
A Safety of unitigs: full exposition

Proof of Theorem 1 and Corollary 1

In this subsection, we will prove Theorem 1 and Corollary 1. In the following, we will always have
S be a set of sequenced segments and w = (x0, . . . , xm) be a unitig in Gbasic(spk(S)). We start
with a lemma that, roughly speaking, says that if a walk corresponding to some S 2 S touches w,
it must contain all of w except that it may begin or end somewhere along the way.

Lemma A.1. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in

Gbasic(spk(S)). Let S 2 S and let g = (g0, . . . , g|S|) be the walk corresponding to S. Suppose

there exists i and j such that xi = gj. Then,

(i) If sufk(S) /2 {xi, . . . , xm�1}, then gj+� = xi+� for all � 2 [0,m� i].

(ii) If prek(S) /2 {x1, . . . , xi}, then gj�� = xi�� for all � 2 [0, i].

Proof. We will only prove (i), since the argument for (ii) is symmetric. We use induction on �.
For � = 0, we have that the implication of (i) reduces to gj = xi, which is vacuously true because
it is also a condition of the theorem. Now we assume that (i) holds for �� 1, i.e. gj+��1 = xi+��1.
Since xi+��1 6= sufk(G), gj+��1 is not the last vertex of g. Because xi+��1 is a non-last vertex of a
unitig, it has only one out-neighbor, which is xi+�. Therefore, gj+� = xi+�, which shows that that
(i) holds for �.

Using this lemma, we can now prove some general properties of unsafe unitigs.

Lemma A.2. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in

Gbasic(spk(S)). If w is unsafe then

(i) m � 1,

(ii) there exists S 2 S such that prek(S) 2 {x1, . . . , xm},

(iii) there exists S 2 S such that sufk(S) 2 {x0, . . . , xm�1},

(iv) for all S 2 S and their corresponding walks g, either g and w do not share a vertex, or

prek(S) 2 {x1, . . . , xm}, or sufk(S) 2 {x0, . . . , xm�1}, and

(v) for all S 2 S and all i, occS(xi)  2.

Proof. For (i), consider a unitig that has just one vertex x. Since each k-mer in Gbasic(spk(S)),
there must be at least one S 2 S whose walk contains x. Hence, the unitig that is composed of
only x is safe. For (ii), assume for sake of contradiction that for all S 2 S, prek(S) /2 {x1, . . . , xm}.
Since every vertex of the graph must be contained in at least one string, let S0 2 S be a string
that contains xm. Applying Lemma A.1(ii) with i = m, we get that the walk corresponding to
S0 must contain w, contradicting that w is unsafe. The case of (iii) is symmetric to (ii), using x0
instead of xm and applying Lemma A.1(i) with i = 0. For (iv), let g = (g0, . . . , g|S|) and assume for
sake of contradiction that there exists a S 2 S such that g shares a vertex with w and prek(S) /2
{x1, . . . , xm} and sufk(S) /2 {x0, . . . , xm�1}. Let xi and gj be the vertices of w and g, respectively,
that are equivalent. We can apply Lemma A.1 to get that (gj , . . . , gj+m�i) = (xi, . . . , xm) and
(gj�i, . . . , gj) = (x0, . . . , xi). This means that w is a subwalk of g, which is a contradiction. For
(v), let S 2 S and let g = (g0, . . . , g|S|) be its corresponding walk. If g and w do not share any
vertices, then occS(xi) = 0  2 for all i and we are done. Otherwise, we can apply (iv) to get that
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either (1) prek(S) 2 {x1, . . . , xm} or (2) sufk(S) 2 {x0, . . . , xm�1}. Let us consider (1) — we will
omit the argument for (2) since it is symmetrical. Then g0 = xi for some 1  i  m. Note that g0
is the first occurrence of xi in g. Assume for the sake of contradiction that occS(xi) > 2. To get
the second occurrence of xi, g must first visit x0. After this second visit to xi, g must continue all
the way until xm if it is to visit xi for a third time. Therefore, at the second visit to xi, g must in
fact visit (x0, . . . , xm), which contradicts that w is unsafe.

The case when a sequenced segment contains its first and/or last k-mer more than once puts
additional constraints on how it can contain a unitig.

Lemma A.3. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in

Gbasic(spk(S)). Let S 2 S such that at least one of the following holds:

(i) occS(prek(S)) = 2 and there exists an integer i 2 [1,m] such that xi = prek(S), or

(ii) occS(sufk(S)) = 2 and there exists an integer j 2 [i,m� 1] such that xj = sufk(S).

Then, spell(w) is not a substring of S i↵ both (i) and (ii) hold.

Proof. We only prove case (i) since case (ii) is symmetrical. Let g be the walk corresponding to
S. In the first phase, g starts from xi and, since it must visit xi a second time, continues until xm.
Then at some point it enters w through x0 and proceeds to visit xi for the second and last time.
We will refer to the time from the end of the first phase to the point it enters x0 as the second
phase, and the rest of the walk as the third phase. Observe that g does not contain w as a subwalk
in either the first or second phase.

Now we prove the if direction. During phase 1, g visits xj exactly once. During phase 2, g does
not visit xj . During phase 3, g proceeds from x0 forward along the unitig until it hits xj for the
second time. Since xj is occurs exactly twice and is the last vertex of g, this is the end of g. Since
j < m, g does not contain w as a subwalk during the third phase.

Now we prove the only if direction. Assume w is not a subwalk of g. Therefore, during the
third phase g cannot go until xm and must stop earlier at some xj = sufk(S), for some integer
j 2 [i,m � 1]. This xj was visited once during phase 1 and not visited during phase 2 and now
visited a second and final time during phase 3.

These lemmas are all the pieces we need to prove Theorem 1.

Theorem 1. Let S be a set of sequenced segments and let w = (x0, . . . , xm) be a unitig in

Gbasic(spk(S)). Then w is unsafe if and only if for all S 2 S, one of the following holds:

(i) S does not contain any k-mer of w,

(ii) occS(prek(S)) = 1 and prek(S) = xi for some 1  i  m,

(iii) occS(sufk(S)) = 1 and sufk(S) = xj for some 0  j  m� 1, or

(iv) occS(prek(S)) = occS(sufk(S)) = 2 and there exists 1  i  j  m�1 such that prek(S) = xi
and sufk(S) = xj.

Proof. First we prove the if direction. We will show that for all S 2 S and its corresponding walk
g, if one of the four conditions hold, then w is not a subwalk of g. If (i) holds, then w is trivially
not a subwalk of g. Now, if prek(S) = xi for some 1  i  m and xi is visited only once by g, If
(ii) holds, then g starts with xi but never visits xi again, therefore (x0, . . . , xi) is not a subwalk of

16



g. Hence, w is not a subwalk of g. Similarly, if (iii) holds, then (xj , . . . , xm) is not a subwalk of g
and hence w is not a subwalk of g. If (iv) holds, then Lemma A.3 implies that w is not a subwalk
of g.

Now we prove the only if direction. We will show that for all S 2 S and their corresponding walk
g, if w is not a subwalk of g, then one of the four conclusions hold. By Lemma A.2.(iv), either (1) g
does not contain any k-mer from w, (2) prek(S) 2 {x1, . . . , xm}, or (3) sufk(S) 2 {x0, . . . , xm�1}.
In case of (1), g trivially does not contain w, and condition (i) is satisfied. In case of (2), let
i 2 [1,m] be an integer such that xi = prek(S). By Lemma A.2.(v), occS(xi) is either 1 or 2. If
occS(xi) = 1, then condition (ii) immediately holds. If occS(xi) = 2, then Lemma A.3 implies that
there exists an integer j 2 [i,m � 1] that satisfies condition (iv). In case of (3), let j 2 [0,m � 1]
be an integer such that xj = sufk(S). Again, by Lemma A.2.(v), occS(xj) is either 1 or 2. If
occS(xj) = 1, then condition (iii) immediately holds. If occS(xj) = 2, then Lemma A.3 implies
that there exists an integer i 2 [i,m� 1] that satisfies condition (iv).

Corollary 1. Let X be a string and let w = (x0, . . . , xm) be a unitig in Gbasic(spk(X)). Then

spell(w) is not a substring of X i↵ one of the following holds:

1. occX(prek(X)) = occX(sufk(X)) = 1, prek(X) = xi, sufk(X) = xi�1 for some 1  i  m.

2. occX(prek(X)) = occX(sufk(X)) = 2, prek(X) = xi, sufk(X) = xj for some 0 < i  j < m.

Moreover, this can hold for at most one unitig in Gbasic(spk(X)).

Proof. We can apply Theorem 1 to set S = {X}. Since X must contain all k-mers of w, w is
unsafe if and only if condition (ii), (iii) or (iv) from Theorem 1 holds for S = X. First, assume
Condition (ii) is true for X. Then by Theorem 1, w is unsafe. Consider the walk g corresponding
to X. Because g begins at xi and all vertices in Gbasic(K) must be in g at least once, (xi, . . . , xm)
is a subwalk of g. This is the one and only occurrence of xi in g. Since xi is the first vertex in g
occuring only once, xi�1 cannot precede xi. Hence, xi�1 must be the end of g, i.e., sufk(S) = xi�1.
Note that, this is the one and only occurrence of xi�1 in g. Thus, Condition (iii) is also true for
X. With a symmetric argument, we can show that if Condition (iii) is satisfied, then Condition
(ii) is satisfied. Combining both gives us the first condition of the corollary. Finally, observe that
Condition (iv) is identical to Condition 2 in the corollary. The fact that these conditions can hold
for at most one unitig follows directly from the fact that there is only one vertex for prek(S) in the
graph.

Formal definition of the case of Figure 3

In the Results section, we quantify the number of unsafe unitigs that fall into the case of Figure 3.
To make this precise, we give a formal classification for this case. Let X be a genome and let S
be a set of its sequenced segments. We say that an unsafe walk w = (x0, . . . , xm) satisfies the case
of Figure 3 if

(i) there exists 0 < i  j < m such that  = (xi, . . . , xj) is a unitig in Gbasic(spk(X)),

(ii) spell( ) occurs at least twice in X,

(iii) in one of the occurrences, the k-mer preceding spell( ) is not in S,
(iv) in another of the occurrences, the k-mer following spell( ) is not in S,
(v) there exists S 2 S and an integer i0 2 [i, j] such that spell((xi0 , . . . , xj)) is a su�x of S, and

(vi) there exists S 2 S and an integer j0 2 [i0 � 1, j] such that spell((xi, . . . , xj0)) is a su�x of S.
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Figure S1: An example illustrating some of the bidirected graph terminology. Panel (A) shows a bidirected graph
with two vertices. Panel (B) shows a list of all possible walks in this graph and their spellings. Note that walk
(AAC, 0, ACT, 0) and (ACT, 1, AAC, 1) are reverses of each other. The endpoint sides of the walks, in both cases,
are (AAC, 0) and (ACT, 1). Panel C and D show an example of a doubled dBG (Gdbl(K)) and a bidirected dBG
(Gbid(K)) using K = {AAC,ACT,CTA}. Panel C shows Gbid(K) as well as the order of vertex-sides as they appear
in a walk w = (AAC, 0, ACT, 0, CTA, 0, CTA, 1, ACT, 1, AAC, 1) = (s0, . . . , s5), with spell(w) = AACTAGTT . Note
that in this case, since spell(w) is a palindrome, the reverse walk is identical: rev(w) = w. Panel D shows Gdbl(K).

B The relationship of Gdbl(K) and Gbid(K): full exposition

In this section, we will prove Theorem 2. We start by providing additional definitions that are
necessary to understand the proofs in this section.

Let K be a set of k-mers. A unitig in a directed graph that is not a proper subwalk of another
unitig that ends at the same vertex is said to be prefix-maximal; a unitig that is not a proper
subwalk of another unitig that starts with the same vertex is said to be su�x-maximal. Notice that
a unitig is maximal i↵ it is both prefix- and su�x-maximal.

Let (u, s) be a vertex-side in Gbid(K). We define dil(u, s) to indicate the presence of an inverted
loop, i.e. dil(u, s) = 1 if there is an inverted loop incident to side (u, s) and dil(u, s) = 0 otherwise.
A unitig t in Gbid(K) is prefix-maximal if it is not a proper subwalk of another unitig that ends at
the same vertex-side as t. A unitig is su�x-maximal if it is not a proper subwalk of another unitig
that starts with the same vertex-side as t. Note that a unitig is maximal i↵ it is both prefix- and
su�x-maximal.

We will prove Theorem 2 by first building a collection of Lemmas. First, we make a simple
observation. A palindrome must have an even number of characters, otherwise there is a middle
character that would need to be equal to its own reverse complement. Hence, a palindromic walk,
in either the doubled or the bidirected graph must have an even number of nucleotides.

Lemma B.1. Let K be a set of k-mers.

1. For all palindromic walks w = (x0, . . . , xn) in Gdbl(K), k and n have the same parity.

2. For all palindromic walks t = (u0, s0, . . . , un, sn) in Gbid(K), k and n have the same property.

Proof. A palindromic string must have an even number of nucleotides. The number of nucleotides
in spell(w) and in spell(t) is k + n, Hence the parity of k and n must be the same.

From here on out, we proceed by first proving Lemmas for the directed de Bruijn graphs (both
the regular one and the doubled one) (Appendix B.1), then proving Lemmas for the bidirected graph
(Appendix B.2), then proving Lemmas which connect the two types of graphs (Appendix B.3), and,
finally, proving Theorem 2 (Appendix B.4).
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B.1 Directed graph

First, we make the observation that unitigs cannot repeat vertices unless they are a simple cycle.
This is generally stated without proof, but the statement is actually not true when unitigs are
allowed to be periodic cycles. In our definition of unitig, we forbid this case, allowing us to prove
the observation.

Lemma B.2. For all unitigs w in a directed graph, either w is a simple cycle or it does not repeat

any vertices.

Proof. Let w = (x0, . . . , xn) be a unitig. Suppose that w repeats a vertex. Let 0  j  n be the
smallest value for which there exists 0  i < j such that xi = xj . If i > 0, then xi has xi�1 and
xj�1 as an in-neighbor. By the minimality of our choice of i, xi�1 6= xj�1, and hence d�(i) � 2.
This contradicts that w is a unitig. If i = 0, then let j +1  `  n� 1 be the largest index greater
than j such that x` = x` mod (j+1). In other words, ` is the first place after xj where the unitig is
about to “fall o↵ the cycle”. If such an ` does not exist, then either j = n and w is a simple cycle,
or w is a simple periodic cycle, contradicting the definition of a unitig. Otherwise, the vertex x` has
as out-neighbors both x`+1 and x`+1 mod (j+1). By the choice of `, these out-neighbors are distinct
and hence d+(x`) � 2. This contradicts that w is a unitig.

A very simple property in the doubled graph is is that the in-degree (respectively, out-degree)
of a vertex is equal to the out-degree (respectively, in-degree) of its reverse complement.

Lemma B.3. Let K be a set of k-mers and let x be a vertex in Gdbl(K). Then d+(x) = d�(x) and
d�(x) = d+(x).

Proof. Observe that for all vertices y in the Gdbl(K), there is an edge from x to y in Gdbl(K) i↵
there is an edge from y to x. This is true even if x = y and these two edges are identical. Hence
d+(x) = d�(x) and d�(x) = d+(x).

We defined maximal unitigs as those that are not proper sub-walks of other unitigs. We can give
an equivalent definition for directed graphs, in terms of vertex degrees. Since it is widely known,
we state it without proof.

Lemma B.4. Let G be a directed graph and let w = (x0, . . . , xn) be a unitig in G. Then

(i) w is prefix-maximal if and only if d�(x0) 6= 1 or there exists a vertex x0 that has an edge to

x0 and d+(x0) > 1.

(ii) w is su�x-maximal if and only if d+(xn) 6= 1 or there exists a vertex x0 that has an edge from

xn and d�(x0) > 1.

Palindromic unitigs play a special role in Theorem 2. We observe that in a palindromic unitig
of the doubled graph, the only edge from a k-mer to its reverse complement is the middle one.

Lemma B.5. Let K be a set of k-mers with odd k. Let w = (x0, . . . , xn) be a palindromic unitig

in Gdbl(K) that is not a simple cycle. Then for all 0  i  n � 1, we have that xi = xi+1 i↵

i = (n� 1)/2.

Proof. First note that by Lemma B.1, n is odd and n � 1. Let m = (n � 1)/2. Because spell(w)
is a palindrome, xi = xn�i for all 0  i  n. The only if direction of the Lemma statement follows
immediately by plugging in i = m and getting xm = xn�m = xm+1. For the if direction, assume
that xi = xi+1 for all 0  i  n� 1. Then xi = xi+1 = xn�i�1 = xn�i�1. By the fact that w is not
a simple cycle and Lemma B.2, it cannot have any repeated vertices. Hence, i = n � i � 1 which
only happens when i = m.
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We also observe that a maximal unitig that is not a palindrome cannot contain within it a
palindrome of length � k.

Lemma B.6. A non-palindromic maximal unitig w in Gdbl(K) cannot contain a proper sub-unitig

that is palindromic.

Proof. For the sake of contradiction, let z be a proper sub-unitig of w that is a palindrome. First
suppose that there exists a k-mer y such that y precedes z in w and y follows z in w. In that case,
observe that the walk (y, z, y) is also a sub-unitig of w and also a palindrome. We can then extend
z in this way until no longer possible, i.e. there do not exist a k-mer y such that y precedes z in w
and y follows z in w. Let w0 be this maximally extended walk. Note that by construction, w0 is a
sub-unitig of w and it is proper because w0 is palindromic and w is not. Let the first vertex of w0

be x, and, hence, the last one is x.
Consider the case when w starts with x. Because w 6= w0, there must exist an out-neighbor

u of x in w. Its mirror must also exist, i.e. an edge from u to x. Lemma B.4 states that x is
the first vertex of a maximal unitig, it must either (a) have one other in-neighbor besides u or
(b) u must have at least one other out-neighbor besides x. For case (a), Lemma B.3 implies that
d+(x) = d�(x) > 1. For case (b), Lemma B.3 implies that d+(u) = d�(u) > 1. In either case, the
degrees of x or of u contradict the definition of being part of a unitig. The case when w ends with
x is symmetric and omitted.

Now consider the case when w does not start with x and does not end with x. Let a be the
vertex preceding x in w, and let b be the vertex following x in w. There exist a mirror edge from b to
x. Since w0 was chosen so that it cannot be extended, a 6= b. Hence x has two distinct in-neighbors,
a and b. Since w contains x as a non-first vertex, this contradicts that w is a unitig.

B.2 Bidirected graph

As is the case with directed graphs (Lemma B.4), there is a definition of maximality for bidirected
unitigs that has to do with degrees rather than sub-unitigs. We are not aware of this equivalence
being explicitly proven, so we do so here:

Lemma B.7. Let K be a set of canonical k-mers. Let t = (u0, s0, . . . , un, sn) be a unitig in Gbid(K).
Then

(i) t is prefix-maximal if and only if d(u0, s0) 6= 1 or there is an edge {(u0, s0), (u0, s0)} such that

d(u0, s0) > 1, and

(ii) t is su�x-maximal if and only if d(un, 1 � sn) 6= 1 or there is an edge {(un, 1 � sn), (u0, s0)}
such that d(u0, s0) > 1.

Proof. We will only prove (i) since the proof of (ii) is symmetric. First, we prove the only if
direction. We need to consider three cases. The first case is when d(u0, s0) 6= 1. If d(u0, s0) = 0,
then t is prefix-maximal because there is no other walk of which it is a subwalk with the same
last vertex-side (un, sn). The second case is when d(u0, s0) > 1. Consider any walk t0 that ends in
(un, sn) and of which t is a proper subwalk. Observe that (u0, s0) would not be the first vertex-side
of t0. Therefore, since d(u0, s0) > 1, t0 cannot be a unitig and t must be prefix-maximal. The third
case is when (u0, s0) has degree one and (u0, s0) is its only neighbor. Again, consider any walk t0

that ends in (un, sn) and of which t is a proper subwalk. Observe that (u0, 1� s0) belongs to t0 but
is not the last vertex-side of t0. Therefore, since we assumed that d(u0, s0) > 1, t0 cannot be a unitig
and t must be prefix-maximal.
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To prove the if direction we prove the contrapositive. In other words, we will show that if
the degree of (u0, s0) is one and its sole neighbor (u0, s0) also has degree at most 1, then t is not
prefix-maximal. First, observe that t0 = (u0, 1� s0, u0, s0, . . . , un, sn) is a valid walk, since the edge
{(u0, s0), (u0, s0)} exists. Then, observe that the degree of (u0, s0) is exactly one because it has
degree at most one (by our assumption) and also has a neighbor (i.e. (u0, s0)). Therefore, the
degree requirements for t0 being a unitig are fulfilled. Finally, observe that t is a proper subwalk of
t0 ending in the same vertex-side, (un, sn). Therefore, t is not prefix-maximal.

In a bidirected graph, a walk and its reverse are either both unitigs or not and, if they are, are
either both are maximal or not.

Lemma B.8. Let K be a set of canonical k-mers and let w be a unitig in Gbid(K).

(i) rev(w) is a unitig in Gbid(K).

(ii) w is prefix-maximal i↵ rev(w) is su�x-maximal.

(iii) w is su�x-maximal i↵ rev(w) is prefix-maximal.

Proof. Let (u0, s0, . . . , un, sn) = w and (u00, s
0
0, . . . , u

0
n, s

0
n) = rev(w). For (i), by definition of rev,

we have that u0i = un�i and s0n = 1� sn�i. Applying the definition of unitig to w, we get that

d(ui, 1� si)  1 for all 0  i < n and d(ui, si)  1 for all 0 < i  n.

These can be equivalently stated as

d(u0n�i, s
0
n�i)  1 for all 0  i < n and d(u0n�i, 1� s0n�i)  1 for all 0 < i  n

If we change the index variables, these can be equivalently restated as

d(u0i, s
0
i)  1 for all 0 < i  n and d(u0i, 1� s0i)  1 for all 0  i < n.

This is precisely the definition of rev(w) being a unitig.
For (ii) and (iii), first observe that Lemma B.7 gives an alternate, equivalent, definition for

prefix- and su�x-maximal. For (ii), observe that if apply the alternate definition of su�x-maximal
to rev(w) and plug in that u0n = u0 and s0n = 1 � s0, we get precisely the alternate definition of
w being prefix-maximal. For (iii), observe that if apply the alternate definition of prefix-maximal
to rev(w) and plug in that u00 = un and s00 = 1� sn, we get precisely the alternate definition of w
being su�x-maximal.

While we showed that it is natural for the doubled graph to have a palindromic unitig, this is
impossible in a bidirected graph.

Lemma B.9. Let K be a set of canonical k-mers, with k odd. Then a unitig of Gbid(K) cannot be
a palindrome.

Proof. Let t = (u0, s0, . . . , un, sn) be a palindromic walk. By Lemma B.1, n is odd, and so
n � 1. For convenience, let m = (n � 1)/2. By definition, spell(t) = spell(t). In particu-
lar, the two “central” k-mers of spell(t) must be reverse complements of each other. Formally,
orient(lab(um), sm) = orient(lab(um+1), sm+1). Since the labels of vertices in a bidirected graph
are distinct, lab(um) 6= lab(um+1) and hence sm = 1�sm+1. Applying the definition of a bidirected
walk to t, we get that {(um, 1�sm), (um+1, sm+1)} is an edge. The fact that sm = 1�sm+1 implies
that this edge is an inverted loop incident to (um, 1� sm). Thus d(um, 1� sm) � 2, implying that
t does not satisfy the definition of being a unitig.
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B.3 Connecting the directed and bidirected graphs

So far, we have proven properties of the doubled graph and of the bidirected graph separately;
in this section, we prove lemmas about the relationship between the two graphs, when k is odd.
Recall that for a k-mer x 2 K, we defined FV (x) = (u, s), where (u, s) is the unique vertex-side in
Gbid(K) such that lab(u) = orient(x, s).

Lemma B.10. Let K be a set of canonical k-mers where k is odd. FV is a bijection between

vertices of Gdbl(K) and vertex-sides of Gbid(K).

Proof. To show that FV is a bijection, we will show that for all vertex-sides (u, s) in Gbid(K), there
exists a unique k-mer x in Gdbl(K) such that FV (x) = (u, s). Consider a value of x such that
FV (x) = (u, s). By definition, lab(u) = orient(x, s)). Since k is odd and x is not a palindrome, the
value of x satisfying this must be unique. By construction of Gdbl(K) and Gbid(K), k must be a ver-
tex in Gdbl(K). Further, if x = orient(lab(u), s), then orient(x, s) = orient(orient(lab(u), s), s) =
lab(u) and so x satisfies the condition that FV (x) = (u, s).

We will use F�1
V to denote the inverse of FV , which was shown in Lemma B.10 is F�1

V (u, s) =

orient(lab(u), s). We will use x
FV(=) (u, s) to denote that a vertex x of Gdbl(K) and a vertex-side

(u, s) in Gbid(K) are associated with each other by FV .
Recall that for two Gdbl(K) k-mers x1 and x2, we define the mapping FE(x1, x2) = {(u1, 1 �

s1), (u2, s2)}, where (u1, s1) = FV (x1) and (u2, s2) = FV (x2). Though the mapping is not a
bijection, it preserves the property of being an edge in the respective graph2:

Lemma B.11. Let K be a set of canonical k-mers where k is odd. Let x1 and x2 be vertices

in Gdbl(K). We have that (x1, x2) is an edge in Gdbl(K) if and only if FE(x1, x2) is an edge in

Gbid(K).

Proof. By the definition of bidirected edges, FE(x1, x2) = {(u1, 1� s1), (u2, s2)} is an edge i↵

suf(orient(lab(u1), s1)) = pre(orient(lab(u2), s2)). (1)

Recall that by the definition of FE , lab(u1) = orient(x1, s1) and lab(u2) = orient(x2, s2). We can
therefore rewrite Equation (1) equivalently as

suf(orient(orient(x1, s1), s1)) = pre(orient(orient(x2, s2), s2)). (2)

Now, using the fact that orient(orient(y, s), s) = y, for all y and s, we can rewrite Equation (2) as

suf(x1) = pre(x2) (3)

Since we obtained Equation (3) from Equation (1) using equivalent transformations, it shows that
the two statements are equivalent and completes the proof.

2As an aside, we mention how one would obtain a bijection. This is not necessary for the proofs of this
paper, but may be a useful observation in its own right. Let E be the set of edges in Gdbl(K), let ↵ ✓ E
be all the self-mirror edges, and let � be the partition of E \ ↵ into mirror edge-pairs. For example, if E =
{(AGG,GGA), (TCC,CCT ), (TTA, TAA)}, then ↵ = {(TTA, TAA)} and � = {{(AGG,GGA), (TCC,CCT )}}.
For an element {(x, y), (y, x)} 2 �, we define FEG({(x, y), (y, x)}) = FE(x, y). For a self-mirror edge (x, y) 2 ↵, we
define FEG({(x, y)}) = FE(x, y). One can then show that FEG is a bijection between ↵ [ � and edges in Gbid(K).
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One particular case of Lemma B.11 that we will often invoke is that there is an edge from x to
x in Gdbl(K) if and only if there is an inverted loop incident to (u, 1� s) in Gbid(K).

Now recall that FW is defined as a function that maps a walk w = (x0, . . . , xn) in Gdbl(K)
to a sequence FW (w) = (u0, s0, . . . , un, sn), with (ui, si) = FV (xi) for all 0  i  n. We show
that FW (w) is in fact a walk in Gbid(K) and, moreover, FW is a bijection from the set of walks in
Gdbl(K) to the set of walks in Gbid(K).

Lemma B.12. Let K be a set of canonical k-mers where k is odd. FW is a spell-preserving bijection

from the set of walks in Gdbl(K) to the set of walks in Gbid(K).

Proof. Let w = (x0, . . . , xn) be a walk in Gdbl(K) and let (ui, si) = FV (xi) for all 0  i  n. We
will first show that FW (w) = (u0, s0, . . . , un, sn) is a walk in Gbid(K). By definition of FV , FW (w)
is a sequence of vertex-sides. Consider the edge from xi to xi�1, for all 1  i  n. By Lemma B.11,
there is an edge {(ui�1, 1�si�1), (ui, si)} in Gbid(K). This shows that every two consecutive vertex-
sides in FW (w) are connected by an edge, thus completing the proof that FW (w) is a walk. The
fact that it is spell preserving follows from its definition.

To show that FW is a bijection, we need to show that for all walks t = (u0, s0, . . . , un, sn) in
Gbid(K), there exists a unique walk w in Gdbl(K) such that t = FW (w). Let w = (x0, . . . , xn) be an
arbitrary walk in Gdbl(K). In order for FW (w) = t, we need that FV (xi) = (ui, si) for all 0  i  n.
Because FV is bijection (Lemma B.10), there is exactly one value of xi to satisfy this, and that is
xi = F�1(ui, si) = orient(lab(ui), si). Therefore, w = (orient(lab(u0), s0), . . . , orient(lab(un), sn))
is the unique walk in Gdbl(K) to satisfy FW (w) = t.

Given the above proof, we can write the inverse of FW as F�1
W (u0, s0, . . . , un, sn) =

(orient(lab(u0), s0), . . . , orient(lab(un), sn)). We will use w
FW(=) t to denote that a walk w in

Gdbl(K) and a walk t in Gbid(K) are associated with each other by FW .
Notice that if k were to be even, then Lemma B.12 would not hold. In particular, Let x 2 K

be a palindrome k-mer and let u be the vertex in Gbid(K) such that lab(u) = x. Then both of the
walks (u, 0) and (u, 1) would spell x, while in the Gdbl(K) there would only be one walk that spells
x.

Since unitigs are defined in terms of degrees, it is useful to first understand how the degrees of
vertices in Gdbl(K) relate to the degrees of vertex sides in Gbid(K).

Lemma B.13. Let K be a set of canonical k-mers where k is odd. Let x be a vertex in Gdbl(K)

and let (u, s) be a vertex-side is Gbid(K) such that x
FV(=) (u, s). Then,

(i) d+(x) = d(u, 1� s)� dil(u, 1� s)

(ii) d�(x) = d(u, s)� dil(u, s).

Proof. For proving part (i), we will first prove an upper bound and then a matching lower bound.
We start with the upper bound. Let Y be the set of all out-neighbors of x which are not equal to
x. Note that Y may contain x. Let Y 0 = {FV (y) | y 2 Y } and observe that since FV is injective
(Lemma B.10), |Y 0| = |Y |. By Lemma B.11, for each vertex-side (u0, s0) 2 Y 0, there is an edge
{(u, 1� s), (u0, s0)} and so d(u, 1� s) � |Y 0|.

We show that d+(x) = d(u, 1 � s) � dil(u, 1 � s) by considering two cases. In the first case,
assume that there does not exist an edge (x, x). Then d+(x) = |Y |. Moreover, by Lemma B.11,
the edge {(u, 1 � s), (u, 1 � s)} does not exist, so dil(u, 1 � s) = 0. Putting these facts together,
d+(x) = |Y | = |Y 0|  d(u, 1� s) = d(u, 1� s)� dil(u, 1� s).
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In the second case, assume that there exists an edge (x, x). Lemma B.11 says that there is an
inverted loop incident to side (u, 1� s), so dil(u, 1� s) = 1. An inverted loop adds 2 to the degree
of (u, 1� s), i.e. d(u, 1� s) � |Y 0|+2; it also contributes 1 to out-degree of x, i.e. d+(x) = |Y |+1.
Putting these together, we get d(x) = |Y |+1 = |Y 0|+1  d(u, 1�s)�1 = d(u, 1�s)�dil(u, 1�s).

For the lower bound, let Z 0 be the set of all vertex-sides (u0, s0) such that (u0, s0) 6= (u, 1 � s)
and there is an edge {(u, 1� s), (u0, s0)}. Let Z = {z | FV (z) 2 Z 0}. By Lemma B.10, |Z| = |Z 0|.
By Lemma B.11, for every z 2 Z, there is an edge from x to z in Gdbl(K) and therefore d+(x) �
|Z| = |Z 0|.

Now we show that d(u, 1� s)  d+(x) + dil(u, 1� s) by considering two cases. In the first case,
assume that there is no inverted loop touching (u, 1�s). Then, d(u, 1�s) = |Z 0| and dil(u, 1�s) = 0.
We can therefore write d(u, 1� s) = |Z 0|+ dil(u, 1� s)  d+(x) + dil(u, 1� s). In the second case,
assume there exists an inverted loop touching (u, 1 � s). In this case, d(u, 1 � s) = |Z 0| + 2.
By Lemma B.11, there is an edge from x to x and x /2 Z. Thus, d + (x) � |Z| + 1. Putting this
together, d(u, 1� s) = |Z 0|+ 2 = |Z|+ 2  d+(x) + 1 = d+(x) + dil(u, 1� s).

For part (ii), observe that FV (x) = (u, 1� s). We can then apply part (i) of this theorem to x,
u, and 1 � s, and get that d+(x) = d(u, s) � dil(u, s). By Lemma B.3, d�(x) = d+(x), and hence
d�(x) = d+(x) = d(u, s)� dil(u, s).

An immediate consequence of the degree-preserving lemma is that if F (w) is a unitig, then so
is w. The converse is not always true however.

Lemma B.14. Let K be a set of canonical k-mers where k is odd. Let w = (x0, . . . , xn) and

t = (u0, s0, . . . , un, sn) be two walks related by w
FW(=) t.

(i) If t is a unitig, then w is a unitig.

(ii) If w is a unitig and for all 1  i  n, xi�1 6= xi, then t is a unitig.

Proof. For (i), when n = 0, w is trivially a unitig because it has only one vertex. For n > 0,
since t is a unitig, d(ui, si) = 1 for 0 < i  n. Moreover, since an inverted loop would make a
degree � 2, we have dil(ui, si) = 0. Using Lemma B.13, d�(xi) = 1. Similarly, for all 0  i < n,
d(ui, 1� si) = 1, dil(ui, 1� si) = 0, and Lemma B.13 gives that d+(xi) = 1. Hence w is a unitig.

For (ii), first observe that there is no inverted loop incident to (ui, si), for 1  i  n. If that
were the case, then Lemma B.11 implies that there is an edge from xi to xi. Since w is a unitig, the
only in-neighbor of xi is xi�1. Hence, xi�1 = xi, which contradicts the conditions of the Lemma.
Now, since dil(ui, si) = 0, Lemma B.13 implies that d(ui, si) = d�(xi) + dil(ui, si) = d�(xi) = 1.
Using a symmetrical argument (omitted), d(uj , 1 � sj) = 1 for all 0  j < n. Therefore, t is a
unitig.

Similarly, we can relate the maximality of unitigs in Gdbl(K) and Gbid(K). A maximal unitig
in Gdbl(K) is maximal in Gbid(K), on the condition that is a unitig in Gbid(K); however, the other
direction only holds with a restrictive condition.

Lemma B.15. Let K be a set of canonical k-mers where k is odd. Let w = (x0, . . . , xn) and

t = (u0, s0, . . . , un, sn) be two walks related by w
FW(=) t. Suppose that both w and t are unitigs.

(i) If t is prefix-maximal and has no lonely inverted loop at the first endpoint side, then w is

prefix-maximal.

(ii) If w is prefix-maximal, then t is prefix-maximal.
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(iii) If t is su�x-maximal and has no lonely inverted loop at the last endpoint side, then w is

su�x-maximal.

(iv) If w is su�x-maximal, then t is su�x-maximal.

Proof. We will prove (i) and (ii) only, since the proofs of (iii) and (iv) are symmetric. For (i), if
there is more than one edge incident to (u0, s0), then d(u0, s0) � 2. If there are no edges incident
to (u0, s0), then d(u0, s0) = 0. In both cases, Lemma B.13 implies that d�(x0) = d(u0, s0) 6= 1 and
Lemma B.4 implies that w is prefix-maximal.

Now consider the case that d(u0, s0) = 1. By the conditions of the Lemma, there is no in-
verted loop incident at (u0, s0), and Lemma B.13 implies d�(x0) = 1. Since t is prefix-maximal,
by Lemma B.7, there is a vertex side (u0, s0) and an edge e = {(u0, s0), (u0, s0)} such that d(u0, s0) > 1.
Let x0 = F�1

V (u0, 1 � s0) and Lemma B.11 implies that there is an edge from x0 to x0 in Gdbl(K).
Observe that because d(u0, s0) < 2, e is not an inverted loop. Therefore, (u0, s0) has at least one
incident edge that is not an inverted loop. Because an inverted loop adds at least two to the
degree, d(u0, s0)� dil(u0, s0) > 1. Thus, Lemma B.13 implies that d+(x0) > 1. By Lemma B.4, w is
a prefix-maximal unitig.

For (ii), suppose for the sake of contradiction that t is not prefix-maximal. Then Lemma B.7
implies that d(u0, s0) = 1 and there exists a vertex-side (u0, s0) with d(u0, s0) = 1 and an edge
e = {(u0, s0), (u0, s0)}. Let x0 = F�1

V (u0, 1 � s0). Note that dil(u0, s0) = dil(u0, s0) = 0 because
vertex-sides with degree 1 cannot have an inverted loop incident to them. Lemma B.13 then
implies that d�(x0) = d(u0, s0) = 1 and d+(x0) = d(u0, s0) = 1. In addition, Lemma B.11 applied
to e says that there is an edge from x0 to x. By Lemma B.4, these facts imply that w is not
prefix-maximal, which is a contradiction.

Theorem 2 has a condition that there are no circular unitigs. We now show that this implies
that a unitig in Gbid(K) cannot have lonely inverted loops incident to both of the endpoint sides.

Lemma B.16. Let K be a set of canonical k-mers where k is odd. Let w = (x0, . . . , xn) be a walk

in Gdbl(K) such that FW (w) is a unitig. If the two endpoint sides of FW (w) have lonely inverted

loops incident on them, then w0 = (x0, . . . , xn, xn, . . . , x0, x0) is a circular unitig in Gdbl(K).

Proof. First, to show that w0 is a walk in Gdbl(K), we need to show that there exist edges (x0, x0)
and (xn, xn). This follows by applying Lemma B.11 to the inverted loop edges at the endpoints of
F (w), i.e. to {(u0, s0), (u0, s0)} and {(un, 1� sn), (un, 1� sn)}.

Second, to show that w0 is a unitig, we will show that all the necessary vertex degrees are
1. By Lemma B.14, w is a unitig, and hence d+(xi) = 1 for all 0  i < n and d�(xi) = 1 for
all 0 < i  n. Let (ui, si) = FV (xi) for all 0  i  n. Because the endpoint sides of F (w)
each have a lonely inverted loop, d(u0, s0) = 2 and d(un, 1 � sn) = 2. Applying Lemma B.13,
d�(x0) = d(u0, s0) � dil(u0, s0) = 2 � 1 = 1 and d+(xn) = d(un, 1 � sn) � dil(un, 1 � sn) = 1.
Applying Lemma B.3 to all these, we get that d�(xi) = 1 for all 0  i  n and d+(xi) = 1 for all
0  i  n.

B.4 Proof of Theorem 2

Theorem 2. Let K be a set of canonical k-mers where k is odd and Gdbl(K) does not contain a

circular unitig.

(i) The function FW is a bijection from Dnon-pal to Bno-loop.

(ii) The function rev is a bijection between Blast-loop and Bfirst-loop.
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(iii) head is a bijection from Dpal and Blast-loop

Proof.

(i) We already know from Lemma B.12 that FW is a bijection between walks in Gdbl(K) and
Gbid(K). It remains to show that

(1) For a unitig w that is maximal and non-palindromic in Gdbl(K), FW (w) 2 Bno-loop.

(2) For a unitig t 2 Bno-loop, F�1(t) is a maximal and non-palindromic unitig in Gdbl(K).

First, we prove (1). Because w is a non-palindromic maximal unitig, by Lemma B.6, there
is no edge 0  i < n such that xi = xi+1, because then (xi, xi+1) would be a palindromic
sub-unitig of w. Hence we can apply Lemma B.14 to say that FW (w) is a unitig and we
can apply Lemma B.15 to say that FW (w) is maximal. Hence FW (w) 2 B. To show that
FW (w) /2 B2 \ B3, first assume for the sake of contradiction that there is a lonely inverted
loop at the last endpoint side of FW (w). Then by Lemma B.11 there is an edge from xn to
xn. By Lemma B.13, d+(xn) = 2 � 1 = 1. By Lemma B.3, d�(xn) = d+(xn) = 1. Because
w is maximal, if d+(xn) = 1, then d�(xn) > 1. This is a contradiction. The argument that
there is no lonely inverted loop at the first endpoint side of FW (w) is symmetric and omitted.

Now, we prove (2). Let w = F�1(t). Since t is a unitig, Lemma B.14 implies that w is a unitig
also. Moreover, Lemma B.9 implies that t is non-palindromic; since FW is spelling preserving
(Lemma B.12), w is also non-palindromic. Since the Theorem assumes that Gdbl(K) does not
have circular unitigs, Lemma B.16 implies that t cannot have a lonely inverted loop at both
endpoints. Since t /2 B2 [ B3, it also cannot have an inverted loop at exactly one endpoint.
We can therefore apply Lemma B.15 to get that w is maximal.

(ii) Observe that rev is by definition a function that is its own inverse and is a bijection on
the set of walks in Gbid(K). Furthermore, Lemma B.8 implies that rev remains a bijection
when restricted to maximal unitigs in Gbid(K). Finally, observe that for a walk t, the first
(respectively, last) endpoint side of t is the last (respectively, first) endpoint side of rev(t).
These facts together imply that rev is a bijection between Bfirst-loop and Blast-loop.

(iii) To show that head is a bijection we show

(1) for all w 2 Dpal, head(w) 2 Blast-loop,

(2) for all t 2 Blast-loop, there exists a w 2 Dpal such that head(w) 2 Blast-loop.

(3) the above w is unique.

First, we prove (1). Let w = (x0, . . . , xn). By Lemma B.1, n is odd and at least 1. Let
m = (n � 1)/2 and let h , (x0, . . . , xm). Since w is a palindromic unitig and, by the
conditions of the Theorem, non-circular, Lemma B.5 implies that for all 0  i < n, xi 6= xi+1.
Then by Lemma B.14, head(w) = FW (h) is a unitig. Simultaneously, because w is a maximal
unitig, h is a prefix-maximal unitig. Lemma B.15 then implies that FW (h) is prefix-maximal.

Now we show that FW (h) is su�x-maximal and has a lonely inverted loop at the last endpoint.
Let (u0, s0, . . . , um, sm) , FW (h). Since w is palindromic, Lemma B.5 implies that xm =
xm+1, and, hence, um = um+1. By Lemma B.11, there is an inverted loop incident to (um, 1�
sm), i.e. the last endpoint of FW (h). Because w is a unitig, d+(xm) = d�(xm+1) = 1,
Lemma B.13 then implies that d(um, 1�sm) = d+(xm)+dil(um, 1�sm) = 2. By Lemma B.7,
FW (h) is su�x-maximal and therefore we have shown that FW (h) 2 Blast-loop.
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Next we prove (2). Let (u0, s0, . . . , un, sn) = t and let xi = F�1
V (ui, si). Let w =

(x0, . . . , xn, xn, . . . , x0) be a sequence of vertices in Gdbl(K). We will first show that w is
a walk, then that it is palindromic, then that it is a unitig, and finally that it is maximal.
Note that w is equivalently defined to be the concatenation of F�1

W (t) with F�1
W (rev(t)).

Applying Lemma B.12, the sequences (x0, . . . , xn) and (xn, . . . , x0) are walks. Since t is in
Blast-loop, there is an inverted loop incident to (un, 1 � sn). By Lemma B.11, this implies
there is an edge from xn to xn in Gdbl(K). Therefore, w is a walk. It is palindromic by its
definition. Since t is a unitig, by Lemma B.8, rev(t) is a unitig. Now applying Lemma B.14,
w and rev(w) are both unitigs. Because the inverted loop is lonely, d(un, 1 � sn) = 2, and
by Lemma B.13, d+(xn) = 1. Applying Lemma B.3, d�(xn) = 1. Hence w is a unitig.

As t is in Blast-loop, this implies that no lonely inverted loop is incident to (u0, s0). We can
apply Lemma B.15 to get that F�1(t) is prefix-maximal. Because w starts with F�1(t), w is
also prefix-maximal. By Lemma B.8, F�1(rev(w)) is su�x-maximal. Because w ends with
F�1(rev(w)), w is also su�x-maximal. Hence, w is maximal.

For (3), let (u0, s0, . . . , un, sn) = t and let xi = F�1
V (ui, si). Let w0 be a walk in Dpal such that

head(w0) 2 Blast-loop. We will show that w0 = (x0, . . . , xn, xn, . . . , x0). Since head(w0) has
n+1 vertices, w must have 2n+2 vertices. Hence we can write w = (x00, . . . , x

0
2n+1). Since w

is a palindrome, we have that x0i = x02n+1�i for all 0  i  2n+1. We can therefore rewrite w

as w = (x00, . . . , x
0
n, x

0
n, . . . , x

0
0). Next, observe that head(w0) = FW ((x00, . . . , x

0
n)). Since this

must be equal to t and FW is a bijection (Lemma B.12), we get that (x00, . . . , x
0
n) = (x0, . . . , xn).

We can therefore rewrite w as w = (x0, . . . , xn, xn, . . . , x0), which is the same as w.

C Experimental details

Choice of k parameter for the assemblers: To ensure that the results across the assemblers
are comparable, we set the k parameter in a way so that the set of unitigs constructed are as close
as possible. The ideal way is to set k such that the underlying k-mer sets K used for all assemblers
are same. However, there was a practical limitation for that. We note that both SPAdes and
MEGAHIT are a multi-k assemblers, so the k parameter is just the maximum allowed k-mer size.
When we pass the value k to the assemblers, both SPAdes and MEGAHIT use k-mer set and
(k + 1)-mer set to construct unitigs, whereas bcalm, ABySS, and minia uses a node-centric de
Bruijn graph with only k-mer sets as vertices. As such, we found that the output unitigs of SPAdes
and MEGAHIT with a value of k are more similar to unitigs of bcalm and ABySS created with
k+1. We also note that SPAdes and MEGAHIT only allow odd k, which is why we needed to use
an even k for Gdbl.

In Table 3, we therefore passed k = 74 to bcalm and k = 73 to SPAdes and MEGAHIT.
Since Theorem 1 is valid for all k, this was not an issue for Table 3. We used the default parameter
for minimum k-mer coverage for both assemblers.

For Table 6, we passed k = 31 to all assemblers, since Theorem 2 only applies when the vertex
lengths are of odd k. Since SPAdes and MEGAHIT by default use both k-mer and (k+1)-mer set
to construct unitigs, the number of palindromic unitigs (433) di↵ers from the number in minia and
ABySS (440). However, this is not a problem because we are not comparing the numbers between
assemblers but only within assemblers.
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Detection of palindrome splitting artifact In this section, we use the notation S[i : j] to
denote substring of string S starting at index i and ending at index j. Let w = (x0, . . . , xn) be
a palindromic unitig in Dpal and let p be its spelling. We say a unitig in Dpal is fully-covered if
there exists some contig that aligns to an interval which contains p’s interval in the reference. Let
k0 , (k � 1)/2. We say w is split if there exists at least one contig c such that either

1. c aligns to an interval that starts before p’s interval and ends exactly at position |p|/2+ k0 of
p’s interval and there are no other contigs with alignments intersecting p[|p|/2 + k0 + 1 : |p|],
or

2. c aligns to an interval that ends after p’s interval and starts exactly at location |p|/2� k0 +1
of p’s interval and there are no other contigs with alignments intersection p[1 : |p|/2 + k0].

We say w is ambiguous if it does not fall into either category.
To motivate these cases, observe that the length of p is n + k and, because p is a palindrome

and k is odd, n must be odd. Let w0 = (x0, . . . , xn�1
2
) be the first half of the walk w and let

p0 be its spelling. By Theorem 2, head(w) 2 Blast-loop and rev(head(w)) 2 Bfirst-loop. Then,
p0 = p[1 : n�1

2 + k] = p[1 : |p|/2 + k0]. Then,

1. spell(head(w)) = spell(FW (w0)) = spell(w0) = p[1 : |p|/2 + k0], and

2. spell(rev(head(w))) = spell(rev(FW (w0))) = spell(FW (w0)) = p[p/2� k0 + 1 : |p|].

The cases we describe therefore correspond to observing the alignments of head(w) and
rev(head(w)) to the corresponding places of p and not observing any other bidirected unitigs
aligning across the middle boundaries.

CAMI dataset: We used the benchmark called “low complexity dataset” in (Sczyrba et al 2017).
Since our analysis requires error-free reads, we re-simulated the reads using identical genomes and
abundances (as detailed in supplementary materials of (Nurk, Meleshko, et al 2017)). Table S1
shows the properties and relative abundances of the genomes. We used CAMISIM (Fritz et al
2019) for the simulations, with read length of 150nt and insert size 150.
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Table S1: Characteristics of all 30 genomes consituting the CAMI “low complexity” dataset. The coverage refers to
the depth-of-coverage for each genome, in both the benchmark ((Nurk, Meleshko, et al 2017)) and our simulations.

Accession Species name n. contigs in
reference

n. bases in
reference

Coverage Abundance

AEGL00000000 Gamma proteobacterium
IMCC2047

815 2,234,019 873.3 76.21%

AAVV01000001 Marine gamma proteobacterium
HTCC2080

25 3,576,081 53 7.41%

AGFI01000001 Paenibacillus sp. Aloe-11 334 5,792,040 22 4.98%
ACXM01000000 Thermoplasmatales archaeon

I-plasma
6 1,684,836 21 1.38%

ACZW02000000 Erysipelotrichaceae bacterium
5 2 54FAA

10 3,137,098 16 1.96%

ARQX01000000 Gamma proteobacterium SCGC
AAA076-D13

81 1,663,375 14 0.91%

ATUD01000000 Patulibacter americanus DSM
16676

32 4,470,560 9 1.57%

GCF 000236585.1 Thermus sp. CCB US3 UF1 2 2,263,488 8 0.71%
ARCO01000000 Chloroflexi bacterium SCGC AB-

629-P13
64 842,066 8 0.26%

PRJNA586334 Marinimicrobia bacterium SCGC
AB-629-J13

103 1,123,146 8 0.35%

AGUD01000000 Patulibacter medicamentivorans 353 5,092,500 7 1.39%
CAXW010000000 Firmicutes bacterium CAG:114 292 2,332,166 4 0.36%
ANLA01000000 Formosa sp. AK20 47 3,055,484 3 0.36%
GCF 000445995.2 Geobacillus sp. JF8 2 3,486,308 2 0.27%
GCA 000496235.1 Uncultured archaeon A07HR60 14 2,876,249 1.9 0.21%
AMFN01000000 Enterobacteriaceae bacterium

LSJC7
34 4,616,889 1.8 0.32%

AMYX01000000 Alpha proteobacterium LLX12A 289 5,961,098 1.4 0.33%
AMSP01000000 Brevibacterium casei S18 43 3,664,641 1.2 0.17%
GCA 000403475.2 Lachnospiraceae bacterium 3-2 4 4,455,623 1 0.17%
AANX02000000 Burkholderia mallei 2002721280 208 5,690,468 0.9 0.20%
GCA 000209385.2 Lachnospiraceae bacterium

2 1 46FAA
1 2,219,029 0.9 0.08%

GCF 000219815.1 Weissella koreensis KACC 15510 2 1,441,470 0.7 0.04%
ARQU01000000 Alpha proteobacterium SCGC

AAA536-G10
148 2,161,697 0.6 0.05%

AOUN01000000 Sphingopyxis sp. MC1 24 3,653,464 0.4 0.06%
GCF 000015985.1 Rhodobacter sphaeroides ATCC

17029
3 4,489,380 0.4 0.07%

AMFB01000000 Bradyrhizobium sp. DFCI-1 98 7,645,871 0.3 0.09%
NC 021024.1 Butyrate-producing bacterium

SM4/1
1 3,108,859 0.3 0.04%

ARSS01000000 Alpha proteobacterium SCGC
AAA015-O19

159 1,742,143 0.2 0.01%

CBEH010000000 Firmicutes bacterium CAG:170 375 2,449,192 0.2 0.02%
NC 023004.1 Candidatus Saccharibacteria bac-

terium RAAC3 TM7 1
1 845,464 0.1 0.00%
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