
module (Vlaic et al. 2018). Number of permutations is set to be 1,000. Number of times the 
algorithm is repeated is set to be 3. 
 
1.3 DOMINO.  
DIMINO (Levi et al. 2021) (Discovery of active Modules In Networks using Omics) finds disjoint 
connected subnetworks that the active genes are over-represented based on a permutation-based 
method that empirically evaluate GO terms. The main steps of DOMINO are: (1) Partition the 
network into disjoint and highly connected slices. (2) Detect relevant slices including over-
represented active genes. (3) For each slice, refine it to sub-slice and repartition slice into putative 
modules. (4) Final modules are those with over-represented by active genes. The active genes were 
selected as genes with p-value lower than 10!". 
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1.4 ROBUST.  
ROBUST (Bernett et al. 2022) is a disease module mining method via enumeration of diverse 
prize-collecting Steiner trees. In naïve approach, disease module is identified by running mining 
method many times on shuffled input and return the subgraph induced by nodes contained in many 
of the return modules. Robust overcome the runtime limitation of naïve approach by enumerating 
pairwise diverse rather than merely pairwise non-identical disease modules (Bernett et al. 2022). 
We used the default parameters for ROBUST: initial fraction 0.25; reduction factor 0.9; number 
of Steiner trees to be computed 30 and threshold 0.1. 
 
1.5 Hierarchical HotNet.  
Hierarchical HotNet (Reyna et al. 2018) is an algorithm that finds a hierarchy of altered 
subnetworks and identify statistically significant subnetworks in the hierarchy. Hierarchical 
HotNet (1) combines network topology and node scores, (2) defines a similarity matrix from 
network using a random walk, (3) construct a hierarchy of clusters consisting of strongly connected 
components and (4) assesses the statistical significance of clusters in the hierarchy. As Hierarchical 
HotNet requires much longer computation time, we reduced the number of permutations into 20. 

2. Existing optimal subgraphs identification methods. 

This type of optimization procedure, i.e., finding optimal subgraphs within the molecular 
interaction network, turns out to be computationally intractable in general due to their NP-hard 
nature. For example, MWCS and PCST are two classical formalisms of this optimization 
procedure.  
 
2.1 Maximum-Weight Connected Subgraph (MWCS).  
In cases where we have no prior-knowledge of the edge weights that capture the confidence level 
of the protein-protein interactions, we focus on the node weights (i.e., the gene-wise p-values). 
The optimization problem is referred to as the MWCS problem, where given a graph 𝐺(𝑉, 𝐸) with 
node weights zi, we try to find the connected subgraph with maximum weight:  

max
#⊆%

𝑆#, with 𝑆# ≡
&!!'"
("

 and 𝑍# ≡
)
√+
∑ 𝑧,,∈#    [1] 

Here 𝑧, ≡ Φ!)(1 − 𝑝,) , 𝑝, is the p-value of node (gene) 𝑖  obtained from a genome-wide 
association study (GWAS) and Φ!) denotes the inverse normal cumulated distribution function 
(CDF) that converts the p-values to Z-scores (node weights). 𝑍# is the aggregate score of subgraph 
𝐴 with size 𝑘 = |𝐴|, and 𝑆# is the normalized score of subgraph 𝐴, calculated by comparing 𝑍# to 
the distribution of aggregate scores for node sets of size 𝑘  randomly chosen from the graph. Two 
heuristic algorithms have been developed to solve the MWCS problem approximately: (i) the 
simulated annealing algorithm (Van Laarhoven and Aarts 1987)  and (ii) the greedy search 
algorithm (Nacu et al. 2007). The exact solution of the MWCS problem can only be obtained by 
solving the corresponding integer linear programming (ILP) problem, which is NP-hard in general. 



 

	 4	

Dittrich et al. introduced a scalable scoring function with false discovery rate (FDR) as a 
meaningful adjustment parameter (Dittrich et al. 2008). The additivity of this logarithmic score 
enables them to exactly solve the MWCS problem using an ILP approach (Dittrich et al. 2008; El-
Kebir and Klau 2014). A fundamental limitation of the MWCS formalism is that edge weights are 
completely ignored, which might cause serious problems in the presence of many false positive 
interactions. Moreover, the MWCS formalism could be confounded by nodes with high degrees, 
such as TP53 and UBC, which interact with hundreds of other proteins in the cellular molecular 
interactome and hence may make them more likely to be selected in the optimal subgraphs. 
 
2.2 Prize-Collecting Steiner Tree (PCST).  
Molecular interaction data (especially PPIs) typically contain large numbers of false positives that 
can diminish the predictive power of integrative approaches. To optimally exploit the large amount 
of human interaction data that have been generated in the past decade, the detection of optimal 
subgraphs of the functional network has been formalized as a PCST problem (Bailly-Bechet et al. 
2011): Given a graph G(V, E) with positive node weights (also called node prizes) 𝑏, and positive 
edge weights (also called edge costs) 𝑐. , find the connected subgraph A that maximizes the 
following objective function: 

max
#⊆%

𝑆#, with 𝑆# ≡ 𝜆∑ 𝑏,,∈/(#) − ∑ 𝑐..∈2(#)      [2] 

Here, the edge costs 𝑐.’s are chosen such that edges with high confidence interactions (e.g., protein 
interactions verified in small-scale experiments or found in many large-scale datasets) have lower 
values with respect to low confidence ones (Bailly-Bechet et al. 2011; Biazzo et al. 2012). The 
node prizes are computed as 𝑏, = −log𝑝, with 𝑝, the p-value of node (gene) i. (Note that 𝑏, is, by 
definition, positive.) The control parameter 𝜆 regulates the trade-off between the edge costs and 
node prizes, and its value indirectly controls the size of the optimal subgraph 𝐴. In spite of its 
apparent simplicity, the PCST problem is computationally intractable (NP-hard) (Bailly-Bechet et 
al. 2011; Biazzo et al. 2012). A fundamental limitation of the PCST formalism is that there is no 
clear theoretical criterion to choose the control parameter 𝜆. In practice, one has to solve the PCST 
problem for a wide range of 𝜆 values and then use some heuristics to select the best 𝜆 value (Bailly-
Bechet et al. 2011; Gitter et al. 2014; Balbin et al. 2013). Moreover, by definition, the output of 
the PCST formalism is always a tree, i.e., an acyclic connected subgraph. Recently, the PCST 
problem has been extended to the prize-collecting Steiner forest (PCSF) problem by introducing 
another control parameter, where the optimal subgraph is a set of disjoint tree graphs (Gitter et al. 
2014). However, the disease module is not necessarily a tree or a forest graph. 
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Supplemental Figures 

 

 
Supplemental Fig S1: Enrichment analysis for genes in disease module detected from 
integrating the GWAS with two interactomes for each phenotype and method. We obtained 
the enriched pathways for disease genes using the ReactomePA package (Yu and He 2016) whose 
p-values are lower than 0.05 cutoff adjust by False Discovery Rate (FDR). Then, we extracted the 
disease-associated genes of each phenotype using the DisGeNET (Piñero et al. 2016) database and 
calculated the precision defined as fraction of enriched pathways with at least two (A) or four (B) 
disease-associated genes over all enriched pathways.  
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Supplemental Fig S2: KEGG enrichment analysis for genes in disease module detected from 
integrating the GWAS with two interactomes for each phenotype and method. We first 
extracted the enriched pathways of genes in disease module with p-value cutoff 0.05. Then, we 
computed the average p-values of pathways related to the phenotype in KEGG database. KEGG 
pathways: asthma: hsa05310; breast cancer: hsa05224; lung cancer: hsa05222, hsa05223; 
colorectal cancer: hsa05210; gastric cancer: hsa05226; prostate cancer: hsa05215; CVD: hsa05410, 
hsa05412, hsa05414, hsa05416; diabetes: hsa04940 and hsa04930. Note that there are no KEGG 
pathways associated with COPD and ovarian cancer; and there are no significant KEGG pathways 
(with p<0.05, based on GSEA) associated with breast cancer and gastric cancer. Hence, those four 
diseases were not considered here.   
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Supplemental Fig S3: Meaningfulness test of disease module identified by RFIM. Two 
meaningfulness tests were performed: (A1-A2) KEGG gene set enrichment analysis (GSEA). We 
compared the p-value of gene set in the disease module identified from the original PPI network 
with that identified from 10 randomized PPI networks generated by each of the following five 
random network generators: degree preserving (RDPN), expected degree preserving (rewired), 
topology preserving (shuffled), scale-free (scale_free) and uniform (uniform). (B1-B2) Overlap 
with DisGeNET disease gene. We compared the overlap genes with DisGeNET genes in the 
original PPI network with that in 10 randomized PPI networks generated by each of the above five 
random network generators. Then we showed the p-values using one-sided one-sample t-test. (A): 
STRING and (B) iRefIndex. Node size represents the p-value. KEGG pathways: asthma: hsa05310; 
breast cancer: hsa05224; lung cancer: hsa05222, hsa05223; colorectal cancer: hsa05210; gastric 
cancer: hsa05226; prostate cancer: hsa05215; CVD: hsa05410, hsa05412, hsa05414, hsa05416; 
diabetes: hsa04940 and hsa04930. Note that there are no KEGG pathways associated with COPD 
and ovarian cancer; and there are no significant KEGG pathways (with p<0.05, based on GSEA) 
associated with breast cancer and gastric cancer. Hence, those four diseases were not considered 
here.   
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Supplemental Fig S4: Subnetworks of genes in the disease module and enriched functional 
terms using STRING interactome. (A1-A10): Subnetwork of genes in disease modules of 
asthma, breast cancer, colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer, 
ovarian cancer and prostate cancer. Genes with p-values lower (higher) than 0.001 are colored with 
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red (blue). (B1-B10): Enriched functional terms of genes in disease modules of asthma, breast 
cancer, COPD, CVD, diabetes and lung cancer using gprofier2 (Kolberg et al. 2020, 2). (C1-C10): 
Top-10 enriched KEGG pathways of genes in the disease modules of asthma, breast cancer, 
colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer, ovarian cancer and prostate 
cancer. 
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Supplemental Fig S5: Subnetworks of genes in the disease module and enriched functional 
terms using iRefIndex interactome. (A1-A10): Subnetwork of genes in disease modules of 
asthma, breast cancer, colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer, 
ovarian cancer and prostate cancer. Genes with p-values lower (higher) than 0.001 are colored with 
red (blue). (B1-B10): Enriched functional terms of genes in disease modules of asthma, breast 
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cancer, COPD, CVD, diabetes and lung cancer using gprofier2 (Kolberg et al. 2020, 2). (C1-C10): 
Top-10 enriched KEGG pathways of genes in the disease modules of asthma, breast cancer, 
colorectal cancer, COPD, CVD, diabetes, gastric cancer, lung cancer, ovarian cancer and prostate 
cancer.  
 

 
Supplemental Fig S6: Overlap between disease modules identified by different methods. (A): 
STRING. (B): iRefIndex. 
 
 
 
 
 


