
Ultra high diversity factorizable libraries for efficient therapeutic discovery 1

A Intractability of factorizable library design

Let f(.) denote the objective function we wish to optimize our library for, and suppose that f(.) can be
expressed as some multi-output boolean circuit of size at most |ΣL|. The output bits could be interpreted
as, for example, a floating point number.

To design a library without any constraints, we can simply enumerate and score all the sequences in time
polynomial in |ΣL|. However, once factorizability is enforced, then under the assumption that P ̸= NP there
exists no algorithm that runs in time polynomial in |ΣL| that can guarantee a solution appreciably better
than a random solution.

Theorem 3. Let ϵ be any strictly positive constant that is at most 1. Let f(.) be expressed as some multi-
output boolean circuit of size at most |ΣL|. Then unless P = NP, there exists no algorithm running in time
polynomial in |ΣL| that can, upon receiving f(.) as input and Ls, Lp, ns, and np as parameters, find a
factorizable library with factors Sp ⊆ ΣLp and Ss ⊆ ΣLs of sizes np and ns respectively such that:

(
∑

s∈Sp⊕Ss

f(s))− µ ≥ ϵ

((
max

S1∈P1,S2∈P2

∑
s∈S1⊕S2

f(s)
)
− µ

)
(7)

Where P1 ⊆ 2Σ
Lp

are all the subsets of ΣLp of size np and P2 ⊆ 2Σ
Ls

are all the subsets of ΣLs of size
ns, and µ = E[

∑
s∈X⊕Y f(s)], where X and Y are uniformly random over P1 and P2.

Proof. We will prove the contraposition and show that P = NP is implied if such an algorithm exists.
If the algorithm described does exist, then there exists an algorithm A that can, upon being given

f : Σ2L → {−1, 0, 1} as a boolean circuit of size at most |Σ2L| with 2 output bits and n ≤ |ΣL|, return
within time polynomial in |ΣL| a pair of sets Sp ∈ ΣL and Ss ∈ ΣL each of size n such that:(∑

s∈Sp⊕Ss

f(s)
)
− µf,n ≥ ϵ

(
ϕf,n − µf,n

)
(8)

Where µf,n denotes the expected score of a random solution and ϕf,n denotes the optimal solution. Let

Pn ⊆ 2Σ
L

be all subsets of ΣL of size n, and let X and Y be drawn uniformly at random from Pn. Then
formally:

µf,n = E[
∑

s∈X⊕Y

f(s)] (9)

ϕf,n = max
S1∈Pn,S2∈Pn

∑
s∈S1⊕S2

f(s) (10)

Let G = (V,E) be some graph that we wish to approximate the max clique of. Set L = ⌈log|Σ|(|V |4)⌉,
so |V |4 ≤ |ΣL|. We then pick a subset of V ′ ⊆ ΣL to represent the vertices V . We can then construct a
function f : Σ2L → {−1, 0, 1}:

f(x⊕ y) =


1, if x = y and x ∈ V ′

−1, if x is not a neighbour of y and x, y ∈ V ′

0, otherwise

(11)

We can express f as a circuit that is polynomial in the size of G by constructing it to only care about
sequences with prefixes and suffixes in V ′ and ignoring all other sequences and outputting 0. This will also
ensure it is smaller than |Σ2L| (for Σ2L sufficiently large), and can be done in time polynomial with respect
to the size of G. We then feed f to algorithm A along with n = |V |. Let X be the score of the solution found
by A.

Lemma 1. Suppose n ≤ |V ′|. Then µf,n ≥ −|V ′|−2.

2 Z. Dai and S. Saksena, et al.

Proof. First we note that for any S1 ⊆ ΣL and S2 ⊆ ΣL, we have
∑

s∈S1⊕S2
f(s) ∈ [−|V ′|2, |V ′|]. This is

because at most |V ′| sequences evaluate to 1 and at most |V ′|2 sequences evaluate to -1.
Next, consider the probability of drawing a random subset of ΣL of size n that contains at least one

sequence in V ′. The probability of this is upper bounded by the expected number of sequences in V ′ in

such a subset, which is n|V ′|
|ΣL| ≤ |V ′|−2 by construction. Therefore, the probability of randomly drawing two

subsets S1, S2 ⊆ ΣL of size n such that
∑

s∈S1⊕S2
f(s) ̸= 0 is at most |V ′|−4.

Therefore, µf,n ≥ −Pr(
∑

s∈S1⊕S2
f(s) ̸= 0)|V ′|2 ≥ −|V ′|−2, where S1 and S2 are uniformly random

subsets of ΣL of size n, as desired.

Lemma 2. Let n = |V ′|. Then ϕf,n is equal to the size of the max clique in G.

Proof. The only way a we can contribute positively to the score is if an element v belonging to V ′ is contained
in both libraries. However, this contribution is negated if there is some sequence in V ′ contained in either
library that is not a neighbour of v. Therefore, the best score can be no larger than the size of the max clique
in G. Conversely, we can attain the size of the max clique as a score if we include the elements in V ′ that
form the max clique in both libraries, and make every other sequence elements outside of V ′.

Then we have the following:

X − µf,n ≥ ϵ(ϕf,n − µf,n) (12)

X ≥ ϵϕf,n + µf,n(1− ϵ) (13)

X ≥ ϵϕf,n − |V ′|−2(1− ϵ) (14)

For sufficiently large graphs, |V ′|−2(1 − ϵ) ≤ ϵ
2ϕf,n since ϕf,n ≥ 1 (we can include a single sequence of

V ′ in both libraries and make sure every other sequence is not in V ′). Therefore:

X ≥ ϵϕf,n − ϵ

2
ϕf,n (15)

X ≥ ϵ

2
ϕf,n (16)

Therefore, X is at least a ϵ
2 fraction of the size of the max clique. Thus, we have constructed a procedure

for attaining a ϵ
2 approximation of the size of the maximal clique that runs in time polynomial in |Σ2L| (via

the properties of algorithm A), which scales polynomially with the size of the graph. Since any constant
factor approximation of the size of the maximum clique is known to be NP-hard [Zuckerman, 2006], we
attain P = NP as desired.

Ultra high diversity factorizable libraries for efficient therapeutic discovery 3

B Proof of statements from the main text

B.1 Proof of Theorem 1

Let Ax,i denote the ith entry in the vector φp(x). Let By,i denote the ith entry in the vector φs(y). Let Fx,y

denote f(x⊕ y). If we assign a total ordering to elements of the prefix and suffix spaces and treat elements
of those spaces as the numbers denoting their ordering, then we can view A, B, and F as matrices. We can
then rewrite the equation from the statement of Theorem 1:∑

x∈ΣLp

∑
y∈ΣLs

(
f(x⊕ y)− φp(x) · φs(y)

)2∑
s∈ΣL f(s)2

≤ 1− m

|Σmin(Lp,Ls)|
(17)

as the following:

∥F −ABT ∥2

∥F∥2
≤ 1− m

|Σmin(Lp,Ls)|
(18)

Where ∥.∥ denotes the Frobenius norm of a matrix. By definition, ABT is a rankm′ matrix. Let USV = F
be the singular value decomposition of F . By the Matrix Approximation Lemma, ∥F −ABT ∥ is minimized
when ABT = US̃V , where S̃ is S where only the largest m′ values along the diagonal are not zero (if
m′ ≥ |Σmin(Lp,Ls)|, then A and B can always be chosen such that ABT = F , so ∥F −ABT ∥ = 0). Therefore:

min
A,B

(
∥F −ABT ∥2

∥F∥2
) =

∥U(S − S̃)V ∥2

∥USV ∥2
=

tr((S − S̃)2)

tr(S2)
≤ |Σmin(Lp,Ls)| −min(m′, |Σmin(Lp,Ls)|)

|Σmin(Lp,Ls)|
(19)

Therefore, Equation 18 holds for all F if m′ ≥ m. If m′ < m, then we note that the last inequality in
Equation 19 holds with equality if S is a matrix with zero entries everywhere except along the main diagonal,
which implies that there is some F for which Equation 18 does not hold for any A and B. Theorem 1 follows.

B.2 Proof of Theorem 2

Let pi,c denote the fraction of sequences with character c at position i. We can then write H(Sp, Ss) as the
following:

H(Sp, Ss) = −|Sp ⊕ Ss|
L∑

i=1

∑
c∈Σ

pi,cln(pi,c) (20)

We also have the following relations:

∀i
∑
c∈Σ

pi,c = 1 (21)

L∑
i=1

pi,di = R (22)

Where R is some constant that is at least L−m and di denotes the ith character of d. The first relation
follows since the proportions must add up to 1, and the second relation follows since all sequences can be
obtained with m substitutions of d.

H(Sp, Ss) is upper bounded by the maximum value −|Sp ⊕ Ss|
∑L

i=1

∑
c∈Σ pi,cln(pi,c) can take subject

to the constraints imposed by Equations 21 and 22. The optimization problem can be solved via Lagrange
multipliers, which yields the following critical point:

∀i ∀c ̸= di pi,c =
1−R/L

|Σ| − 1
(23)

pi,di
=

R

L
(24)

4 Z. Dai and S. Saksena, et al.

Since this is the only critical point, and since it is straightforward to find pi,c under the constraints such
that the objective evaluates to a lower value (set pi,ci to 1−R/L+ϵ for all i where ci ̸= di is some arbitrarily
chosen symbol and where ϵ approaches arbitrarily close to 0), this must be a global maximum. Therefore:

H(Sp, Ss) ≤ −|Sp ⊕ Ss|
L∑

i=1

(R
L
ln(

R

L
) +

|Σ|−1∑
i=1

1−R/L

|Σ| − 1
ln(

1−R/L

|Σ| − 1
)
)

(25)

≤ −|Sp ⊕ Ss|L
(
(
R

L
)ln(

R

L
) + (1− R

L
)ln(1− R

L
) + (1− R

L
)

|Σ|−1∑
i=1

1

|Σ| − 1
ln(

1

|Σ| − 1
)
)

(26)

≤ |Sp ⊕ Ss|L
(
ln(2) + (1− R

L
)ln(|Σ − 1|)

)
(27)

< |Sp ⊕ Ss|L
(
ln(2) + (1− R

L
)ln(|Σ|)

)
(28)

≤ |Sp ⊕ Ss|L
(
ln(2) +

m

L
ln(|Σ|)

)
(29)

The final inequality follows from R ≥ L−m. Dividing the overall inequality by L|Sp ⊕ Ss|ln(|Σ|) yields
the desired result.

Ultra high diversity factorizable libraries for efficient therapeutic discovery 5

C Additional details for methods

C.1 Small feature spaces for Potts models

If f(x) gives the energy of x ∈ ΣL and can be described by a Potts model, then a pair of feature maps
φp(.) : Σ

Lp → Rmin(Lp,Ls)|Σ|+2 and φs(.)Σ
Ls → Rmin(Lp,Ls)|Σ|+2 can be found. First, we express sequences

x ∈ ΣL as a tensor where xi,c = 1 if xi = c and 0 otherwise. Then there must exist some rank 4 tensor A
such that the following holds:

f(x) =

L∑
i=1

∑
ci∈Σ

L∑
j=1

∑
cj∈Σ

xi,cixj,cjAi,ci,j,cj (30)

=

Lp∑
i=1

∑
ci∈Σ

Lp∑
j=1

∑
cj∈Σ

xi,cixj,cjAi,ci,j,cj +

L∑
i=Lp+1

∑
ci∈Σ

L∑
j=Lp+1

∑
cj∈Σ

xi,cixj,cjAi,ci,j,cj (31)

+

Lp∑
i=1

∑
ci∈Σ

L∑
j=Lp+1

∑
cj∈Σ

(xi,cixj,cjAi,ci,j,cj + xi,cixj,cjAj,cj ,i,ci) (32)

=g(x′) + h(x′′) +

Lp∑
i=1

∑
ci∈Σ

Ls∑
j=1

∑
cj∈Σ

x′
i,cix

′′
j,cj (Ai,ci,j+Lp,cj +Aj+Lp,cj ,i,ci) (33)

=g(x′) + h(x′′) + x̃′TBx̃′′ (34)

Where x′ is the matrix representing the prefix of x and x′′ is the matrix representing the suffix of x. x̃′

and x̃′′ are the flattened vectors of x′ and x′′, and B is some Lp|Σ|-by-Ls|Σ| matrix obtained by reshaping
and summing the appropriate subtensors of A.

Without loss of generality, let Lp ≤ Ls. Then we can simply let φp(x
′) = x̃′ ⊕ [1, g(x′)] and φs(x

′′) =
Bx̃′′⊕[h(x′′), 1], where here we use ⊕ to denote vector concatenation. Therefore both prefix and suffix feature
maps map to Rmin(Lp,Ls)|Σ|+2, and φp(x

′) · φs(x
′′) = f(x) as desired.

C.2 The objective function scales with library size

Suppose we propose to change a sequence x to x′ in the prefix library, where x and x′ differ by only a single
residue at position i. Let l be the length of x and x′. Let S′

p denote the updated prefix library. The difference
in objective between the initial library and the proposed library is then:

F(S′
p, Ss)−F(Sp, Ss) =

(∑
ss∈Ss

f(x′ ⊕ ss)− f(x⊕ ss)

)
+ λ|Ss||Sp[l]|

(
h(S′

p[l], i)− h(Sp[l], i)

)
(35)

The first term has a sum that contains |Ss| terms. If our proposal is an improvement to most sequences
it affects, then the size of the sum roughly scales with |Ss|. For the second term, if the library is sufficiently
large we can estimate the change in entropy with the derivative evaluated at t = 0:

h(S′
p[l], i)− h(Sp[l], i) ≈

d

dt
(p1 +

t

|S′
p[l]|

)ln(p1 +
t

|S′
p[l]|

)− (p2 −
t

|S′
p[l]|

)ln(p2 −
t

|S′
p[l]|

) =
1

|S′
p[l]|

ln(
p1
p2

)

(36)

Where p1 is the fraction of sequences in Sp[l] that has xi at position i and p2 is the fraction of sequences
in Sp[l] that has x

′
i at position i. Thus the second term in equation 35 also scales with |Ss|.

So the overall difference in score also scales with |Ss|. Similarly, we can see that making a change to a
sequence in the suffix library induces a change that scales with |Sp|. Thus in order to maintain a stochastic
phase in the simulated annealing procedure we normalize the score as described in the main text.

6 Z. Dai and S. Saksena, et al.

C.3 Deep learning architecture

We employ a convolutional neural network with residual connections to map strings to real valued vectors.
First, the strings are encoded into a 40-by-n array, where n is the maximum size of the string that the model
can take as input. This is done by first padding out the string to maximum length, and taking each character
in the string and mapping them into a 40 dimensional embedding, where the first 20 entries consists of a
one-hot encoding denoting the residue and the last 20 entries is the BLOSUM62 substitution values [Eddy,
2004]. The padding character is assigned the zero vector. These vectors then make up the columns of the
resulting encoded matrix and is fed into the neural network, where convolutions are run over the second
dimension and the first dimension is treated as a channel dimension.

The model first applies a linear transform to each position that increases the number of channels from
40 to 64, followed by batch normalization. This is then run through 5 residual blocks. Each residual block
consists of a pair of 1D convolutions with a kernel of size 3 and batch normalizations, separated by a ReLU
layer in between. The input of the block is then added to the output, forming the residual block. Max pooling
over adjacent positions is performed after each of the last 2 residual blocks. The resulting matrix is then
flattened and linearly mapped to a 128 dimensional vector, which is then passed through a ReLU layer,
which is then linearly mapped to an output vector.

For this work we make use of three kinds of models. The unrestricted model accepts length 20 sequences
and outputs 1 dimensional vectors, which are treated as output scores. The independent model consists of a
prefix and a suffix model that accept length 10 sequences and output 1 dimensional vectors, which are added
together to give the final output scores. The sequence is first padded to length 20, and then divided into two
sequences of length 10 which are fed into the prefix and suffix models. The reverse kernel model operates
identically to the independent model, except the models output 16 dimensional vectors. The dot product of
the vectors then give the final score.

C.4 Training deep learning models

Training datasets were split into 10 equal sets (one set has slightly more or less sequences when the number
of sequences is not a multiple of 10). These were used to create 10 training and validation splits, where for
each split one of the sets was used for validation and the rest were combined for training. For each split,
two randomly intialized models were trained, resulting in an ensemble of 20 models. Final predictions are
made by averaging over the outputs of the ensemble. Each model was trained for 100 epochs using ADAM
with default PyTorch v1.7 parameters [Kingma and Ba, 2014]. Model performances were evaluated using the
validation set after each epoch, and the model with the highest performance was saved. Models only accept
sequences of length 20, so shorter sequences were randomly padded such that each shift occurs with equal
probability. This allows the model to learn shift invariance, which is necessary for sequence generation since
different shifts may be represented once prefix and suffix libraries are concatenated. Models were created
using PyTorch v1.7 and trained on either a single NVIDIA Titan RTX GPU (24GB RAM) or a single
GeForce GTX 1080 Ti (11GB RAM). Training each model took around 30-60 minutes, although the best
performing model was usually found within 15-30 minutes.

Held out validation sets were used to evaluate performance in Figure 3. These sets were filtered to exclude
any sequences that overlapped the training sets. Sequences were padded equally on both sides during this
evaluation, with extra padding applied to the end if the sequence length is odd.

Ultra high diversity factorizable libraries for efficient therapeutic discovery 7

D Additional details on benchmarking SAPS

D.1 Additional details on the problem domain

To test SAPS, we generate energy landscapes over the domain of fixed length binary strings that are defined
by non-lattice Ising models. The Hamiltonian takes the following form:

H(s) =

n∑
i=1

n∑
j=i

∑
ci={0,1}

∑
cj={0,1}

Ii,j,ci,cj1si=ci1sj=cj (37)

Where n is the length of the strings, s denotes a string of length n, and 1x=y is the indicator function
that returns 1 when x = y and 0 otherwise. To generate a single Ising model, Ii,j,c1,cj are all independently
and uniformly drawn from {0,−1, 1}. 100 such models were generated for domains over sequences of length
14, 16, 18, and 20 for a total of 400 models.

This model permits us to define a a pair of practical feature maps as described in Appendix C.1 that
allow us to efficiently use the reverse kernel trick.

Such a model can be seen as a toy model for protein design. For example, suppose we know the exact
desired locations and orientations of the alpha carbons of the protein. That geometry then determines the
interactions, which can then be captured with something akin to the model described above.

D.2 Alternative optimization approaches to SAPS

The first approach we benchmark against is the greedy approach, where we start with a randomly generated
pair of libraries. We then sweep over each bit in each sequence in each library, flipping it if it produces an
improvement. We keep sweeping until convergence. Note that this is equivalent to SAPS if the temperature
parameter approaches zero.

For the next two approaches, we take each segment library and rank the sequences according to some
heuristic. The two we use are the expectation and max heuristic. For the expectation heuristic, we take a
segment and assign it the mean of all sequences containing that segment. For the max heuristic, we assign
to the segment the optimal score of all sequences containing that segment. We then take the top scoring
segments from each segment library.

Note that the runtime of each of these benchmarks (with the exception of the greedy approach) is Ω(|ΣL|),
where ΣL is the set of all sequences. This is because it is necessary to score every single sequence in order
to calculate the expectation and max heuristic. Therefore, the implementation of these heuristics in and
of themselves is non-trivial and may require heuristics. However, our benchmarking landscapes are small
enough that we can calculate them exactly. Thus, our benchmarks represent an optimistic view for how well
these other approaches can perform.

In fact, if there are no interactions between the segments the max and expectation heuristics will give
the optimal solution. Having no interactions means the Hamiltonian of the Ising model would take on the
following form:

H(s) =

m∑
i=1

m∑
j=i

∑
ci={0,1}

∑
cj={0,1}

Ii,j,ci,cj1si=ci1sj=cj +

n∑
i=m+1

n∑
j=i

∑
ci={0,1}

∑
cj={0,1}

Ii,j,ci,cj1si=ci1sj=cj (38)

Where the lengths of the strings is n, the lengths of the prefixes is m, and the lengths of the suffixes is
n−m. We present the proof:

Proof. Let X and Y denote the set of prefixes and suffixes respectively. For any string x⊕ y where x ∈ X is
a prefix and y ∈ Y is a suffix, we have H(x⊕ y) = Hp(x) +Hs(y) for some Hp(.) and Hs(.).

Let Ep(.) denote the expectation heuristic on prefixes and let Mp(.) denote the max heuristic on prefixes.
Let Es(.) and Ms(.) denote these heuristics on the suffixes. Let x ∈ X. We have Ep(x) = Hp(x) + E[Hs(Z)]
and Mp(x) = Hp(x)+maxz∈Y (Hs(z)), where Z denotes a random suffix distributed uniformly. Note that the
second term is independent of x in both equations, therefore both heuristics would rank prefixes identically,

8 Z. Dai and S. Saksena, et al.

and propose the prefixes with the highest Hp(x). The identical argument shows that the heuristics would
propose the suffixes with the highest Hs(y).

Therefore, it suffices to show that the expectation heuristic provides the optimal solution. Suppose that
there exists some pair of libraries that has a higher score than what’s given by the heuristic. Then there must
be some segment x that is in the better library and not in the heuristic library, and some segment y that
is in the heuristic library but not in the better library such that Ep(x) ≤ Ep(y) (or Es(x) ≤ Es(y)). Then
swapping out x for y can not decrease the scores of any sequence, since Hp(x) ≤ Hp(y) (or Hs(x) ≤ Hs(y)).
If we keep swapping we will eventually obtain the library given by the heuristic. Since each swap cannot
decrease the score, the heuristic library cannot score worse than the better library, which is a contradiction.

For the final two approaches, we take the greedy approach, but instead of initializing with a random
library we initialize with the outputs of the expectation and max heuristics. We refer to this as “greedy
refinement” in the main text.

Ultra high diversity factorizable libraries for efficient therapeutic discovery 9

E Experimental details

E.1 Details of phage panning experiments and processing

The experimental single framework library (used in all panning experiments) was constructed as follows: a
gene fragment encoding the germline framework combination IGHV3-23 and IGKV1-39 was synthesized in
Fab format and cloned into a phagemid vector template. Only CDR-H3s were diversified via trinucleotide
synthesis technology. Three of the four publicly available antibody-antibody targets were collected in-house
and reported on in [Liu et al., 2020]. Ranibizumab is a Fab fragment that binds to vascular endothelial
growth factor A, Etanercept is a fusion protein that fuses the TNF receptor 2 to the Fc and hinge region of a
IgG1 heavy chain, and Trastuzumab is a monoclonal antibody that binds to human epidermal growth factor
receptor 2 (HER2). The fourth, Omalizumab, is a IgG1k monoclonal antibody that specifically binds to free
human immunoglobulin E. All were collected in the same fashion as follows: first, the targets were expressed
in human IgG1 format. Three rounds of panning are completed in solid-phase mode on 96-well maxisorb
plates that are coated with the target with decreasing concentrations over rounds. Finally, a negative control
panning against no target for one round was conducted and is referred to as FW kappa in the text. Panned
phages are eluted and propagated for high throughput sequencing via MiSeq or HiSeq sequencers. For all
experiments, after obtaining sequencing reads, the fixed flanking sequences on the boundary of the variable
region were used as a template to BLAST short read alignment (allowing 3 mismatches on each side) to
identify CDR-H3 seqeunces. Datasets were constructed by retaining only sequences that had at least 5 read
counts in at least one panning round or had non-zero reads in all rounds to reduce noise.

E.2 Generating the factorizable library

We used the phage panning data to train reverse kernel models, which we used to generate segment libraries
that combine into libraries of size 109. SAPS was run for 500 sweeps on a single NVIDIA Titan RTX GPU
(24GB RAM) using an ensemble of 20 models to guide the objective, and each sweep took approximately 10
minutes to complete.

Each output segment library contains 5000 sequences of each length between 4 to 10, for a total of 35000
sequences. The resulting factorizable library should have a length distribution similar to the convolution of
a pair of uniform distributions, which is shaped like an isosceles triangle. Sequences in the prefix library
were padded exclusively on the left while sequences in the suffix library were padded exclusively on the right
before being fed to the reverse kernel models, so the model would not detect gaps in the sequences.

As discussed in the section titled “Sequences of different lengths can be represented using padding” in the
main text, there may be duplicate sequences, so the libraries may not contain exactly 350002 sequences. The
number of unique sequences in each library is given in Table S1, along with the λ entropy hyperparameter
that was used when generating them.

Library Number of unique sequences λ Hyperparameter

Ranibizumab(+) 1189623032 0.1
Omalizumab(+) 1208884387 0.1
Trastuzumab(+) 1220747116 0.3
Etanercept(+) 1224487103 0.3

BV(-) 1212124707 0.1
Ranibizumab(+) & BV(-) 1193869774 0.1
Ranibizumab(+) & BV(- -) 1214562933 0.1
Ranibizumab(++) & BV(-) 1190050282 0.1

Table S1. Unique sequences in factorizable libraries and their entropy hyperparameter

E.3 λ Hyperparameter tuning

To select λ which is a weight on the entropy term in the objective function for model training, we first gen-
erate smaller 105 libraries composed of segment libraries that contain 700 segments each (100 segments for

10 Z. Dai and S. Saksena, et al.

each length between 4 to 10 inclusive) at λ = [0, 0.001, 0.01, 0.03, 0.1, 0.3, 1]. We then evaluate the pairwise
Levenshtein distance between members of this library and score the library with the corresponding unre-
stricted model. Based on this analysis across targets, we recommend setting this hyperparameter between 0.1
and 0.3 based on the intended library diversity or score distribution. We provide an example of this tuning
conducted on Ranibizumab(+) in Fig. S1).

Fig. S1. Ranibizumab(+) λ hyperparameter tuning

F Details on Analyses

F.1 Details of library validation metrics

For all examples of library validation against FW-kappa, we evaluate diversity by measuring the pairwise Lev-
enshtein distance between 10,000,000 uniformly sampled pairs of length 12 sequences. Briefly, the Levenshtein
distance between two strings is the minimum number of single-character edits (substitutions, insertions, or
deletions) required to change one string into the other. We compute Levenshtein distance using python-
Levenshtein v0.12.2. For gigalibrary scoring, 1,000,000 sequences are uniformly sampled and scored with the
corresponding unrestricted model to evaluate the sequence optimality of large generated libraries.

F.2 Diversity of prefix and suffix libraries independently

For diversity analysis, we have primarily shown that the diversity of full length SAPS designed CDR-H3
sequences is higher than FW kappa. To further investigate the source of diversity, we show in Figure S2 that
the individual Levenshtein distance distributions of the prefix and suffix libraries are similar across target
objectives. Each distribution is calculated from 10,000,000 uniformly sampled segments over all segment
lengths. This indicates that the diversity of concatenated libraries is not a result of diversity isolated to the
prefix or suffix of the CDR-H3.

F.3 Details on nonspecific motif enrichment analysis

We applied motif enrichment analyses using STREME from the DREME suite [Bailey, 2021]. For all
STREME motif enrichment analysis, 490,000 sequences were sampled from both the primary and nega-
tive libraries and STREME was run with the following parameters: –protein –minw 3 –maxw 4 –nmotifs
100.

After construction of the BV(-) library optimized for limited polyspecificity, we conducted motif enrich-
ment analysis to check whether known nonspecific motifs were decreased in the BV(-) library when compared
to the FW-kappa randomized library. As a preliminary analysis, we computed the number of known tryp-
tophan, valine, arginine, and glycine nonspecific motifs (as identified in [Kelly et al., 2018]) in a sample of

Ultra high diversity factorizable libraries for efficient therapeutic discovery 11

Fig. S2. Prefix and suffix libraries have similar diversity.
For each target evaluated, we compute the pairwise Levenshtein distances of the corresponding prefix (black) and
suffix library (white).

490,000 sequences from both libraries (Figure S3). Next, we applied STREME motif enrichment analysis to
search for motifs enriched in FW-kappa over the BV library and report a few nonspecific motifs enriched
in FW-kappa with significance values (Table S2). We observe that nonspecific motifs are enriched in the
FW-kappa library over the BV factorizable library, further suggesting that the library has a favorable devel-
opability profile. Finally, we used STREME to identify motifs enriched in the Ranibizumab(++) & BV(-)
library over the Ranibizumab(+) & BV(- -) library and identify enriched nonspecific motifs, highlighting the
ability to tune factorizable libraries to specific tasks while improving developability (Figure 4D-F).

Motif p-value no. of sites

YYY 3.3e-3456 159437
GRG 1.5e-1007 79625
DVV 6.3e-080 3959
GGHS 1.2e-054 3324
GGD 3.4e-028 1701
WGG 3.8e-014 434
VGVD 1.6e-013 622

Table S2. Nonspecific motifs from STREME output for enriched sequences in FW-kappa over negative BV library

12 Z. Dai and S. Saksena, et al.

Fig. S3. Nonspecific motif counts in BV(-) vs. FW-kappa

Ultra high diversity factorizable libraries for efficient therapeutic discovery 13

References

[Bailey, 2021] Bailey, T. L., 2021. Streme: accurate and versatile sequence motif discovery. Bioinformatics,
37(18):2834–2840.

[Eddy, 2004] Eddy, S. R., 2004. Where did the blosum62 alignment score matrix come from? Nature biotechnology,
22(8):1035–1036.

[Kelly et al., 2018] Kelly, R. L., Le, D., Zhao, J., and Wittrup, K. D., 2018. Reduction of nonspecificity motifs in
synthetic antibody libraries. J. Mol. Biol., 430(1):119–130.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, .

[Liu et al., 2020] Liu, G., Zeng, H., Mueller, J., Carter, B., Wang, Z., Schilz, J., Horny, G., Birnbaum, M. E., Ewert,
S., and Gifford, D. K., et al., 2020. Antibody complementarity determining region design using high-capacity
machine learning. Bioinformatics, 36(7):2126–2133.

[Zuckerman, 2006] Zuckerman, D., 2006. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
681–690.

