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1.1 Supplementary Methods
1.1.1 Details of Data Preprocessing

We use three scRNA-seq datasets processed and published by The Human BioMolecular Atlas
Program (HuBMAP) consortium (HuBMAP Consortium [2019). These include “HuBMAP spleen”,
“HuBMAP thymus” and “HuBMAP lymph node”. We use SCANPY (Wolf et al. 2018) for the data

pre-processing. For each dataset, we first filter out cells expressing fewer than 200 genes and genes



expressed in fewer than 3 cells. We then normalize each cell to 1e4 total read counts. The values are
then log transformed and scaled to zero mean and unit variance. We clip the values such that the
maximum is ten. We use MyGene.Info (Xin et al.|2016) to convert the ensemble gene IDs to gene
symbols. After preprocessing, we have 34,515 cells x 26,092 genes for “HuBMAP spleen”, 22,367 cells
x 24,396 genes for “HuBMAP thymus” and 24,311 cells x 20,946 genes for “HuBMAP lymph node”.

The “Atlas lung” data is obtained from the Idiopathic Pulmonary Fibrosis (IPF) Cell Atlas
(Adams et al. 2020). We use the healthy control samples. Again, we use SCANPY to first filter
out cells expressing fewer than 500 genes and genes expressed in fewer than 5 cells. We then
normalize each cell to le4 total read counts and log transform the values. Given the large number of
genes profiled, we take only a subset of genes by selecting the most variable ones using SCANPY’s
implementation of “Seurat”-style variable genes selection with minimum mean, maximum mean and
minimum dispersion set to 0, 1,000 and 0.01, respectively. Finally, we scale the values to zero mean
and unit variance and clip those larger than ten. This results in a dataset of 96,282 cells x 17,315
genes. This dataset has two levels of annotations of the cell types and we use both for evaluation.

The “pbmc28k” data is from Van Der Wijst et al. (2018). We download the counts data
and annotations from https://genenetwork.nl/scrna-seq/. Same as for other datasets, we use
SCANPY to filter out cells expressing fewer than 200 genes and genes expressed in fewer than 3
cells. We then normalize each cell to le4 total read counts. The values are then log transformed
and scaled to zero mean and unit variance. We clip the values such that the maximum is ten. This
results in a dataset of 25,185 cells x 19,404 genes. The “pbmc68k” data is from Zheng et al. (2017)
and we downloaded the counts data from https://www.10xgenomics.com/resources/datasets/
fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0. The annotations are downloaded from https:
//github.com/10XGenomics/single-cell-3prime-paper/issues/3. We use SCANPY to filter
out cells expressing fewer than 200 genes and genes expressed in fewer than 3 cells. We then
normalize each cell to le4 total read counts. The values are then log transformed and scaled to zero
mean and unit variance. We clip the values such that the maximum is ten. The resulting dataset is
of 68,551 cells x 17,788 genes.

All of the datasets mentioned above are from human tissue samples. We also use the Tabula
Muris (The Tabula Muris Consortium [2018) dataset from mouse tissue samples. We downloaded the

Tabula Muris Senis data from https://figshare.com/projects/Tabula_Muris_Senis/64982 and
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used “cell ontology class” as cell type labels. We first use SCANPY to filter out cells expressing
fewer than 500 genes or 5000 read counts and genes expressed in fewer than 5 cells. Following Brbié¢
et al. (2020), we take the cells from 3 months old samples from the Tabula Muris Senis data to
obtain the Tabula Muris data and we also removed the “Marrow” and “Brain Myeloid” tissues due
to lack of expert validation or stable markers to distinguish cell types. For each of the rest of the
tissues, we then normalize the cells to le4 total read counts. The values are then log transformed,
scaled to zero mean and unit variance and truncated at ten. This results in 21 datasets, each for a
single tissue. They all have 22,904 genes and having number of cells ranging from 366 (Aorta) to
4,433 (Heart).

For the merged human dataset which we use to train the gene set activity scores model and
apply on mouse tissues, we use all the HuUBMAP datasets, the “Atlas lung” and the “pbmc28k”

dataset.

1.1.2 Details for Model Training and Hyperparameter Selection

Throughout the training process, we use Adam (Kingma and Ba 2014) as the optimizer and fix the
learning rate at He-4. We use a batch size of 16 for data with sample size <le4 and 128 otherwise for
all steps except for pre-training the annotator, where we use a batch size of 32 for all datasets. We
use 32 dimensions for the low-dimensional representation ze of a cell. For the other hyperparameters,
including the neural network configuration and the weighting hyperparameters in the loss functions,
we conducted a grid search using the Tabula Muris dataset and selected those hyperparameters
values leading to the best averaging performance over tissues. Unless specifically mentioned, the

same set of values were applied to all datasets in all experiments.

1.1.2.1 Training the Gene Set Activity Scores Model

For the encoder of the autoencoder model, we use 5 fully-connected hidden layers of size 128
with ReLU activations. As noted above, we also use a ReLU activation for the output layer. The
drop-out rate is set to 0.1 for all layers. As for the decoder, as described before, we use the binary
matrix D. We fix the number of training epochs at 70 for all experiments except for training the

model for the merged human tissues dataset. Given the large sample size (about 2e5) of the merged



data, we train the model for 100 epochs.

There are two weighting hyperparameters in our loss function Lactivity(y,¥) = ||y —F 1> +alr][1 —
BT Dr: o and . These are used to weight the L1 penalty and the set cover term, respectively. We
evaluated how these two hyperparameters impact the sparsity of the resulting gene sets and gene
coverage. We quantify the sparsity by the number of non-zero values in the gene set activity scores r
and gene coverage by the number of genes a cell uses and the average number of times a gene is
used. As we show in Figure both a and § impact the sparsity of the gene set activity scores r
while only 8 impacts the gene coverage, as expected.

Note that S is a vector with each element corresponding to a gene. One may apply different
values for different genes if weights are available. For our case, we use the same value for all genes.

We fix a at 0.01 and 8 at 1e-05.

1.1.2.2 Training the Autoencoder for Cluster Assignment and Annotation

For the encoder, we use 3 fully-connected hidden layers of size 128 with ReLLU activation and
linear activation for the output layer. We use the same configuration for decoder (e) and (q), both
with 2 fully-connected hidden layers of size 128 with ReLU activation. We also use linear activation
for the output layers. The drop-out rate is set to 0.1 for all layers. For the annotator, as noted
before, we use a logistic regression.

We first pre-train the encoder and the decoder (e) on the expression data for 50 epochs. We
use this pre-trained autoencoder to generate initial low-dimensional representations of the cells. We
then run Leiden clustering (Traag et al. 2019) implemented in SCANPY (Wolf et al. 2018) on these
initial low-dimensional representations to obtain a guess of the number of clusters M, the initial
cluster assignment and the cluster centroids S. We use the default resolution 1. Both the number of
clusters M and cluster centroids S are refined as part of the training. Specifically, clusters with no
cell assigned to them are removed.

We then pre-train the annotator using the inferred gene set activity scores and the selected
genes, if available. The genes are selected using the variable genes selection method of Seuratv3
(Stuart et al. 2019) implemented in SCANPY (Wolf et al. 2018). The number of selected genes is

fixed at 2,000. We use the cluster assignment initialized as described above as the true labels and



pre-train the annotator for 50 epochs.

Finally, we train the annotator together with the cluster assignment part (the encoder and
decoder (e) & decoder(q)) for 25 epochs. In each epoch, the annotator is trained by using the
clustering results as the true label for each cell. The output from the annotator p(r) is in turn used
to evaluate the annotator loss Lannotator for the cluster assignment part. As described previously,
the annotator is optimized using its own loss function, separately from the cluster assignment part.

There are two weighting hyperparameters in this model, v and 7.

1. 7 which is used to weight the exclusive L1 penalty in Lassification 0f the annotator
We employ a heuristic way to automatically select the value for 4 during the training process,
without knowing the ground truth cell labels. During pre-training, the annotator will be easily
overfitted if the number of features is as large or larger than the number of cells. This will
be mitigated if we apply a more stringent regularization through a larger . Given a list of
candidate values of v, we start with a small value, pre-train the annotator and evaluate the
classification accuracy on all available data (which we also use for training). If the accuracy is
> 0.99, which indicates that the annotator is overfitted, we move on to the next larger value in
the list and pre-train the annotator again until we find one resulting in the training accuracy

< 0.99.

The candidate values we consider range from le-3 to 2 when use both gene set activity scores

and selected genes as input. When only gene set activity scores or genes are used as input, we

start with le-4. As we show in [Supplementary Results, our model is robust to different choices

of starting values.

2. 7 for the annotator loss in L¢uster in the cluster assignment part
We set 7 such that the magnitude of the annotator loss Lannotator 18 comparable to the

magnitude of the reconstruction 1oss Lieconstruction: We fix 7 at 10 for all experiments. As we

show in [Supplementary Results| our model is robust to other choices of 7.

1.1.3 Details for Running the Prior Methods

For the prior methods, we use the default or recommending procedures / hyperparameters to all

datasets unless we encounter difficuties in computaional resources or run time. For Leiden clustering,



we use 30 neighbors and 32 dimensions for the principal components analysis (PCA). We fix the
resolution at the default 1. For DESC, we adjust the hyperparameters for datasets with different
sample sizes based on the recommending hyperparameters values listed in the Supplementary Table
2 in their manuscript (Li et al. 2020). We fix the resolution at 1 for the Louvain clustering used in
DESC. For Seuratv3, we use the default top 2,000 most variable genes for the PCA. These genes
were selected using SCANPY’s implementation of Seuratv3-style variable genes selection (Wolf et al.
2018). For SIMLR, we use the default version and hyperparameter values for all datasets with a
sample size < 3,500. For datasets with larger sample size, we use their “large scale” version with the
number of neighbors set at 30 and the number of dimensions for PCA set at 500. Given running their
script to find the number of clusters for the larger datasets taking too much memory and cannot be
finished, we set the number of clusters as the true number of cell types for the datasets with sample
size > le4. Running SIMLR for “pbmc68k” and “Atlas lung” takes too much memory and cannot be
finished, even when we use 500 PCA as input instead of reading in the raw data. We thus don’t have
the results of SIMLR, for “pbmc68k” and “Atlas lung”. For SCCAF, we use 100 principal components
learned from the preprocessed data, as mentioned in Miao et al. (2020). It is not clear from Miao
et al. (2020) the specific value for k in k-nearest neighbors (k-NN) so we use the default value 15
from Wolf et al. (2018). Following Miao et al. (2020), we use Louvain (Blondel et al. 2008) clustering
with resolution 1 to initialize the clusters. The other hyperparameter values are kept as default.
We use the default hyperparameter values for MARS and ItClust for all datasets. Given
ItClust conducts gene filtration based on dispersion after taking into the input data, instead of the
preprocessed data we use as input for other methods, we use raw count data without normalization
for ItClust. For these raw count data, we filter the genes and cells under the same standards as
for the preprocessed data to keep the cells and genes used as input for [tClust the same as for the
others. We use stratified sampling to select cells for training for MARS and ItClust except for the
liver and the lung dataset in the Tabula Muris where the least populated class has only one member
and stratification is not allowed. For CellAssign, we use the implementation of it by scvi-tools
(Gayoso et al. [2022). Following AW Zhang et al. (2019), we use raw count data as input. Following
scvi-tools’s tutorials, we set the size factor as the library size over the mean of library size and we
also set a (pseudo-) cell type called “other” which does not have any of the marker genes expressed

in the cell type marker gene table. We use markers from PanglaoDB (Franzén et al. 2019)), where



marker genes are grouped by tissues. We tried initially using all available cell type markers as input
for any datasets and it turned out it runs extremely slow so we decided to use the ones from the
tissue that best matches the tissue of the dataset. See Table [S1|for details. It still takes a long time
for running CellAssign on “pbmc68k” so we randomly sampled 70% of the cells stratified by true
labels and run CellAssign on the sub-sampled data. We use all default hyperparameter values except
for the batch size. We set the batch size as 1,024 (default) if the number of features after filtering is
below 500, 512 if below 1,000 and 32 otherwise.

dataset matched tissue names in
PanglaoDB

pbmc28k Immune system

pbmc68k Immune system

HuBMAP lymph node Immune system

HuBMAP spleen Immune system

HuBMAP thymus Immune system, Thymus

Atlas lung Lungs

Tabula Muris Aorta Vasculature

Tabula Muris Bladder Urinary bladder

Tabula Muris Brain _Non-Myeloid Brain

Tabula Muris Diaphragm Epithelium

Tabula Muris Large Intestine GI tract

Tabula Muris Limb_Muscle Skeletal muscle

Tabula Muris Tongue Oral cavity

Tabula Muris Trachea Vasculature

Table S1: Dataset and their matched tissue names in PanglaoDB. The other tissues in the Tabula Muris dataset that are not
shown here are matched with tissue names in PanglaoDB more straightforwardly (for example, Mammary Gland to Mammary
gland). We were unable to find matching tissue names for the adipose tissues in the Tabula Muris dataset so we did not run
CellAssign for them.

1.1.4 Details for Generating Random Values for “UNIFAN random”

For each feature, we randomly sample a value from N(0,1). The total number of features equal to
that of the default version (“UNIFAN genes & gene sets”).

1.1.5 Evaluation on the Enrichment of Cell Type Marker Sets in the Highly Weighted

Genes

To interpret the highly weighted genes selected by the annotator, we select the genes whose coefficients

above some thresholds. Given the cell type marker gene sets from MSigDB (Subramanian et al.|2005)



(c8.all in MSigDB), we check the enrichment of these cell marker sets in the selected highly weighted
genes by conducting binomial tests. For each cell marker gene set, we test if the chance of seeing its
member appearing in the selected highly weighted genes is higher than the background rate, defined
as the chance of seeing its member appearing in all genes used as features for the annotator. We use
Benjamini/Hochberg procedure to correct for multiple testing and show the adjusted p-values in the

results.

1.1.6 Simulation Experiments

We conducted simulation experiments to test if UNIFAN is robust when cells contain novel pathways
that have not been documented in the pathway database we use. We simulated expression data
using pseudo-pathways that are not included in the pathway database. Specifically, we constructed
pseudo-pathways by randomly selecting two pathways from the original database and combining
them. We select from the pathways having number of genes larger or equal to 5 but smaller or equal
to 20 (resulting in 5,036 pathways). Under this approach, we generated 3,000 pseudo-pathways. The
number of genes per pseudo-pathway is about 20.

We then simulate expression data using these generated pseudo-pathways. For each simulation
dataset, we generated 5 cell types, each having 300 cells. Each cell has 3,000 features (genes). For
each cell type, we randomly selected a fixed number of pseudo-pathways. We combine the genes from
these pseudo-pathways as the features. The rest of features are named as “PSEUDO1”, “PSEUDQO?2”,
etc. We assume the expression of genes from a cell of a particular cell type following a multivariate
normal distribution and set the mean values for the genes in the pseudo-pathways higher than the
other genes (background genes). We set the mean for the background genes as 1. We assume all
genes independent with each other and having variances equal to 1. We also applied a 10% dropout
per cell to some of the simulation datasets.

We generated multiple simulation datasets under different number of selected pseudo-pathways
(ranging from 15 to 25), different mean values for the pathway genes (2 or 3) and with or without

drop-out. For each condition, we generated 5 replicates.



1.2 Supplementary Results

1.2.1 Alpha and Beta’s Impact on Sparsity and Gene Coverage
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Figure S1: « and ’s impact on the gene set activity scores r. For the values we tested, both a and 8 impact on the sparsity of
r (indicated by the number of non-zero gene sets in r) while only 38 impact on the gene coverage (indicated by the number of
genes a cell used and the number of times a gene is used).

1.2.2 UNIFAN Robust to Different Choices of Hyperparameters

For the weighting hyperparameters «, 5, 7 and -, we vary the value for each of the hyperparameter at
a time, while fixing the values for all other hyperparameters. We use all tissues in the Tabula Muris
data for the evaluation. For each value, we run five times using different initializations. Given the
values changing of o and 8 may have different impact on the two variations of UNIFAN: “UNIFAN
genes & gene sets” and “UNIFAN gene sets”, we run both versions. For 7, given we employ the

auto-selection of the value for v and we end up in the same ~ value regardless of the starting value



for “UNIFAN genes & gene sets” and “UNIFAN genes”,

we only show the robust experiment results

on “UNIFAN gene sets”. For the others, we run the experiments on the default “UNIFAN genes &

gene sets” version.

As shown in Figure the clustering performance is similar under different hyperparameter

choices within a set of reasonable values.
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Figure S2: UNIFAN robust to different choices of hyperparameters. We varied the values for the weighting hyperparameters «,
B, T and v and fixed all other hyperparameters. We run on all tissues in the Tabula Muris data for multiple times and we take
the average over all tissues. The results indicate that our model is generally robust to different choices of the hyperparameters.

Other than the weighting hyperparameters, we also evaluate if our method is robust to different
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choices of the resolution value used in Leiden clustering initialization and to the number of epochs
used for the joint training step of the clustering assignment part and the annotator. Again, we vary
the value for each of these at a time, while fixing the values for the others. We use all tissues in the
Tabula Muris data for the evaluation. For each value, we run five times using different initializations.
We run the experiments on the default “UNIFAN genes & gene sets” version. We also check if the
resulting number of clusters is affected by different choices of values.

As shown in Figure [S3] and both the resulting clustering performance and the number of
clusters are similar under different choices of the resolution value and the number of epochs within a
set, of reasonable values.
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Figure S3: UNIFAN robust to different choices of the resolution value used in Leiden clustering initialization. We varied the
values for the resolution and fixed all others. We run on all tissues in the Tabula Muris data for multiple times and we take the
average over all tissues. The results indicate that our model is generally robust to different choices of the resolution value used
in initialization.
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Figure S4: UNIFAN robust to different choices of the number of epochs for the joint training step. We varied the values for the
training epochs and fixed all others. We run on all tissues in the Tabula Muris data for multiple times and we take the average
over all tissues. The results indicate that our model is generally robust to different choices of the number of training epochs.
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1.2.3 Visualization and Interpretation of UNIFAN Results

cluster

gene set name

0

GOBP ANTIGEN PROCESSING AND PRESENTATION
ENDOGENOUS LIPID ANTIGEN VIA MHC CLASS IB
GOBP IMMUNE RESPONSE INHIBITING CELL SUR-
FACE RECEPTOR SIGNALING PATHWAY

GOBP NEGATIVE REGULATION OF MACROPHAGE
DERIVED FOAM CELL DIFFERENTIATION

GOBP REGULATION OF T CELL ACTIVATION VIA T
CELL RECEPTOR CONTACT WITH ANTIGEN BOUND
TO MHC MOLECULE ON ANTIGEN PRESENTING
CELL

REACTOME ANTIGEN ACTIVATES B CELL RECEP-
TOR BCR LEADING TO GENERATION OF SECOND
MESSENGERS

GOBP NEGATIVE REGULATION OF RESPIRATORY
BURST INVOLVED IN INFLAMMATORY RESPONSE
GOBP POSITIVE REGULATION OF CD8 POSITIVE
ALPHA BETA T CELL DIFFERENTIATION

Table S2: Gene set names for highly weighted biological processes / pathways for “pbmc28k” that are truncated in Figure E D

due to limit of space.

Gene set activity scores for cells assigned to 6 for ppbmc28k

2.0
1.5
-1.0

-0.5

-0.0

Figure S5: Other than interpreting from the annotator coefficients, we can also directly interpret the gene set activity scores to
learn the biological processes or pathways important to cells / cell clusters. Here we show the gene set activity scores for cells
assigned to cluster 6 in “pbmb28k” as an example. Each row corresponds to each cell’s gene set activity scores. We can clearly
see that cells assigned to the same cluster tend to have similar gene set activity scores. The gene sets selected as important by
the annotator also tend to have high scores. For example, most of the cells in cluster 6 are non-classical monocyte (ncMonocyte).
The biological process directly relates to this cell type is “GOBP REGULATION OF INFLAMMATORY RESPONSE TO
WOUNDING” (gene set at index 2298 in this plot), which is selected by the annotator and also among one of the highest
scored gene sets according to the gene set activity scores. Note that due to space limit, here we only show the scores of 50 cells
randomly selected from all cells assigned to cluster 6.
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cluster gene set name

HAY BONE MARROW NAIVE T CELL

BUSSLINGER GASTRIC IMMUNE CELLS

FAN OVARY CL12 T LYMPHOCYTE NK CELL 2

CUI DEVELOPING HEART C9 B T CELL

TRAVAGLINI LUNG CD4 MEMORY EFFECTOR T CELL
BUSSLINGER DUODENAL DIFFERENTIATING STEM CELLS
HAY BONE MARROW NK CELLS

TRAVAGLINI LUNG NATURAL KILLER CELL
RUBENSTEIN SKELETAL MUSCLE NK CELLS

DURANTE ADULT OLFACTORY NEUROEPITHELIUM NK CELLS
FAN EMBRYONIC CTX BRAIN EFFECTOR T CELL
AIZARANI LIVER C5 NK NKT CELLS 3

TRAVAGLINI LUNG OLR1 CLASSICAL MONOCYTE CELL
TRAVAGLINI LUNG EREG DENDRITIC CELL
TRAVAGLINI LUNG CLASSICAL MONOCYTE CELL

HAY BONE MARROW IMMATURE NEUTROPHIL

FAN OVARY CL13 MONOCYTE MACROPHAGE
DURANTE ADULT OLFACTORY NEUROEPITHELIUM DENDRITIC CELLS
TRAVAGLINI LUNG B CELL

RUBENSTEIN SKELETAL MUSCLE B CELLS

DURANTE ADULT OLFACTORY NEUROEPITHELIUM B CELLS
FAN EMBRYONIC CTX BRAIN B CELL

AIZARANI LIVER C34 MHC II POS B CELLS

HAY BONE MARROW FOLLICULAR B CELL

AIZARANI LIVER C1 NK NKT CELLS 1

FAN OVARY CL4 T LYMPHOCYTE NK CELL 1
TRAVAGLINI LUNG CD8 NAIVE T CELL

BUSSLINGER GASTRIC IMMUNE CELLS

HAY BONE MARROW CD8 T CELL

DESCARTES FETAL PLACENTA LYMPHOID CELLS

HAY BONE MARROW MONOCYTE

TRAVAGLINI LUNG NONCLASSICAL MONOCYTE CELL
DESCARTES FETAL PANCREAS MYELOID CELLS
AIZARANI LIVER C6 KUPFFER CELLS 2

DESCARTES FETAL CEREBELLUM MICROGLIA
AIZARANI LIVER C2 KUPFFER CELLS 1

HAY BONE MARROW DENDRITIC CELL

BUSSLINGER ESOPHAGEAL DENDRITIC CELLS
DESCARTES FETAL INTESTINE MYELOID CELLS

FAN OVARY CL13 MONOCYTE MACROPHAGE
AIZARANI LIVER C2 KUPFFER CELLS 1

AIZARANI LIVER C25 KUPFFER CELLS 4

HAY BONE MARROW DENDRITIC CELL

TRAVAGLINI LUNG PLASMACYTOID DENDRITIC CELL
FAN OVARY CL18 B LYMPHOCYTE

Table S3: Gene set names for the enriched cell type marker sets in the highly weighted genes for “pbmc28k”. These names are
truncated in Figure [Z E due to limit of space.
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Figure S6: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for
the “Atlas lung” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of cells output from
UNIFAN. A: Colored by the clusters found by UNIFAN; B: colored by the true cell type labels; C: colored by the clusters found
by Seuratv3. D: Coefficients learned by the annotator for highly weighted gene sets for some of the clusters. E: Enrichment
p-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the result from the best
run out of multiple runs for UNIFAN and for Seuratv3.
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Figure S7: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for the
“Tabula Muris Brain Non-Myeloid” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of
cells output from UNIFAN. A: Colored by the true cell type labels; B: colored by the clusters found by UNIFAN; C: colored by
the clusters found by DESC. D: Coefficients learned by the annotator for highly weighted gene sets for some of the clusters. E:
Enrichment p-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the result
from the best run out of multiple runs for UNIFAN and for DESC.
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Figure S8: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for the
“Tabula Muris Limb_Muscle” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of cells
output from UNIFAN. A: Colored by the true cell type labels; B: colored by the clusters found by UNIFAN; C: colored by
the clusters found by SIMLR. D: Coefficients learned by the annotator for highly weighted gene sets for some of the clusters.
E: Enrichment p-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the
result from the best run out of multiple runs for UNIFAN and for SIMLR. The truncated gene sets (marked by *) are: “GOBP
POSITIVE REGULATION OF ENDOTHELIAL CELL CHEMOTAXIS BY VEGF ACTIVATED VASCULAR ENDOTHELIAL
GROWTH FACTOR RECEPTOR SIGNALING PATHWAY” and “GOBP ANTIGEN PROCESSING AND PRESENTATION
OF EXOGENOUS PEPTIDE ANTIGEN VIA MHC CLASS I TAP INDEPENDENT”.
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1.2.4 Compare UNIFAN Variations and UNIFAN with Prior Methods

Clustering performance

0.8 Clustering performance across methods for the higher level
= l i '
207 ' ' i
C
206
+ .
£ ' ' '
5 0.5 1 |
‘€ |
< |
2
0.3
i
N 0.2
g .
5 0.1
=z
0.0 ;
HuBMAP HuBMAP HuBMAP Atlas pbmc28k pbmc68k Tabula Muris Atlas
spleen thymus lymph_node lung lung
Dataset
mmm UNIFAN genes & gene sets Hmm |nitialization mm Leiden MARS
mmm UNIFAN gene sets s DESC s SIMLR 1tClust
mmm UNIFAN genes B Seuratv3 mm SCCAF CellAssign

Figure S9: UNIFAN significantly outperforms other methods. “UNIFAN genes & gene sets” is the default UNIFAN version using
both gene set activity scores and a subset of genes as features for the annotator; “UNIFAN gene sets” and “UNIFAN genes” uses
only the gene set activity scores and the gene subset respectively. “Initialization” is the initialization clustering results. The
others are the prior methods we used for comparison. For the Tabula Muris data, we take the average over all tissues. See
Figure [S13|and for the per tissue results. The “Atlas lung” data provides two levels of cell type annotations and so we show
results for both (less detailed annotation comparison shown on the right). SIMLR was unable to cluster the “pbmc68k” and
“Atlas lung” data since it ran out of memory. CellAssign does not have an average over all tissues for “Tabula Muris” because it
was unable to annotate some tissues which do not have matched cell type marker genes in the database (e.g., adipose tissues).
See [Supplementary Methods|for details.
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Clustering performance

Clustering performance across UNIFAN variations for the higher level
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Figure S10: “UNIFAN genes & gene sets” (default version) performs the best most of the time and both the annotator and its
features (gene set activity scores and genes) are crucial to UNIFAN’s performance. “UNIFAN genes & gene sets” uses both gene
set activity scores and a subset of genes as features for the annotator; “UNIFAN gene sets” and “UNIFAN genes” uses only the
gene set activity scores and the gene subset respectively. “UNIFAN no annotator” does not use the annotator (7 = 0). “UNIFAN
random” use randomly generated values as features for the annotator (the dimension of these values is the same as the default
version). “Initialization” is the initialization clustering results. For the Tabula Muris data, we take the average over all tissues.
The “Atlas lung” data provides two levels of cell type annotations and so we show results for both (less detailed annotation
comparison shown on the right).

Clustering performance per tissue for Tabula Muris across methods
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Figure S11: Compare per tissue result for Tabula Muris among methods using ARI - the first 11 tissues. “UNIFAN genes & gene
sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.
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Clustering performance per tissue for Tabula Muris across methods
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Figure S12: Compare per tissue result for Tabula Muris among methods using ARI - the rest 10 tissues. “UNIFAN genes & gene
sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.

Clustering performance per tissue for Tabula Muris across methods
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Figure S13: Compare per tissue result for Tabula Muris among methods using NMI - the first 11 tissues. “UNIFAN genes &
gene sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.

Clustering performance per tissue for Tabula Muris across methods

=
=
C
E , | . .
208 ! i I i I |
£ . . i
s |
"_E 0.6 |l
B I
204 I |
=
=
Q0.2 .
N
: il
€ 0.0 ! : :
S Lung MAT Mammary Pancreas SCAT Skin Spleen Thymus Tongue Trachea
=z Gland
Tissue
Hmm UNIFAN genes & gene sets mmm UNIFAN genes mmm DESC B Leiden mmm SCCAF 1tClust CellAssign
mmm UNIFAN gene sets HEEm |nitialization B Seuratv3 s SIMLR MARS

Figure S14: Compare per tissue result for Tabula Muris among methods using NMI - the rest 10 tissues. “UNIFAN genes & gene
sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.
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1.2.5 Models are Transferable Across Tissues and Species

Clustering performance for tissues in Tabula Muris
using gene set activity scores models learned from human data
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Figure S15: Compare per tissue result for Tabula Muris using different gene set activity scores models - the first 11 tissues.
All versions of UNIFAN methods use models pre-trained on human tissues except for “UNIFAN gene sets”, which used models
trained on the same datasets as we discussed before. “UNIFAN gene sets merged human” uses the model pre-trained on all
available human tissues. “UNIFAN gene sets HuBMAP” uses the model pre-trained on the corresponding HuBMAP tissue
(HuBMAP spleen or thymus). “UNIFAN gene sets Atlas” uses the model pre-trained on the “Atlas lung” dataset.
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Figure S16: Compare per tissue result for Tabula Muris using different gene set activity scores models - the rest 10 tissues.
All versions of UNIFAN methods use models pre-trained on human tissues except for “UNIFAN gene sets”, which used models
trained on the same datasets as we discussed before. “UNIFAN gene sets merged human” uses the model pre-trained on all
available human tissues. “UNIFAN gene sets HuBMAP” uses the model pre-trained on the corresponding HuBMAP tissue
(HuBMAP spleen or thymus). “UNIFAN gene sets Atlas” uses the model pre-trained on the “Atlas lung” dataset.
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1.2.6 UNIFAN Robust to Technical Variations

While we did not purposely design our method to tackle technical variations such as batch effect,
we found UNIFAN to be robust to non-biological variations in many cases. Figure [S17 shows the
visualization and clustering results of the “HuBMAP lymph_node” dataset. Figure [SITA shows
the UMAP visualization of the initial low-dimensional representations of the cells output from a
standard autoencoder, colored by cell type labels. In Figure [S17B, the cells are colored by donor ID.
We see cells labeled by the same cell types segregated by donor ID in this low-dimensional space.
While other clustering methods such as DESC are impacted by this and failed to cluster cells from
the same type together (Figure @C), UNIFAN successfully clustered them together as shown by
the UMAP visualization of the low-dimensional representations learned by UNIFAN (Figure —G
). This may be attributed to our way of using the gene set activity scores to guide the clustering
decisions, which allows UNIFAN to focus on more relevant co-expression of genes and overcome

noise attributed to technical variations.
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Figure S17: UNIFAN overcomes technical variations when clustering “HuBMAP lymph node”. A, B, C: UMAP visualization
of the initial low-dimensional representation of cells output from a standard autoencoder; A: Colored by true cell type labels; B:
colored by donor ID; C: colored by results from DESC. D: Legend for the visualization plots A, E colored by the true labels. E,
F, G: UMAP visualization of the low-dimensional representation ze¢ of cells output from UNIFAN; E: Colored by true cell type
labels; F': colored by donor ID; G: colored by the clusters found by UNIFAN.
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1.2.7 UNIFAN Robust to Novel Cell Types with Novel Pathways

We conducted simulation experiments to test if UNIFAN is robust when cells contain novel pathways
that have not been documented in the pathway database we use. We applied UNIFAN to the
simulation datasets generated as described in section Given we mainly focus on robustness on
novel pathways in this simulation experiment, we only ran the UNIFAN version which uses only
gene set activity scores as features for the annotator (“‘UNIFAN gene sets”). To evaluate UNIFAN’s
performance, we consider two metrics. The first one is adjusted Rand index (ARI) to assess
clustering performance. The second one is the ratio of pathways we used that are highly-weighted
by UNIFAN over all (real) pathways we used to generate a cell type. Specifically, given we construct
pseudo-pathways by combining two randomly selected real pathways, we break the pseudo-pathways
we used to generated a cell type into two and check how many of these are overlapped with the
highly-weighted gene sets found by UNIFAN. By highly-weighted, we mean those having coefficients
larger than 90% quantile of all coefficients for the corresponding cluster.

As Figure [S18] shows, our method is generally robust to the cases where cell types contain
pathways that are not included in the current database. We observed that under different conditions
(e.g., different number of selected pseudo-pathways), the clusters we obtained always correspond to
the true cell types well (the adjusted Rand index is almost 1). Among all (real) pathways we used

to generate a cell type, about 30% of them are ranked high by UNIFAN.
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Figure S18: Simulation results on UNIFAN’s robustness to novel cell types with novel pathways. A: adjusted Rand index
(ARI) of UNIFAN’s results on the simulation data; B: percent of (real) pathways used to generate a cell type ranked high by
UNIFAN. The values are averaged over all replicates and all cell types. 2-when using 2 as the mean expression values for genes
in pseudo-pathways; 3-when using 3 as the mean expression values for genes in pseudo-pathways; 3 dropout-when using 3 as
the mean expression values for genes in pseudo-pathways and applying 10% dropout;
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1.2.8 Runtime

We recorded the runtime of UNIFAN for several representative datasets and the results are shown in
Table @ We also recorded the runtime of an unsupervised scRNA-seq clustering method DESC (Li
et al. 2020) and a cell type assignment method based on known markers CellAssign (AW Zhang
et al. [2019)), as comparisons. All results reported in this section are from experiments conducted in

Linux Mint 19 with Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz and 16 GB memory without using

any GPU.
Time for train-
Datasot Number | Number | ing gene set | Time  for | Time for | Time  for
of cells of genes | activity scores | clustering DESC CellAssign
model
Tabula
Muris 366 22,904 13 min 13 min 26 s 1 min 38 s
Aorta
Tabula
Muris 1,721 22,904 51 min 17 min 2 min 18 s -
SCAT
Tabula
Muris 4,433 22,904 2 hrs 8 min 30 min 5 min 54 s 5 min 10 s
Heart
pbmc28k | 25,185 19,404 2 hrs 51 min 2 hrs 30 min | 28 min 14 hrs 1 min
ﬁggs 96,282 | 17,315 | 10 hrs 17 min | 4 hrs 30 min | 1 hr 26 min | 3 hrs 43 min

Table S4: UNIFAN, DESC and CellAssign runtime for datasets with various sample and feature sizes. For UNIFAN, the runtime
is recorded in the two separate steps - training the gene set activity scores model and clustering. The training process for the
gene set activity scores model consumes most of the time. We were unable to run CellAssign on “Tabula Muris SCAT” because
this tissue does not have matched cell type marker genes in the marker database.
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