A Safety of unitigs: full exposition

Proof of Theorem 1 and Corollary 1

In this subsection, we will prove Theorem 1 and Corollary 1. In the following, we will always have
S be a set of sequenced segments and w = (g, ...,2y) be a unitig in Gpasic(sp*(S)). We start
with a lemma that, roughly speaking, says that if a walk corresponding to some S € S touches w,
it must contain all of w except that it may begin or end somewhere along the way.

Lemma A.1. Let S be a set of sequenced segments and let w = (zg,...,Tm) be a unitig in
Goasic(sp"(S)). Let S € S and let g = (90, ---,9)s)) be the walk corresponding to S. Suppose
there exists 1 and j such that x; = g;. Then,

(1) If sufi(S) & {xi,...,xm-1}, then gj15 = xis for all 6 € [0,m — i].
(ii) If prex(S) ¢ {x1,...,2:}, then gj_s = xi_s for all 6 € [0,1].

Proof. We will only prove (i), since the argument for (ii) is symmetric. We use induction on 6.
For § = 0, we have that the implication of (i) reduces to g; = x;, which is vacuously true because
it is also a condition of the theorem. Now we assume that (7) holds for 6 — 1, i.e. gj15-1 = Tits-1-
Since xjt5-1 # sufr(G), gj+s—1 is not the last vertex of g. Because x;45_1 is a non-last vertex of a
unitig, it has only one out-neighbor, which is x;;s. Therefore, g; s = x;;s, which shows that that
(7) holds for 0. O

Using this lemma, we can now prove some general properties of unsafe unitigs.

Lemma A.2. Let S be a set of sequenced segments and let w = (zg,...,%m) be a unitig in
Grasic(sp"(S)). If w is unsafe then

(i) m>1,
(ii) there exists S € S such that prei(S) € {z1,...,Tm},
(i1i) there exists S € S such that sufi(S) € {zo,...,Tm-1},

(iv) for all S € S and their corresponding walks g, either g and w do not share a vertez, or
prex(S) € {x1,...,zn}, or sufp(S) € {zo,...,Tm-1}, and

(v) for all S € S and all i, occg(x;) < 2.

Proof. For (i), consider a unitig that has just one vertex z. Since each k-mer in Gpagsic(sp*(S)),
there must be at least one S € § whose walk contains x. Hence, the unitig that is composed of
only z is safe. For (i7), assume for sake of contradiction that for all S € S, preg(S) ¢ {z1,...,2m}.
Since every vertex of the graph must be contained in at least one string, let S’ € S be a string
that contains x,,. Applying Lemma A.1(ii) with ¢ = m, we get that the walk corresponding to
S’ must contain w, contradicting that w is unsafe. The case of (iii) is symmetric to (i7), using xo
instead of z,, and applying Lemma A.1(7) with i = 0. For (iv), let g = (go, - - -, g5)) and assume for
sake of contradiction that there exists a S € S such that g shares a vertex with w and preg(S) ¢
{z1,...,2n} and sufi(S) ¢ {zo,...,2m—1}. Let z; and g; be the vertices of w and g, respectively,
that are equivalent. We can apply Lemma A.1 to get that (g;,...,9j4+m—i) = (Zi,...,2m) and
(9j—is---+95) = (xo,...,2;). This means that w is a subwalk of g, which is a contradiction. For
(v), let S € S and let g = (go,---,9s) be its corresponding walk. If g and w do not share any
vertices, then occg(x;) = 0 < 2 for all ¢ and we are done. Otherwise, we can apply (iv) to get that
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either (1) preg(S) € {z1,...,zm} or (2) sufy(S) € {zo,...,2m-1}. Let us consider (1) — we will
omit the argument for (2) since it is symmetrical. Then gy = x; for some 1 < ¢ < m. Note that go
is the first occurrence of z; in g. Assume for the sake of contradiction that occg(z;) > 2. To get
the second occurrence of x;, g must first visit xg. After this second visit to x;, g must continue all
the way until x,, if it is to visit x; for a third time. Therefore, at the second visit to z;, g must in
fact visit (zo, ..., %), which contradicts that w is unsafe. O

The case when a sequenced segment contains its first and/or last k-mer more than once puts
additional constraints on how it can contain a unitig.

Lemma A.3. Let S be a set of sequenced segments and let w = (xg,...,Tm) be a unitig in
Goasic(s9"(S)). Let S € S such that at least one of the following holds:

(i) occs(prer(S)) =2 and there exists an integer i € [1,m] such that x; = preg(S), or
(it) occs(sufy(S)) =2 and there exists an integer j € [i,m — 1] such that x; = sufi(S).
Then, spell(w) is not a substring of S iff both (i) and (ii) hold.

Proof. We only prove case (i) since case (ii) is symmetrical. Let g be the walk corresponding to
S. In the first phase, g starts from z; and, since it must visit x; a second time, continues until z,.
Then at some point it enters w through zg and proceeds to visit x; for the second and last time.
We will refer to the time from the end of the first phase to the point it enters xzg as the second
phase, and the rest of the walk as the third phase. Observe that g does not contain w as a subwalk
in either the first or second phase.

Now we prove the if direction. During phase 1, g visits x; exactly once. During phase 2, g does
not visit ;. During phase 3, g proceeds from xy forward along the unitig until it hits x; for the
second time. Since x; is occurs exactly twice and is the last vertex of g, this is the end of g. Since
j < m, g does not contain w as a subwalk during the third phase.

Now we prove the only if direction. Assume w is not a subwalk of g. Therefore, during the
third phase g cannot go until x,, and must stop earlier at some x; = sufy(S), for some integer
J € [i,m —1]. This z; was visited once during phase 1 and not visited during phase 2 and now
visited a second and final time during phase 3. O

These lemmas are all the pieces we need to prove Theorem 1.

Theorem 1. Let S be a set of sequenced segments and let w = (xq,...,Tm) be a unitig in
Goasic(s"(S)). Then w is unsafe if and only if for all S € S, one of the following holds:

(i) S does not contain any k-mer of w,
(i1) occs(prex(S)) =1 and preg(S) = z; for some 1 <i <m,
(tit) occs(sufip(S)) =1 and sufy(S) = x; for some 0 <j<m—1, or

(iv) occs(preg(S)) = occs(sufi(S)) = 2 and there exists 1 <i < j < m—1 such that preg(S) = x;
and sufy(S) =

€~2

j.

Proof. First we prove the if direction. We will show that for all S € § and its corresponding walk
g, if one of the four conditions hold, then w is not a subwalk of g. If (i) holds, then w is trivially
not a subwalk of g. Now, if prex(S) = x; for some 1 < i < m and x; is visited only once by g, If
(7i) holds, then g starts with z; but never visits x; again, therefore (zo,...,x;) is not a subwalk of

16



g. Hence, w is not a subwalk of g. Similarly, if (éi7) holds, then (zj,...,x,,) is not a subwalk of g
and hence w is not a subwalk of g. If (iv) holds, then Lemma A.3 implies that w is not a subwalk
of g.

Now we prove the only if direction. We will show that for all S € S and their corresponding walk
g, if w is not a subwalk of g, then one of the four conclusions hold. By Lemma A.2.(iv), either (1) g
does not contain any k-mer from w, (2) preg(S) € {z1,...,zm}, or (3) sufr(S) € {zo,..., Tm—1}
In case of (1), g trivially does not contain w, and condition (i) is satisfied. In case of (2), let
i € [1,m] be an integer such that z; = prex(S). By Lemma A.2.(v), occg(z;) is either 1 or 2. If
occs(x;) = 1, then condition (¢4) immediately holds. If occg(x;) = 2, then Lemma A.3 implies that
there exists an integer j € [i,m — 1] that satisfies condition (iv). In case of (3), let j € [0, m — 1]
be an integer such that z; = sufi(S). Again, by Lemma A.2.(v), occs(x;) is either 1 or 2. If
occs(z;) = 1, then condition (i74) immediately holds. If occg(z;) = 2, then Lemma A.3 implies
that there exists an integer ¢ € [i,m — 1] that satisfies condition (iv). O

Corollary 1. Let X be a string and let w = (xq,...,Ty) be a unitig in Gpagic(spF(X)). Then
spell(w) is not a substring of X iff one of the following holds:

1. ocex(prex(X)) = ocex (sufp(X)) =1, prex(X) = 4, sufi(X) = zi—1 for some 1 <i<m.
2. ocex (prer(X)) = ocex (sufr(X)) =2, prep(X) = x4, sufi(X) = x; for some 0 <i < j < m.
Moreover, this can hold for at most one unitig in Gpasic(sp®(X)).

Proof. We can apply Theorem 1 to set S = {X}. Since X must contain all k-mers of w, w is
unsafe if and only if condition (ii), (iii) or (iv) from Theorem 1 holds for S = X. First, assume
Condition (ii) is true for X. Then by Theorem 1, w is unsafe. Consider the walk g corresponding
to X. Because g begins at x; and all vertices in Gpasic(K) must be in g at least once, (z;,...,2Tn)
is a subwalk of g. This is the one and only occurrence of z; in g. Since z; is the first vertex in g
occuring only once, ;1 cannot precede x;. Hence, z;_1 must be the end of g, i.e., sufr(S) = z;_1.
Note that, this is the one and only occurrence of x;_1 in g. Thus, Condition (iii) is also true for
X. With a symmetric argument, we can show that if Condition (iii) is satisfied, then Condition
(ii) is satisfied. Combining both gives us the first condition of the corollary. Finally, observe that
Condition (iv) is identical to Condition 2 in the corollary. The fact that these conditions can hold
for at most one unitig follows directly from the fact that there is only one vertex for pre(.S) in the
graph. O

Formal definition of the case of Figure 3

In the Results section, we quantify the number of unsafe unitigs that fall into the case of Figure 3.
To make this precise, we give a formal classification for this case. Let X be a genome and let S

be a set of its sequenced segments. We say that an unsafe walk w = (o, ..., x,,) satisfies the case
of Figure 3 if
(i) there exists 0 < ¢ < j < m such that ¢ = (z;,...,2;) is a unitig in Grasic(spF (X)),

(ii
(iii

)
)
)
iv)
)
)

spell() occurs at least twice in X,
in one of the occurrences, the k-mer preceding spell(1)) is not in S,

iv) in another of the occurrences, the k-mer following spell(¢) is not in S,

—~
—~

v) there exists S € S and an integer i’ € [, j] such that spell((z;,...,x;)) is a suffix of S, and

(vi) there exists S € S and an integer j' € [' — 1, j] such that spell((z;,...,x;)) is a suffix of S.
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Walk Spelling
Vertex-sides AAC, 0 AAC AAC>— ACT>— CTA
< S 3
Oml AAC, 1 GTT 5 9 o =

AAC > ACT> ACT, 0 ACT
L ad ACT, 1 AGT N

| AAC } } ACT } | CTA
AAC, 0, ACT, 0 | AACT
V label
ertex labels ACT, 1,AAC, 1 | AGTT | GTT } } AGT } } TAG
(A) (B) (D)

Figure S1: An example illustrating some of the bidirected graph terminology. Panel (A) shows a bidirected graph
with two vertices. Panel (B) shows a list of all possible walks in this graph and their spellings. Note that walk
(AAC,0,ACT,0) and (ACT,1, AAC,1) are reverses of each other. The endpoint sides of the walks, in both cases,
are (AAC,0) and (ACT,1). Panel C and D show an example of a doubled dBG (Gani(K)) and a bidirected dBG
(Gpia(K)) using K = {AAC, ACT,CTA}. Panel C shows Gpia(K) as well as the order of vertex-sides as they appear
in a walk w = (AAC,0, ACT,0,CTA,0,CTA,1,ACT,1,AAC, 1) = (so,. .., Ss), with spell(w) = AACTAGTT. Note
that in this case, since spell(w) is a palindrome, the reverse walk is identical: rev(w) = w. Panel D shows Gani(K).

B The relationship of Ggp(K) and Gpig(K): full exposition

In this section, we will prove Theorem 2. We start by providing additional definitions that are
necessary to understand the proofs in this section.

Let K be a set of k-mers. A unitig in a directed graph that is not a proper subwalk of another
unitig that ends at the same vertex is said to be prefiz-mazximal;, a unitig that is not a proper
subwalk of another unitig that starts with the same vertex is said to be suffiz-mazimal. Notice that
a unitig is maximal iff it is both prefix- and suffix-maximal.

Let (u, s) be a vertex-side in Gpiq(K). We define d” (u, s) to indicate the presence of an inverted
loop, i.e. d"(u,s) = 1 if there is an inverted loop incident to side (u,s) and d”(u, s) = 0 otherwise.
A unitig ¢ in Gyiq(K) is prefix-maximal if it is not a proper subwalk of another unitig that ends at
the same vertex-side as t. A unitig is suffiz-mazimal if it is not a proper subwalk of another unitig
that starts with the same vertex-side as t. Note that a unitig is maximal iff it is both prefix- and
suffix-maximal.

We will prove Theorem 2 by first building a collection of Lemmas. First, we make a simple
observation. A palindrome must have an even number of characters, otherwise there is a middle
character that would need to be equal to its own reverse complement. Hence, a palindromic walk,
in either the doubled or the bidirected graph must have an even number of nucleotides.

Lemma B.1. Let K be a set of k-mers.
1. For all palindromic walks w = (xg,...,zy) in Gay(K), k and n have the same parity.
2. For all palindromic walks t = (ug, S0, - - -, Un, Sn) 0 Gpig(K), k and n have the same property.

Proof. A palindromic string must have an even number of nucleotides. The number of nucleotides
in spell(w) and in spell(t) is k + n, Hence the parity of k and n must be the same. O

From here on out, we proceed by first proving Lemmas for the directed de Bruijn graphs (both
the regular one and the doubled one) (Appendix B.1), then proving Lemmas for the bidirected graph
(Appendix B.2), then proving Lemmas which connect the two types of graphs (Appendix B.3), and,
finally, proving Theorem 2 (Appendix B.4).
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B.1 Directed graph

First, we make the observation that unitigs cannot repeat vertices unless they are a simple cycle.
This is generally stated without proof, but the statement is actually not true when unitigs are
allowed to be periodic cycles. In our definition of unitig, we forbid this case, allowing us to prove
the observation.

Lemma B.2. For all unitigs w in a directed graph, either w is a simple cycle or it does not repeat
any vertices.

Proof. Let w = (xg,...,z,) be a unitig. Suppose that w repeats a vertex. Let 0 < j < n be the
smallest value for which there exists 0 < ¢ < j such that z; = x;. If ¢ > 0, then z; has z;_1 and
xj—1 as an in-neighbor. By the minimality of our choice of i, 2;_1 # x;_1, and hence d~ (i) > 2.
This contradicts that w is a unitig. If ¢ = 0, then let j +1 < £ < n — 1 be the largest index greater
than j such that z;, = @/ 0q (j41)- In other words, £ is the first place after x; where the unitig is
about to “fall off the cycle”. If such an ¢ does not exist, then either j = n and w is a simple cycle,
or w is a simple periodic cycle, contradicting the definition of a unitig. Otherwise, the vertex x, has
as out-neighbors both z¢y1 and ¢, 04 (j4+1)- By the choice of £, these out-neighbors are distinct
and hence d*(x;) > 2. This contradicts that w is a unitig. O

A very simple property in the doubled graph is is that the in-degree (respectively, out-degree)
of a vertex is equal to the out-degree (respectively, in-degree) of its reverse complement.

Lemma B.3. Let K be a set of k-mers and let x be a vertez in Gap(K). Then d™(z) = d~(T) and
d=(z) = d*(z).
Proof. Observe that for all vertices y in the Ggpi(K), there is an edge from x to y in Ggp(K) iff

there is an edge from 7 to T. This is true even if x = 7 and these two edges are identical. Hence
dt(x) =d () and d” (z) = d* (7). O

We defined maximal unitigs as those that are not proper sub-walks of other unitigs. We can give
an equivalent definition for directed graphs, in terms of vertex degrees. Since it is widely known,
we state it without proof.

Lemma B.4. Let G be a directed graph and let w = (zo,...,x,) be a unitig in G. Then

(i) w is prefiz-mazimal if and only if d~(xg) # 1 or there exists a vertex x’ that has an edge to
zo and d*(z') > 1.

(ii) w is suffit-mazimal if and only if d*(x,) # 1 or there exists a vertex x’ that has an edge from
xn and d~(2') > 1.

Palindromic unitigs play a special role in Theorem 2. We observe that in a palindromic unitig
of the doubled graph, the only edge from a k-mer to its reverse complement is the middle one.

Lemma B.5. Let K be a set of k-mers with odd k. Let w = (xq,...,%,) be a palindromic unitig
in Gap(K) that is not a simple cycle. Then for all 0 < i < n — 1, we have that x; = Tiz1 iff
i=(n-1)/2.

Proof. First note that by Lemma B.1, n is odd and n > 1. Let m = (n — 1)/2. Because spell(w)
is a palindrome, x; = T, —; for all 0 < ¢ < n. The only if direction of the Lemma statement follows
immediately by plugging in ¢ = m and getting x,,, = Tp_m, = Tmt1. For the if direction, assume
that x; = T3 forall 0 <i <n—1. Then x; = T;11 = Tn_i—1 = Tn—i—1- By the fact that w is not
a simple cycle and Lemma B.2, it cannot have any repeated vertices. Hence, i = n — ¢ — 1 which
only happens when ¢ = m. O
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We also observe that a maximal unitig that is not a palindrome cannot contain within it a
palindrome of length > k.

Lemma B.6. A non-palindromic mazimal unitig w in G gu(K) cannot contain a proper sub-unitig
that is palindromic.

Proof. For the sake of contradiction, let z be a proper sub-unitig of w that is a palindrome. First
suppose that there exists a k-mer y such that y precedes z in w and % follows z in w. In that case,
observe that the walk (y, z,7) is also a sub-unitig of w and also a palindrome. We can then extend
z in this way until no longer possible, i.e. there do not exist a k-mer y such that y precedes z in w
and 7 follows z in w. Let w’ be this maximally extended walk. Note that by construction, w’ is a
sub-unitig of w and it is proper because w’ is palindromic and w is not. Let the first vertex of w’
be x, and, hence, the last one is 7.

Consider the case when w starts with z. Because w # w’, there must exist an out-neighbor
u of T in w. Its mirror must also exist, i.e. an edge from w to z. Lemma B.4 states that x is
the first vertex of a maximal unitig, it must either (a) have one other in-neighbor besides u or
(b) w must have at least one other out-neighbor besides z. For case (a), Lemma B.3 implies that
d™(Z) = d~(x) > 1. For case (b), Lemma B.3 implies that d*(u) = d~(u) > 1. In either case, the
degrees of T or of u contradict the definition of being part of a unitig. The case when w ends with
T is symmetric and omitted.

Now consider the case when w does not start with z and does not end with . Let a be the
vertex preceding x in w, and let b be the vertex following Z in w. There exist a mirror edge from b to
x. Since w’ was chosen so that it cannot be extended, @ # b. Hence  has two distinct in-neighbors,
a and b. Since w contains z as a non-first vertex, this contradicts that w is a unitig. O

B.2 Bidirected graph

As is the case with directed graphs (Lemma B.4), there is a definition of maximality for bidirected
unitigs that has to do with degrees rather than sub-unitigs. We are not aware of this equivalence
being explicitly proven, so we do so here:

Lemma B.7. Let K be a set of canonical k-mers. Lett = (ug, Sg, - - - , Un, Sn) be a unitig in Gpiq(K).
Then

(i) t is prefiz-mazimal if and only if d(ug, so) # 1 or there is an edge {(uo, s0), (v', ")} such that
d(v',s") > 1, and

(i) t is suffiz-maximal if and only if d(un,1 — s,) # 1 or there is an edge {(up,1 — sy), (v, s")}
such that d(u',s") > 1.

Proof. We will only prove (i) since the proof of (iz) is symmetric. First, we prove the only if
direction. We need to consider three cases. The first case is when d(ug, sg) # 1. If d(up, sp) = 0,
then ¢ is prefix-maximal because there is no other walk of which it is a subwalk with the same
last vertex-side (uy,sy). The second case is when d(ug, sp) > 1. Consider any walk ¢’ that ends in
(tn, sp) and of which ¢ is a proper subwalk. Observe that (ug, so) would not be the first vertex-side
of t’. Therefore, since d(ug, sg) > 1, t' cannot be a unitig and ¢ must be prefix-maximal. The third
case is when (ug, sg) has degree one and (u/,s’) is its only neighbor. Again, consider any walk ¢/
that ends in (uy,, s,) and of which ¢ is a proper subwalk. Observe that (u/,1 — s’) belongs to ¢ but
is not the last vertex-side of t’. Therefore, since we assumed that d(u’, s’) > 1, ¢’ cannot be a unitig
and ¢ must be prefix-maximal.
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To prove the if direction we prove the contrapositive. In other words, we will show that if
the degree of (ug, sp) is one and its sole neighbor (u/,s’) also has degree at most 1, then ¢ is not
prefix-maximal. First, observe that ' = (u/,1 — §', ug, so, ..., un, s,) is a valid walk, since the edge
{(, ¢, (ug, s0)} exists. Then, observe that the degree of (u,s’) is exactly one because it has
degree at most one (by our assumption) and also has a neighbor (i.e. (ug,so)). Therefore, the
degree requirements for ¢’ being a unitig are fulfilled. Finally, observe that ¢ is a proper subwalk of
t" ending in the same vertex-side, (uy, s,). Therefore, ¢ is not prefix-maximal. O

In a bidirected graph, a walk and its reverse are either both unitigs or not and, if they are, are
either both are maximal or not.

Lemma B.8. Let K be a set of canonical k-mers and let w be a unitig in Gpq(K).
(i) rev(w) is a unitig in Gpiq(K).
(1i) w is prefiz-mazimal iff rev(w) is suffiz-mazimal.

(i1i) w is suffic--maximal iff rev(w) is prefiz-mazimal.

Proof. Let (ug, S0, - -, Un,Sn) = w and (uf, 84, - - ., ul, s,) = rev(w). For (i), by definition of rev,

we have that u, = u,—; and s), =1 — s,_,;. Applying the definition of unitig to w, we get that
d(uj, 1 —s;) <lforall0<i<n and d(ui,s;) < 1forall 0 <i<n.
These can be equivalently stated as

d(ul, ;.8 ;) <lforal0<i<n and d(ul,_;;1—s,_)<lforall0<i<n

n—1i) °n—1i
If we change the index variables, these can be equivalently restated as
d(u,s}) <1forall0<i<n and d(ui,1—s;) <1forall 0<i<n.

This is precisely the definition of rev(w) being a unitig.

For (i7) and (7i7), first observe that Lemma B.7 gives an alternate, equivalent, definition for
prefix- and suffix-maximal. For (i7), observe that if apply the alternate definition of suffix-maximal
to rev(w) and plug in that u], = up and s, = 1 — sy, we get precisely the alternate definition of
w being prefix-maximal. For (iii), observe that if apply the alternate definition of prefix-maximal
to rev(w) and plug in that uf, = u,, and sj =1 — s, we get precisely the alternate definition of w
being suffix-maximal. ]

While we showed that it is natural for the doubled graph to have a palindromic unitig, this is
impossible in a bidirected graph.

Lemma B.9. Let K be a set of canonical k-mers, with k odd. Then a unitig of Gpiq(K) cannot be
a palindrome.

Proof. Let t = (ug, S0,-..,Un,Sy) be a palindromic walk. By Lemma B.1, n is odd, and so
n > 1. For convenience, let m = (n — 1)/2. By definition, spell(t) = spell(t). In particu-
lar, the two “central” k-mers of spell(t) must be reverse complements of each other. Formally,
orient(lab(um,), $m) = orient(lab(um+1), Sm+1). Since the labels of vertices in a bidirected graph
are distinct, lab(uy,) # lab(up+1) and hence s, = 1 —$;,4+1. Applying the definition of a bidirected
walk to ¢, we get that {(um, 1 —sm), (Um+1, Sm+1)} is an edge. The fact that s, = 1 — s,,+1 implies
that this edge is an inverted loop incident to (up,, 1 — sy,). Thus d(um,, 1 — sy,) > 2, implying that
t does not satisfy the definition of being a unitig. O
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B.3 Connecting the directed and bidirected graphs

So far, we have proven properties of the doubled graph and of the bidirected graph separately;
in this section, we prove lemmas about the relationship between the two graphs, when & is odd.
Recall that for a k-mer x € K, we defined Fy (z) = (u, s), where (u, s) is the unique vertex-side in
Ghia(K) such that lab(u) = orient(x, s).

Lemma B.10. Let K be a set of canonical k-mers where k is odd. Fy is a bijection between
vertices of G gp(K) and vertez-sides of Gpig(K).

Proof. To show that Fy is a bijection, we will show that for all vertex-sides (u, s) in Gpiq(K), there
exists a unique k-mer x in Gqp(K) such that Fy(z) = (u,s). Consider a value of x such that
Fy(x) = (u, s). By definition, lab(u) = orient(x,s)). Since k is odd and z is not a palindrome, the
value of x satisfying this must be unique. By construction of G4p(K) and Gpq(K), k must be a ver-
tex in Gap(K). Further, if x = orient(lab(u), s), then orient(x, s) = orient(orient(lab(u), s), s) =
lab(u) and so x satisfies the condition that Fy (z) = (u, s).

O

We will use Fy, ! to denote the inverse of Fy/, which was shown in Lemma B.10 is F, Y, s) =

orient(lab(u), s). We will use x £, (u, s) to denote that a vertex z of Ggqp(K) and a vertex-side
(u, s) in Gria(K) are associated with each other by Fy .

Recall that for two Ggp(K) k-mers 21 and x2, we define the mapping Fg(x1,22) = {(u1,1 —
s1), (ug, s2)}, where (ui,s1) = Fy(z1) and (ug,s2) = Fy(x2). Though the mapping is not a
bijection, it preserves the property of being an edge in the respective graph?:

Lemma B.11. Let K be a set of canonical k-mers where k is odd. Let x1 and xo be vertices
in Gagp(K). We have that (x1,x2) is an edge in Gau(K) if and only if Fg(x1,x2) is an edge in
Gpia(K).

Proof. By the definition of bidirected edges, Fg(x1,z2) = {(u1,1 — s1), (u2, s2)} is an edge iff
suf(orient(lab(uy), s1)) = pre(orient(lab(usg), s2)). (1)

Recall that by the definition of Fg, lab(u;) = orient(x1,s1) and lab(uz) = orient(x2, s2). We can
therefore rewrite Equation (1) equivalently as

suf(orient(orient(x1, 1), s1)) = pre(orient(orient(xs, s2), s2)). (2)
Now, using the fact that orient(orient(y, s),s) =y, for all y and s, we can rewrite Equation (2) as
suf(xy) = pre(za) (3)

Since we obtained Equation (3) from Equation (1) using equivalent transformations, it shows that
the two statements are equivalent and completes the proof. O

2As an aside, we mention how one would obtain a bijection. This is not necessary for the proofs of this
paper, but may be a useful observation in its own right. Let E be the set of edges in Gani(K), let a C FE
be all the self-mirror edges, and let 8 be the partition of E \ « into mirror edge-pairs. For example, if F =
{(AGG,GGA),(TCC,CCT),(TTA,TAA)}, then a = {(TTA,TAA)} and 8 = {{(AGG,GGA),(TCC,CCT)}}.
For an element {(z,y), (y,7)} € 8, we define Fee({(z,v), (¥, %)}) = Fr(x,y). For a self-mirror edge (z,y) € «a, we
define Fgg({(z,y)}) = Fe(z,y). One can then show that Fgg is a bijection between U 8 and edges in Gpia(K).
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One particular case of Lemma B.11 that we will often invoke is that there is an edge from z to
T in Ggp(K) if and only if there is an inverted loop incident to (u,1 — s) in Gpig(K).

Now recall that Fy is defined as a function that maps a walk w = (zo,...,z,) in Gap(K)
to a sequence Fy(w) = (ug, S0, - -, Un, Sn), With (u;,s;) = Fy(z;) for all 0 < i < n. We show
that Fyy(w) is in fact a walk in Gpiq(K) and, moreover, Fyy is a bijection from the set of walks in
Gani(K) to the set of walks in Gpiq(K).

Lemma B.12. Let K be a set of canonical k-mers where k is odd. Fy is a spell-preserving bijection
from the set of walks in G gy(K) to the set of walks in Gpig(K).

Proof. Let w = (xq,...,x,) be a walk in Ggqp(K) and let (u;,s;) = Fy(x;) for all 0 < i < n. We
will first show that Fyy (w) = (ug, So, - - - , Un, Sp) is a walk in Gpiq(K). By definition of Fy, Fyy(w)
is a sequence of vertex-sides. Consider the edge from z; to z;_1, for all 1 <7 < n. By Lemma B.11,
there is an edge {(u;—1,1—si—1), (u;, $;)} in Gpiq(K). This shows that every two consecutive vertex-
sides in Fyy(w) are connected by an edge, thus completing the proof that Fyy(w) is a walk. The
fact that it is spell preserving follows from its definition.

To show that Fyy is a bijection, we need to show that for all walks t = (ug, S0, - . ., Un, Sp) in
Ghria(K), there exists a unique walk w in G4y (K) such that t = Fyy(w). Let w = (x¢,...,2,) be an
arbitrary walk in Ggp1(K). In order for Fyy(w) = t, we need that Fy (x;) = (u;, s;) for all 0 < i < n.
Because Fy is bijection (Lemma B.10), there is exactly one value of x; to satisfy this, and that is
r; = F~Y(u;,s;) = orient(lab(u;), s;). Therefore, w = (orient(lab(ug), 50), - - . , orient(lab(uy), 5,,))
is the unique walk in Ggp(K) to satisfy Fyy(w) = t. O

Given the above proof, we can write the inverse of Fy as Fv}l(uo,s[},...,un,sn) =

(orient(lab(ug), So), - - - , orient(lab(uy,), sp)). We will use w 4%, ¢ to denote that a walk w in
Gabi(K) and a walk ¢ in Gyiq(K) are associated with each other by Fyy .

Notice that if £ were to be even, then Lemma B.12 would not hold. In particular, Let x € K
be a palindrome k-mer and let u be the vertex in G;q(K) such that lab(u) = 2. Then both of the
walks (u,0) and (u, 1) would spell x, while in the Gqp(K') there would only be one walk that spells
x.

Since unitigs are defined in terms of degrees, it is useful to first understand how the degrees of
vertices in Ggp)(K) relate to the degrees of vertex sides in Gpiq(K).

Lemma B.13. Let K be a set of canonical k-mers where k is odd. Let x be a vertex in G g(K)
and let (u, s) be a vertex-side is Gyig(K) such that x PN (u,s). Then,

(i) d*(z) = d(u,1 — 5) — d*(u,1 — s)
(i) d=(x) = d(u,s) — d*(u, s).

Proof. For proving part (i), we will first prove an upper bound and then a matching lower bound.
We start with the upper bound. Let Y be the set of all out-neighbors of  which are not equal to
Z. Note that Y may contain z. Let Y/ = {Fy(y) | y € Y} and observe that since Fy is injective
(Lemma B.10), |Y’'| = |Y|. By Lemma B.11, for each vertex-side (v/,s’) € Y’, there is an edge
{(u,1 =), (u,s)} and so d(u,1 —s) > |Y’].

We show that d*(z) = d(u,1 — s) — d"(u,1 — s) by considering two cases. In the first case,
assume that there does not exist an edge (z,Z). Then d*(z) = |Y|. Moreover, by Lemma B.11,
the edge {(u,1 — s), (u,1 — s)} does not exist, so d(u,1 — s) = 0. Putting these facts together,
dt(z) = Y| =Y'| <d(u,1 —s) =d(u,1 — s) — d*(u,1 — s).
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In the second case, assume that there exists an edge (x, 7). Lemma B.11 says that there is an
inverted loop incident to side (u,1 — s), so d(u,1 — s) = 1. An inverted loop adds 2 to the degree
of (u,1—2s), i.e. d(u,1—s) > |Y’'|+2; it also contributes 1 to out-degree of z, i.e. d*(z) = |Y|+1.
Putting these together, we get dz) = |Y|+1 = [Y'|+1 < d(u,1—s)—1 = d(u,1—s) —d"(u,1—s).

For the lower bound, let Z’' be the set of all vertex-sides (v, s) such that (v/,s") # (u,1 — s)
and there is an edge {(u,1 —s),(u/,s")}. Let Z ={z | Fy(z) € Z’'}. By Lemma B.10, |Z| = |Z'|.
By Lemma B.11, for every z € Z, there is an edge from z to z in Gqp(K) and therefore d*(z) >
7| =2/,

Now we show that d(u,1 —s) < d*(x) + d"(u,1 — s) by considering two cases. In the first case,
assume that there is no inverted loop touching (u, 1—s). Then, d(u,1—s) = |Z’| and d"(u, 1—s) = 0.
We can therefore write d(u, 1 — s) = |Z'| +d"(u,1 —s) < d*(z) + d"(u,1 — 5). In the second case,
assume there exists an inverted loop touching (u,1 — s). In this case, d(u,1 — s) = |Z| + 2.
By Lemma B.11, there is an edge from x to T and T ¢ Z. Thus, d + (z) > |Z| + 1. Putting this
together, d(u,1—s) = |Z'|+2=|Z|+2<d"(z) +1=d"(2) + d'(u,1 - s).

For part (ii), observe that Fy (T) = (u,1 — s). We can then apply part (i) of this theorem to T,
u, and 1 — s, and get that d¥(Z) = d(u, s) — d"(u,s). By Lemma B.3, d~(z) = d*(Z), and hence
d=(z) = d¥(%) = d(u, s) — d*(u, s). O

An immediate consequence of the degree-preserving lemma is that if F'(w) is a unitig, then so
is w. The converse is not always true however.

Lemma B.14. Let K be a set of canonical k-mers where k is odd. Let w = (xq,...,2,) and
t = (ug, S0, - - -, Un, Sn) be two walks related by w Ly,

(i) If t is a unitig, then w is a unitig.
(ii) If w is a unitig and for all 1 < i <n, x;_1 # T;, then t is a unitig.

Proof. For (i), when n = 0, w is trivially a unitig because it has only one vertex. For n > 0,
since t is a unitig, d(u;,s;) = 1 for 0 < i < n. Moreover, since an inverted loop would make a
degree > 2, we have d(u;,s;) = 0. Using Lemma B.13, d~(z;) = 1. Similarly, for all 0 < i < n,
d(ui, 1 —s;) =1, d*(u;, 1 — s;) = 0, and Lemma B.13 gives that d*(z;) = 1. Hence w is a unitig.
For (i), first observe that there is no inverted loop incident to (u;,s;), for 1 < i < n. If that
were the case, then Lemma B.11 implies that there is an edge from T; to z;. Since w is a unitig, the
only in-neighbor of x; is x;_1. Hence, z;_1 = T;, which contradicts the conditions of the Lemma.
Now, since d"(u;,s;) = 0, Lemma B.13 implies that d(u;,s;) = d~(z;) + d(ui, 8;) = d~(z;) = 1.
Using a symmetrical argument (omitted), d(uj,1 —s;) = 1 for all 0 < j < n. Therefore, ¢ is a
unitig. O

Similarly, we can relate the maximality of unitigs in Gapi(K) and Gpiq(K). A maximal unitig
in Ggp1(K) is maximal in Gyiq(K), on the condition that is a unitig in Gpq(K); however, the other
direction only holds with a restrictive condition.

Lemma B.15. Let K be a set of canonical k-mers where k is odd. Let w = (xq,...,2,) and
t = (ug, S0, - .-, Un, Sp) be two walks related by w <F——W—> t. Suppose that both w and t are unitigs.

(i) If t is prefi--maximal and has no lonely inverted loop at the first endpoint side, then w is
prefiz-mazximal.

(i1) If w is prefix--mazximal, then t is prefix--mazximal.
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(iii) If t is suffix-mazimal and has no lonely inverted loop at the last endpoint side, then w is
suffiz-mazimal.

() If w is suffix-mazimal, then t is suffiz-mazimal.

Proof. We will prove (i) and (ii) only, since the proofs of (iii) and (iv) are symmetric. For (i), if
there is more than one edge incident to (ug, so), then d(ug, s9) > 2. If there are no edges incident
to (uo, so), then d(ug, sp) = 0. In both cases, Lemma B.13 implies that d~(z¢) = d(uo, so) # 1 and
Lemma B.4 implies that w is prefix-maximal.

Now consider the case that d(ug,s9) = 1. By the conditions of the Lemma, there is no in-
verted loop incident at (ug,so), and Lemma B.13 implies d~(x9) = 1. Since t is prefix-maximal,
by Lemma B.7, there is a vertex side (v, ') and an edge e = {(v/, ), (ug, S0)} such that d(v’, s’) > 1.
Let 2’ = Fy;'(uv/,1 — ') and Lemma B.11 implies that there is an edge from 2’ to g in Gap(K).
Observe that because d(ug, sp) < 2, e is not an inverted loop. Therefore, (u/,s’) has at least one
incident edge that is not an inverted loop. Because an inverted loop adds at least two to the
degree, d(u',s') — d"(u’,s') > 1. Thus, Lemma B.13 implies that d*(z’) > 1. By Lemma B.4, w is
a prefix-maximal unitig.

For (i7), suppose for the sake of contradiction that t is not prefix-maximal. Then Lemma B.7
implies that d(ug,sp) = 1 and there exists a vertex-side (v/,s") with d(v/,s’) = 1 and an edge
e = {(W,s),(ug,s0)}. Let 2/ = F;'(«/,1 — §'). Note that d(ug,so) = d(u',s") = 0 because
vertex-sides with degree 1 cannot have an inverted loop incident to them. Lemma B.13 then
implies that d~(x¢) = d(ug,s0) = 1 and d*(2’) = d(v/,s') = 1. In addition, Lemma B.11 applied
to e says that there is an edge from 2/ to z. By Lemma B.4, these facts imply that w is not
prefix-maximal, which is a contradiction. ]

Theorem 2 has a condition that there are no circular unitigs. We now show that this implies
that a unitig in Gpq(K) cannot have lonely inverted loops incident to both of the endpoint sides.

Lemma B.16. Let K be a set of canonical k-mers where k is odd. Let w = (zg,...,xy,) be a walk
in Gap(K) such that Fyy(w) is a unitig. If the two endpoint sides of Fyy(w) have lonely inverted
loops incident on them, then w' = (xq, ..., Ty, Tn, ..., T, o) is a circular unitig in G g (K).

Proof. First, to show that v’ is a walk in Ggp1(K), we need to show that there exist edges (Zg, o)
and (zy,,T,). This follows by applying Lemma B.11 to the inverted loop edges at the endpoints of
F(w), i.e. to {(uo, s0), (uo,s0)} and {(un,1 — sp), (un, 1 —sp)}.

Second, to show that w’ is a unitig, we will show that all the necessary vertex degrees are
1. By Lemma B.14, w is a unitig, and hence d*(x;) = 1 for all 0 < ¢ < n and d~(z;) = 1 for
all 0 < i < n. Let (u;,s;) = Fy(z;) for all 0 < ¢ < n. Because the endpoint sides of F(w)
each have a lonely inverted loop, d(ug,so) = 2 and d(up,1 — s,) = 2. Applying Lemma B.13,
d=(x0) = d(ug,so) — d¥(ug,s0) = 2 —1 = 1 and d*(x,) = d(un,1 — 5,) — d*(un,1 — 5,) = 1.
Applying Lemma B.3 to all these, we get that d~(7;) = 1 for all 0 < i < n and d*(7;) = 1 for all
0<i<n. O

B.4 Proof of Theorem 2

Theorem 2. Let K be a set of canonical k-mers where k is odd and G g (K) does not contain a
circular unitig.

(i) The function Fy is a bijection from Dyon-pai 10 Bro-loop-

(it) The function rev is a bijection between Bigst-joop aNd Bfirst-ioop-
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(1ii) HEAD is a bijection from Dpg and Bigsi-iop

Proof.

(i)

(iii)

We already know from Lemma B.12 that Fyy is a bijection between walks in Ggpi(K) and
Gpia(K). It remains to show that

(1) For a unitig w that is maximal and non-palindromic in Gan(K), Fiv (w) € Bno-loop-

(2) For a unitig t € Byo-1oops F ~1(t) is a maximal and non-palindromic unitig in Ggp(K).

First, we prove (1). Because w is a non-palindromic maximal unitig, by Lemma B.6, there
is no edge 0 < i < n such that x; = T;11, because then (z;,z;+1) would be a palindromic
sub-unitig of w. Hence we can apply Lemma B.14 to say that Fy (w) is a unitig and we
can apply Lemma B.15 to say that Fyy(w) is maximal. Hence Fy(w) € B. To show that
Fy(w) ¢ By N Bs, first assume for the sake of contradiction that there is a lonely inverted
loop at the last endpoint side of Fyy(w). Then by Lemma B.11 there is an edge from x,, to
Zn,. By Lemma B.13, d*(z,) =2 -1 = 1. By Lemma B.3, d(z,;) = d"(z,,) = 1. Because
w is maximal, if d*(z,,) = 1, then d~(7;;) > 1. This is a contradiction. The argument that
there is no lonely inverted loop at the first endpoint side of Fy (w) is symmetric and omitted.

Now, we prove (2). Let w = F~1(¢). Since t is a unitig, Lemma B.14 implies that w is a unitig
also. Moreover, Lemma B.9 implies that ¢ is non-palindromic; since Fyy is spelling preserving
(Lemma B.12), w is also non-palindromic. Since the Theorem assumes that Gqp(K) does not
have circular unitigs, Lemma B.16 implies that ¢ cannot have a lonely inverted loop at both
endpoints. Since ¢ ¢ By U Bs, it also cannot have an inverted loop at exactly one endpoint.
We can therefore apply Lemma B.15 to get that w is maximal.

Observe that rev is by definition a function that is its own inverse and is a bijection on
the set of walks in Gpiq(K). Furthermore, Lemma B.8 implies that rev remains a bijection
when restricted to maximal unitigs in Gpq(K). Finally, observe that for a walk ¢, the first
(respectively, last) endpoint side of t is the last (respectively, first) endpoint side of rewv(t).
These facts together imply that rev is a bijection between Bfigt-100p and Blast-loop-

To show that HEAD is a bijection we show

(1) for all w € Dp,1, HEAD(w) € Biast-loops
(2) for all t € Biast-loop, there exists a w € Dy such that HEAD(w) € Blast-loop-

(3) the above w is unique.

First, we prove (1). Let w = (xg,...,z,). By Lemma B.1, n is odd and at least 1. Let
m = (n—1)/2 and let h £ (zg,...,2,). Since w is a palindromic unitig and, by the
conditions of the Theorem, non-circular, Lemma B.5 implies that for all 0 < i < n, x; # Tjy1.
Then by Lemma B.14, HEAD(w) = Fy (h) is a unitig. Simultaneously, because w is a maximal
unitig, A is a prefix-maximal unitig. Lemma B.15 then implies that Fy(h) is prefix-maximal.

Now we show that Fyy(h) is suffix-maximal and has a lonely inverted loop at the last endpoint.
Let (ug, 50, - -, Um, Sm) = Fy(h). Since w is palindromic, Lemma B.5 implies that z,, =
Tm+1, and, hence, Uy, = Up,+1. By Lemma B.11, there is an inverted loop incident to (uy,, 1 —
Sm), i.e. the last endpoint of Fy (h). Because w is a unitig, d* (z,,) = d” (zme1) = 1,
Lemma B.13 then implies that d(wm, 1 —sm) = d¥ (xm) +d* (um, 1 — s,,) = 2. By Lemma B.7,
Fy (h) is suffix-maximal and therefore we have shown that Fyy(h) € Blast-loop-
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Next we prove (2). Let (ug,S0,...,Un,Sn) = t and let z; = F;l(ui,si). Let w =
(o, .-+, Tn, Tn,---,Tp) be a sequence of vertices in Gqp(K). We will first show that w is
a walk, then that it is palindromic, then that it is a unitig, and finally that it is maximal.
Note that w is equivalently defined to be the concatenation of Fy!(t) with Fy/!(rev(t)).
Applying Lemma B.12, the sequences (zy,...,2,) and (Z,,...,To) are walks. Since ¢ is in
Blast-100p, there is an inverted loop incident to (uy,1 — s,). By Lemma B.11, this implies
there is an edge from x,, to T, in Ggp)(K). Therefore, w is a walk. It is palindromic by its
definition. Since ¢ is a unitig, by Lemma B.8, rev(t) is a unitig. Now applying Lemma B.14,
w and rev(w) are both unitigs. Because the inverted loop is lonely, d(u,,1 — s,) = 2, and
by Lemma B.13, d*(z,,) = 1. Applying Lemma B.3, d~(Z,,) = 1. Hence w is a unitig.

As t is in Biagt-loop, this implies that no lonely inverted loop is incident to (ug,sp). We can
apply Lemma B.15 to get that F~1(t) is prefix-maximal. Because w starts with F~1(¢), w is
also prefix-maximal. By Lemma B.8, F~!(rev(w)) is suffix-maximal. Because w ends with
F~Y(rev(w)), w is also suffix-maximal. Hence, w is maximal.

For (3), let (ug, So, - .., Un, Sp) =t and let x; = F;l(ui, s;). Let w' be a walk in Dy, such that
HEAD(w') € Biast-loop.- We will show that w' = (zo,...,2n,Tn,...,%0). Since HEAD(w') has
n+ 1 vertices, w must have 2n + 2 vertices. Hence we can write w = (x(, ..., %, ;). Since w
is a palindrome, we have that 2} = 2, 41— forall 0 <@ < 2n+1. We can therefore rewrite w
as w = (xf,...,xh, ), ... xh). Next, observe that HEAD(w') = Fy((x),...,z})). Since this
must be equal to t and Fyy is a bijection (Lemma B.12), we get that (z(,, ..., z,) = (20, ..., Zn).
We can therefore rewrite w as w = (xo, ..., Zn, ZTn, ..., Zo), which is the same as w.

O]

C Experimental details

Choice of k£ parameter for the assemblers: To ensure that the results across the assemblers
are comparable, we set the k parameter in a way so that the set of unitigs constructed are as close
as possible. The ideal way is to set k£ such that the underlying k-mer sets K used for all assemblers
are same. However, there was a practical limitation for that. We note that both SPAdes and
MEGAHIT are a multi-k assemblers, so the k parameter is just the maximum allowed k-mer size.
When we pass the value k to the assemblers, both SPAdes and MEGAHIT use k-mer set and
(k 4+ 1)-mer set to construct unitigs, whereas bcalm, ABySS, and minia uses a node-centric de
Bruijn graph with only k-mer sets as vertices. As such, we found that the output unitigs of SPAdes
and MEGAHIT with a value of k& are more similar to unitigs of bcalm and ABySS created with
k4 1. We also note that SPAdes and MEGAHIT only allow odd k, which is why we needed to use
an even k for Ggp.

In Table 3, we therefore passed k¥ = 74 to bcalm and k& = 73 to SPAdes and MEGAHIT.
Since Theorem 1 is valid for all k, this was not an issue for Table 3. We used the default parameter
for minimum k-mer coverage for both assemblers.

For Table 6, we passed k = 31 to all assemblers, since Theorem 2 only applies when the vertex
lengths are of odd k. Since SPAdes and MEGAHIT by default use both k-mer and (k + 1)-mer set
to construct unitigs, the number of palindromic unitigs (433) differs from the number in minia and
ABySS (440). However, this is not a problem because we are not comparing the numbers between
assemblers but only within assemblers.
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Detection of palindrome splitting artifact In this section, we use the notation S[i : j] to
denote substring of string S starting at index ¢ and ending at index j. Let w = (xg,...,z,) be
a palindromic unitig in Dy, and let p be its spelling. We say a unitig in Dpy is fully-covered if
there exists some contig that aligns to an interval which contains p’s interval in the reference. Let
k' 2 (k—1)/2. We say w is split if there exists at least one contig ¢ such that either

1. c aligns to an interval that starts before p’s interval and ends exactly at position |p|/2 + k' of
p’s interval and there are no other contigs with alignments intersecting p[|p|/2 + k" + 1 : |p]],
or

2. c aligns to an interval that ends after p’s interval and starts exactly at location |p|/2 — k' + 1
of p’s interval and there are no other contigs with alignments intersection p[1 : |p|/2 + k'].

We say w is ambiguous if it does not fall into either category.
To motivate these cases, observe that the length of p is n + k and, because p is a palindrome
and k is odd, n must be odd. Let w’ = (z¢,...,Z»-1) be the first half of the walk w and let
2

p' be its spelling. By Theorem 2, HEAD(w) € Biast-loop and 7€v(HEAD(w)) € Bfirst-loop- Then,
P =pll: 252 + k] =p[l:|p|/2+ K] Then,

1. spell(HEAD(w)) = spell(Fy (w')) = spell(w') = p[1 : |p|/2 + k'], and

2. spell(rev(HEAD(w))) = spell(rev(Fy (w'))) = spell(Fy (w')) = plp/2 — k' + 1 : |p|].

The cases we describe therefore correspond to observing the alignments of HEAD(w) and
rev(HEAD(w)) to the corresponding places of p and not observing any other bidirected unitigs
aligning across the middle boundaries.

CAMI dataset: We used the benchmark called “low complexity dataset” in (Sczyrba et al 2017).
Since our analysis requires error-free reads, we re-simulated the reads using identical genomes and
abundances (as detailed in supplementary materials of (Nurk, Meleshko, etal 2017)). Table S1
shows the properties and relative abundances of the genomes. We used CAMISIM (Fritz et al
2019) for the simulations, with read length of 150nt and insert size 150.
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Table S1: Characteristics of all 30 genomes consituting the CAMI “low complexity” dataset. The coverage refers to
the depth-of-coverage for each genome, in both the benchmark ((Nurk, Meleshko, et al 2017)) and our simulations.

Accession Species name n. contigs in n. bases in Coverage Abundance
reference reference

AEGL00000000 Gamma proteobacterium 815 2,234,019 873.3 76.21%
IMCC2047

AAVV01000001 Marine gamma proteobacterium 25 3,576,081 53 7.41%
HTCC2080

AGFI01000001 Paenibacillus sp. Aloe-11 334 5,792,040 22 4.98%

ACXMO01000000 Thermoplasmatales archaeon 6 1,684,836 21 1.38%
I-plasma

ACZW02000000 Erysipelotrichaceae bacterium 10 3,137,098 16 1.96%
5.2 _54FAA

ARQX01000000 Gamma proteobacterium SCGC 81 1,663,375 14 0.91%
AAA076-D13

ATUD01000000 Patulibacter —americanus DSM 32 4,470,560 9 1.57%
16676

GCF_000236585.1 Thermus sp. CCB_US3_UF1 2 2,263,488 8 0.71%

ARCO01000000 Chloroflexi bacterium SCGC AB- 64 842,066 8 0.26%
629-P13

PRJINA586334 Marinimicrobia bacterium SCGC 103 1,123,146 8 0.35%
AB-629-J13

AGUDO01000000 Patulibacter medicamentivorans 353 5,092,500 7 1.39%

CAXW010000000 Firmicutes bacterium CAG:114 292 2,332,166 4 0.36%

ANLAO01000000 Formosa sp. AK20 47 3,055,484 3 0.36%

GCF_000445995.2 Geobacillus sp. JF8 2 3,486,308 2 0.27%

GCA_000496235.1 Uncultured archacon AOTHR60 14 2,876,249 1.9 0.21%

AMFN01000000 Enterobacteriaceae bacterium 34 4,616,889 1.8 0.32%
LSJC7

AMYX01000000 Alpha proteobacterium LLX12A 289 5,961,098 14 0.33%

AMSP01000000 Brevibacterium casei S18 43 3,664,641 1.2 0.17%

GCA_000403475.2 Lachnospiraceae bacterium 3-2 4 4,455,623 1 0.17%

A ANX02000000 Burkholderia mallei 2002721280 208 5,690,468 0.9 0.20%

GCA_000209385.2 Lachnospiraceae bacterium 1 2,219,029 0.9 0.08%
2_1_46FAA

GCF_000219815.1 Weissella koreensis KACC 15510 2 1,441,470 0.7 0.04%

ARQU01000000 Alpha  proteobacterium SCGC 148 2,161,697 0.6 0.05%
AAA536-G10

AOUNO01000000 Sphingopyxis sp. MC1 24 3,653,464 04 0.06%

GCF_000015985.1 Rhodobacter sphaeroides ATCC 3 4,489,380 0.4 0.07%
17029

AMFB01000000 Bradyrhizobium sp. DFCI-1 98 7,645,871 0.3 0.09%

NC_021024.1 Butyrate-producing bacterium 1 3,108,859 0.3 0.04%
SM4/1

ARSS01000000 Alpha  proteobacterium SCGC 159 1,742,143 0.2 0.01%
AAA015-019

CBEH010000000 Firmicutes bacterium CAG:170 375 2,449,192 0.2 0.02%

NC_023004.1 Candidatus Saccharibacteria bac- 1 845,464 0.1 0.00%

terium RAAC3_TM7_1
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