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1.1 Supplementary Methods

1.1.1 Details of Data Preprocessing

We use three scRNA-seq datasets processed and published by The Human BioMolecular Atlas

Program (HuBMAP) consortium (HuBMAP Consortium 2019). These include “HuBMAP spleen”,

“HuBMAP thymus” and “HuBMAP lymph_node”. We use SCANPY (Wolf et al. 2018) for the data

pre-processing. For each dataset, we first filter out cells expressing fewer than 200 genes and genes
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expressed in fewer than 3 cells. We then normalize each cell to 1e4 total read counts. The values are

then log transformed and scaled to zero mean and unit variance. We clip the values such that the

maximum is ten. We use MyGene.Info (Xin et al. 2016) to convert the ensemble gene IDs to gene

symbols. After preprocessing, we have 34,515 cells ⇥ 26,092 genes for “HuBMAP spleen”, 22,367 cells

⇥ 24,396 genes for “HuBMAP thymus” and 24,311 cells ⇥ 20,946 genes for “HuBMAP lymph_node”.

The “Atlas lung” data is obtained from the Idiopathic Pulmonary Fibrosis (IPF) Cell Atlas

(Adams et al. 2020). We use the healthy control samples. Again, we use SCANPY to first filter

out cells expressing fewer than 500 genes and genes expressed in fewer than 5 cells. We then

normalize each cell to 1e4 total read counts and log transform the values. Given the large number of

genes profiled, we take only a subset of genes by selecting the most variable ones using SCANPY’s

implementation of “Seurat”-style variable genes selection with minimum mean, maximum mean and

minimum dispersion set to 0, 1,000 and 0.01, respectively. Finally, we scale the values to zero mean

and unit variance and clip those larger than ten. This results in a dataset of 96,282 cells ⇥ 17,315

genes. This dataset has two levels of annotations of the cell types and we use both for evaluation.

The “pbmc28k” data is from Van Der Wijst et al. (2018). We download the counts data

and annotations from https://genenetwork.nl/scrna-seq/. Same as for other datasets, we use

SCANPY to filter out cells expressing fewer than 200 genes and genes expressed in fewer than 3

cells. We then normalize each cell to 1e4 total read counts. The values are then log transformed

and scaled to zero mean and unit variance. We clip the values such that the maximum is ten. This

results in a dataset of 25,185 cells ⇥ 19,404 genes. The “pbmc68k” data is from Zheng et al. (2017)

and we downloaded the counts data from https://www.10xgenomics.com/resources/datasets/

fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0. The annotations are downloaded from https:

//github.com/10XGenomics/single-cell-3prime-paper/issues/3. We use SCANPY to filter

out cells expressing fewer than 200 genes and genes expressed in fewer than 3 cells. We then

normalize each cell to 1e4 total read counts. The values are then log transformed and scaled to zero

mean and unit variance. We clip the values such that the maximum is ten. The resulting dataset is

of 68,551 cells ⇥ 17,788 genes.

All of the datasets mentioned above are from human tissue samples. We also use the Tabula

Muris (The Tabula Muris Consortium 2018) dataset from mouse tissue samples. We downloaded the

Tabula Muris Senis data from https://figshare.com/projects/Tabula_Muris_Senis/64982 and
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used “cell_ontology_class” as cell type labels. We first use SCANPY to filter out cells expressing

fewer than 500 genes or 5000 read counts and genes expressed in fewer than 5 cells. Following Brbić

et al. (2020), we take the cells from 3 months old samples from the Tabula Muris Senis data to

obtain the Tabula Muris data and we also removed the “Marrow” and “Brain_Myeloid” tissues due

to lack of expert validation or stable markers to distinguish cell types. For each of the rest of the

tissues, we then normalize the cells to 1e4 total read counts. The values are then log transformed,

scaled to zero mean and unit variance and truncated at ten. This results in 21 datasets, each for a

single tissue. They all have 22,904 genes and having number of cells ranging from 366 (Aorta) to

4,433 (Heart).

For the merged human dataset which we use to train the gene set activity scores model and

apply on mouse tissues, we use all the HuBMAP datasets, the “Atlas lung” and the “pbmc28k”

dataset.

1.1.2 Details for Model Training and Hyperparameter Selection

Throughout the training process, we use Adam (Kingma and Ba 2014) as the optimizer and fix the

learning rate at 5e-4. We use a batch size of 16 for data with sample size <1e4 and 128 otherwise for

all steps except for pre-training the annotator, where we use a batch size of 32 for all datasets. We

use 32 dimensions for the low-dimensional representation ze of a cell. For the other hyperparameters,

including the neural network configuration and the weighting hyperparameters in the loss functions,

we conducted a grid search using the Tabula Muris dataset and selected those hyperparameters

values leading to the best averaging performance over tissues. Unless specifically mentioned, the

same set of values were applied to all datasets in all experiments.

1.1.2.1 Training the Gene Set Activity Scores Model

For the encoder of the autoencoder model, we use 5 fully-connected hidden layers of size 128

with ReLU activations. As noted above, we also use a ReLU activation for the output layer. The

drop-out rate is set to 0.1 for all layers. As for the decoder, as described before, we use the binary

matrix D. We fix the number of training epochs at 70 for all experiments except for training the

model for the merged human tissues dataset. Given the large sample size (about 2e5) of the merged

3



data, we train the model for 100 epochs.

There are two weighting hyperparameters in our loss function Lactivity(y, ŷ) = ky�ŷk2+↵krk1�

�TDr: ↵ and �. These are used to weight the L1 penalty and the set cover term, respectively. We

evaluated how these two hyperparameters impact the sparsity of the resulting gene sets and gene

coverage. We quantify the sparsity by the number of non-zero values in the gene set activity scores r

and gene coverage by the number of genes a cell uses and the average number of times a gene is

used. As we show in Figure S1, both ↵ and � impact the sparsity of the gene set activity scores r

while only � impacts the gene coverage, as expected.

Note that � is a vector with each element corresponding to a gene. One may apply different

values for different genes if weights are available. For our case, we use the same value for all genes.

We fix ↵ at 0.01 and � at 1e-05.

1.1.2.2 Training the Autoencoder for Cluster Assignment and Annotation

For the encoder, we use 3 fully-connected hidden layers of size 128 with ReLU activation and

linear activation for the output layer. We use the same configuration for decoder (e) and (q), both

with 2 fully-connected hidden layers of size 128 with ReLU activation. We also use linear activation

for the output layers. The drop-out rate is set to 0.1 for all layers. For the annotator, as noted

before, we use a logistic regression.

We first pre-train the encoder and the decoder (e) on the expression data for 50 epochs. We

use this pre-trained autoencoder to generate initial low-dimensional representations of the cells. We

then run Leiden clustering (Traag et al. 2019) implemented in SCANPY (Wolf et al. 2018) on these

initial low-dimensional representations to obtain a guess of the number of clusters M , the initial

cluster assignment and the cluster centroids S. We use the default resolution 1. Both the number of

clusters M and cluster centroids S are refined as part of the training. Specifically, clusters with no

cell assigned to them are removed.

We then pre-train the annotator using the inferred gene set activity scores and the selected

genes, if available. The genes are selected using the variable genes selection method of Seuratv3

(Stuart et al. 2019) implemented in SCANPY (Wolf et al. 2018). The number of selected genes is

fixed at 2,000. We use the cluster assignment initialized as described above as the true labels and
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pre-train the annotator for 50 epochs.

Finally, we train the annotator together with the cluster assignment part (the encoder and

decoder (e) & decoder(q)) for 25 epochs. In each epoch, the annotator is trained by using the

clustering results as the true label for each cell. The output from the annotator p(r) is in turn used

to evaluate the annotator loss Lannotator for the cluster assignment part. As described previously,

the annotator is optimized using its own loss function, separately from the cluster assignment part.

There are two weighting hyperparameters in this model, � and ⌧ .

1. � which is used to weight the exclusive L1 penalty in Lclassification of the annotator

We employ a heuristic way to automatically select the value for � during the training process,

without knowing the ground truth cell labels. During pre-training, the annotator will be easily

overfitted if the number of features is as large or larger than the number of cells. This will

be mitigated if we apply a more stringent regularization through a larger �. Given a list of

candidate values of �, we start with a small value, pre-train the annotator and evaluate the

classification accuracy on all available data (which we also use for training). If the accuracy is

� 0.99, which indicates that the annotator is overfitted, we move on to the next larger value in

the list and pre-train the annotator again until we find one resulting in the training accuracy

< 0.99.

The candidate values we consider range from 1e-3 to 2 when use both gene set activity scores

and selected genes as input. When only gene set activity scores or genes are used as input, we

start with 1e-4. As we show in Supplementary Results, our model is robust to different choices

of starting values.

2. ⌧ for the annotator loss in Lcluster in the cluster assignment part

We set ⌧ such that the magnitude of the annotator loss Lannotator is comparable to the

magnitude of the reconstruction loss Lreconstruction. We fix ⌧ at 10 for all experiments. As we

show in Supplementary Results, our model is robust to other choices of ⌧ .

1.1.3 Details for Running the Prior Methods

For the prior methods, we use the default or recommending procedures / hyperparameters to all

datasets unless we encounter difficuties in computaional resources or run time. For Leiden clustering,
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we use 30 neighbors and 32 dimensions for the principal components analysis (PCA). We fix the

resolution at the default 1. For DESC, we adjust the hyperparameters for datasets with different

sample sizes based on the recommending hyperparameters values listed in the Supplementary Table

2 in their manuscript (Li et al. 2020). We fix the resolution at 1 for the Louvain clustering used in

DESC. For Seuratv3, we use the default top 2,000 most variable genes for the PCA. These genes

were selected using SCANPY’s implementation of Seuratv3-style variable genes selection (Wolf et al.

2018). For SIMLR, we use the default version and hyperparameter values for all datasets with a

sample size < 3,500. For datasets with larger sample size, we use their “large scale” version with the

number of neighbors set at 30 and the number of dimensions for PCA set at 500. Given running their

script to find the number of clusters for the larger datasets taking too much memory and cannot be

finished, we set the number of clusters as the true number of cell types for the datasets with sample

size � 1e4. Running SIMLR for “pbmc68k” and “Atlas lung” takes too much memory and cannot be

finished, even when we use 500 PCA as input instead of reading in the raw data. We thus don’t have

the results of SIMLR for “pbmc68k” and “Atlas lung”. For SCCAF, we use 100 principal components

learned from the preprocessed data, as mentioned in Miao et al. (2020). It is not clear from Miao

et al. (2020) the specific value for k in k -nearest neighbors (k -NN) so we use the default value 15

from Wolf et al. (2018). Following Miao et al. (2020), we use Louvain (Blondel et al. 2008) clustering

with resolution 1 to initialize the clusters. The other hyperparameter values are kept as default.

We use the default hyperparameter values for MARS and ItClust for all datasets. Given

ItClust conducts gene filtration based on dispersion after taking into the input data, instead of the

preprocessed data we use as input for other methods, we use raw count data without normalization

for ItClust. For these raw count data, we filter the genes and cells under the same standards as

for the preprocessed data to keep the cells and genes used as input for ItClust the same as for the

others. We use stratified sampling to select cells for training for MARS and ItClust except for the

liver and the lung dataset in the Tabula Muris where the least populated class has only one member

and stratification is not allowed. For CellAssign, we use the implementation of it by scvi-tools

(Gayoso et al. 2022). Following AW Zhang et al. (2019), we use raw count data as input. Following

scvi-tools’s tutorials, we set the size factor as the library size over the mean of library size and we

also set a (pseudo-) cell type called “other” which does not have any of the marker genes expressed

in the cell type marker gene table. We use markers from PanglaoDB (Franzén et al. 2019), where
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marker genes are grouped by tissues. We tried initially using all available cell type markers as input

for any datasets and it turned out it runs extremely slow so we decided to use the ones from the

tissue that best matches the tissue of the dataset. See Table S1 for details. It still takes a long time

for running CellAssign on “pbmc68k” so we randomly sampled 70% of the cells stratified by true

labels and run CellAssign on the sub-sampled data. We use all default hyperparameter values except

for the batch size. We set the batch size as 1,024 (default) if the number of features after filtering is

below 500, 512 if below 1,000 and 32 otherwise.

dataset matched tissue names in
PanglaoDB

pbmc28k Immune system
pbmc68k Immune system
HuBMAP lymph_node Immune system
HuBMAP spleen Immune system
HuBMAP thymus Immune system, Thymus
Atlas lung Lungs
Tabula Muris Aorta Vasculature
Tabula Muris Bladder Urinary bladder
Tabula Muris Brain_Non-Myeloid Brain
Tabula Muris Diaphragm Epithelium
Tabula Muris Large_Intestine GI tract
Tabula Muris Limb_Muscle Skeletal muscle
Tabula Muris Tongue Oral cavity
Tabula Muris Trachea Vasculature

Table S1: Dataset and their matched tissue names in PanglaoDB. The other tissues in the Tabula Muris dataset that are not
shown here are matched with tissue names in PanglaoDB more straightforwardly (for example, Mammary_Gland to Mammary
gland). We were unable to find matching tissue names for the adipose tissues in the Tabula Muris dataset so we did not run
CellAssign for them.

1.1.4 Details for Generating Random Values for “UNIFAN random”

For each feature, we randomly sample a value from N (0, 1). The total number of features equal to

that of the default version (“UNIFAN genes & gene sets”).

1.1.5 Evaluation on the Enrichment of Cell Type Marker Sets in the Highly Weighted

Genes

To interpret the highly weighted genes selected by the annotator, we select the genes whose coefficients

above some thresholds. Given the cell type marker gene sets from MSigDB (Subramanian et al. 2005)
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(c8.all in MSigDB), we check the enrichment of these cell marker sets in the selected highly weighted

genes by conducting binomial tests. For each cell marker gene set, we test if the chance of seeing its

member appearing in the selected highly weighted genes is higher than the background rate, defined

as the chance of seeing its member appearing in all genes used as features for the annotator. We use

Benjamini/Hochberg procedure to correct for multiple testing and show the adjusted p-values in the

results.

1.1.6 Simulation Experiments

We conducted simulation experiments to test if UNIFAN is robust when cells contain novel pathways

that have not been documented in the pathway database we use. We simulated expression data

using pseudo-pathways that are not included in the pathway database. Specifically, we constructed

pseudo-pathways by randomly selecting two pathways from the original database and combining

them. We select from the pathways having number of genes larger or equal to 5 but smaller or equal

to 20 (resulting in 5,036 pathways). Under this approach, we generated 3,000 pseudo-pathways. The

number of genes per pseudo-pathway is about 20.

We then simulate expression data using these generated pseudo-pathways. For each simulation

dataset, we generated 5 cell types, each having 300 cells. Each cell has 3,000 features (genes). For

each cell type, we randomly selected a fixed number of pseudo-pathways. We combine the genes from

these pseudo-pathways as the features. The rest of features are named as “PSEUDO1”, “PSEUDO2”,

etc. We assume the expression of genes from a cell of a particular cell type following a multivariate

normal distribution and set the mean values for the genes in the pseudo-pathways higher than the

other genes (background genes). We set the mean for the background genes as 1. We assume all

genes independent with each other and having variances equal to 1. We also applied a 10% dropout

per cell to some of the simulation datasets.

We generated multiple simulation datasets under different number of selected pseudo-pathways

(ranging from 15 to 25), different mean values for the pathway genes (2 or 3) and with or without

drop-out. For each condition, we generated 5 replicates.
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1.2 Supplementary Results

1.2.1 Alpha and Beta’s Impact on Sparsity and Gene Coverage

Figure S1: ↵ and �’s impact on the gene set activity scores r. For the values we tested, both ↵ and � impact on the sparsity of
r (indicated by the number of non-zero gene sets in r) while only � impact on the gene coverage (indicated by the number of
genes a cell used and the number of times a gene is used).

1.2.2 UNIFAN Robust to Different Choices of Hyperparameters

For the weighting hyperparameters ↵, �, ⌧ and �, we vary the value for each of the hyperparameter at

a time, while fixing the values for all other hyperparameters. We use all tissues in the Tabula Muris

data for the evaluation. For each value, we run five times using different initializations. Given the

values changing of ↵ and � may have different impact on the two variations of UNIFAN: “UNIFAN

genes & gene sets” and “UNIFAN gene sets”, we run both versions. For �, given we employ the

auto-selection of the value for � and we end up in the same � value regardless of the starting value
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for “UNIFAN genes & gene sets” and “UNIFAN genes”, we only show the robust experiment results

on “UNIFAN gene sets”. For the others, we run the experiments on the default “UNIFAN genes &

gene sets” version.

As shown in Figure S2, the clustering performance is similar under different hyperparameter

choices within a set of reasonable values.

Figure S2: UNIFAN robust to different choices of hyperparameters. We varied the values for the weighting hyperparameters ↵,
�, ⌧ and � and fixed all other hyperparameters. We run on all tissues in the Tabula Muris data for multiple times and we take
the average over all tissues. The results indicate that our model is generally robust to different choices of the hyperparameters.

Other than the weighting hyperparameters, we also evaluate if our method is robust to different
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choices of the resolution value used in Leiden clustering initialization and to the number of epochs

used for the joint training step of the clustering assignment part and the annotator. Again, we vary

the value for each of these at a time, while fixing the values for the others. We use all tissues in the

Tabula Muris data for the evaluation. For each value, we run five times using different initializations.

We run the experiments on the default “UNIFAN genes & gene sets” version. We also check if the

resulting number of clusters is affected by different choices of values.

As shown in Figure S3 and S4, both the resulting clustering performance and the number of

clusters are similar under different choices of the resolution value and the number of epochs within a

set of reasonable values.

Figure S3: UNIFAN robust to different choices of the resolution value used in Leiden clustering initialization. We varied the
values for the resolution and fixed all others. We run on all tissues in the Tabula Muris data for multiple times and we take the
average over all tissues. The results indicate that our model is generally robust to different choices of the resolution value used
in initialization.
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Figure S4: UNIFAN robust to different choices of the number of epochs for the joint training step. We varied the values for the
training epochs and fixed all others. We run on all tissues in the Tabula Muris data for multiple times and we take the average
over all tissues. The results indicate that our model is generally robust to different choices of the number of training epochs.
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1.2.3 Visualization and Interpretation of UNIFAN Results

cluster gene set name

0 GOBP ANTIGEN PROCESSING AND PRESENTATION
ENDOGENOUS LIPID ANTIGEN VIA MHC CLASS IB

3 GOBP IMMUNE RESPONSE INHIBITING CELL SUR-
FACE RECEPTOR SIGNALING PATHWAY

3 GOBP NEGATIVE REGULATION OF MACROPHAGE
DERIVED FOAM CELL DIFFERENTIATION

3 GOBP REGULATION OF T CELL ACTIVATION VIA T
CELL RECEPTOR CONTACT WITH ANTIGEN BOUND
TO MHC MOLECULE ON ANTIGEN PRESENTING
CELL

4 REACTOME ANTIGEN ACTIVATES B CELL RECEP-
TOR BCR LEADING TO GENERATION OF SECOND
MESSENGERS

5 GOBP NEGATIVE REGULATION OF RESPIRATORY
BURST INVOLVED IN INFLAMMATORY RESPONSE

9 GOBP POSITIVE REGULATION OF CD8 POSITIVE
ALPHA BETA T CELL DIFFERENTIATION

Table S2: Gene set names for highly weighted biological processes / pathways for “pbmc28k” that are truncated in Figure 2 D
due to limit of space.

Figure S5: Other than interpreting from the annotator coefficients, we can also directly interpret the gene set activity scores to
learn the biological processes or pathways important to cells / cell clusters. Here we show the gene set activity scores for cells
assigned to cluster 6 in “pbmb28k” as an example. Each row corresponds to each cell’s gene set activity scores. We can clearly
see that cells assigned to the same cluster tend to have similar gene set activity scores. The gene sets selected as important by
the annotator also tend to have high scores. For example, most of the cells in cluster 6 are non-classical monocyte (ncMonocyte).
The biological process directly relates to this cell type is “GOBP REGULATION OF INFLAMMATORY RESPONSE TO
WOUNDING” (gene set at index 2298 in this plot), which is selected by the annotator and also among one of the highest
scored gene sets according to the gene set activity scores. Note that due to space limit, here we only show the scores of 50 cells
randomly selected from all cells assigned to cluster 6.
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cluster gene set name

0 HAY BONE MARROW NAIVE T CELL
0 BUSSLINGER GASTRIC IMMUNE CELLS
0 FAN OVARY CL12 T LYMPHOCYTE NK CELL 2
0 CUI DEVELOPING HEART C9 B T CELL
0 TRAVAGLINI LUNG CD4 MEMORY EFFECTOR T CELL
0 BUSSLINGER DUODENAL DIFFERENTIATING STEM CELLS
1 HAY BONE MARROW NK CELLS
1 TRAVAGLINI LUNG NATURAL KILLER CELL
1 RUBENSTEIN SKELETAL MUSCLE NK CELLS
1 DURANTE ADULT OLFACTORY NEUROEPITHELIUM NK CELLS
1 FAN EMBRYONIC CTX BRAIN EFFECTOR T CELL
1 AIZARANI LIVER C5 NK NKT CELLS 3
3 TRAVAGLINI LUNG OLR1 CLASSICAL MONOCYTE CELL
3 TRAVAGLINI LUNG EREG DENDRITIC CELL
3 TRAVAGLINI LUNG CLASSICAL MONOCYTE CELL
3 HAY BONE MARROW IMMATURE NEUTROPHIL
3 FAN OVARY CL13 MONOCYTE MACROPHAGE
3 DURANTE ADULT OLFACTORY NEUROEPITHELIUM DENDRITIC CELLS
4 TRAVAGLINI LUNG B CELL
4 RUBENSTEIN SKELETAL MUSCLE B CELLS
4 DURANTE ADULT OLFACTORY NEUROEPITHELIUM B CELLS
4 FAN EMBRYONIC CTX BRAIN B CELL
4 AIZARANI LIVER C34 MHC II POS B CELLS
4 HAY BONE MARROW FOLLICULAR B CELL
5 AIZARANI LIVER C1 NK NKT CELLS 1
5 FAN OVARY CL4 T LYMPHOCYTE NK CELL 1
5 TRAVAGLINI LUNG CD8 NAIVE T CELL
5 BUSSLINGER GASTRIC IMMUNE CELLS
5 HAY BONE MARROW CD8 T CELL
5 DESCARTES FETAL PLACENTA LYMPHOID CELLS
6 HAY BONE MARROW MONOCYTE
6 TRAVAGLINI LUNG NONCLASSICAL MONOCYTE CELL
6 DESCARTES FETAL PANCREAS MYELOID CELLS
6 AIZARANI LIVER C6 KUPFFER CELLS 2
6 DESCARTES FETAL CEREBELLUM MICROGLIA
6 AIZARANI LIVER C2 KUPFFER CELLS 1
7 HAY BONE MARROW DENDRITIC CELL
7 BUSSLINGER ESOPHAGEAL DENDRITIC CELLS
7 DESCARTES FETAL INTESTINE MYELOID CELLS
7 FAN OVARY CL13 MONOCYTE MACROPHAGE
7 AIZARANI LIVER C2 KUPFFER CELLS 1
7 AIZARANI LIVER C25 KUPFFER CELLS 4
9 HAY BONE MARROW DENDRITIC CELL
9 TRAVAGLINI LUNG PLASMACYTOID DENDRITIC CELL
9 FAN OVARY CL18 B LYMPHOCYTE

Table S3: Gene set names for the enriched cell type marker sets in the highly weighted genes for “pbmc28k”. These names are
truncated in Figure 2 E due to limit of space.
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Figure S6: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for
the “Atlas lung” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of cells output from
UNIFAN. A: Colored by the clusters found by UNIFAN; B: colored by the true cell type labels; C: colored by the clusters found
by Seuratv3. D: Coefficients learned by the annotator for highly weighted gene sets for some of the clusters. E: Enrichment
p-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the result from the best
run out of multiple runs for UNIFAN and for Seuratv3.
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Figure S7: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for the
“Tabula Muris Brain_Non-Myeloid” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of
cells output from UNIFAN. A: Colored by the true cell type labels; B: colored by the clusters found by UNIFAN; C: colored by
the clusters found by DESC. D: Coefficients learned by the annotator for highly weighted gene sets for some of the clusters. E:
Enrichment p-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the result
from the best run out of multiple runs for UNIFAN and for DESC.
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Figure S8: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for the
“Tabula Muris Limb_Muscle” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of cells
output from UNIFAN. A: Colored by the true cell type labels; B: colored by the clusters found by UNIFAN; C: colored by
the clusters found by SIMLR. D: Coefficients learned by the annotator for highly weighted gene sets for some of the clusters.
E: Enrichment p-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the
result from the best run out of multiple runs for UNIFAN and for SIMLR. The truncated gene sets (marked by *) are: “GOBP
POSITIVE REGULATION OF ENDOTHELIAL CELL CHEMOTAXIS BY VEGF ACTIVATED VASCULAR ENDOTHELIAL
GROWTH FACTOR RECEPTOR SIGNALING PATHWAY” and “GOBP ANTIGEN PROCESSING AND PRESENTATION
OF EXOGENOUS PEPTIDE ANTIGEN VIA MHC CLASS I TAP INDEPENDENT”.
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1.2.4 Compare UNIFAN Variations and UNIFAN with Prior Methods

Figure S9: UNIFAN significantly outperforms other methods. “UNIFAN genes & gene sets” is the default UNIFAN version using
both gene set activity scores and a subset of genes as features for the annotator; “UNIFAN gene sets” and “UNIFAN genes” uses
only the gene set activity scores and the gene subset respectively. “Initialization” is the initialization clustering results. The
others are the prior methods we used for comparison. For the Tabula Muris data, we take the average over all tissues. See
Figure S13 and S14 for the per tissue results. The “Atlas lung” data provides two levels of cell type annotations and so we show
results for both (less detailed annotation comparison shown on the right). SIMLR was unable to cluster the “pbmc68k” and
“Atlas lung” data since it ran out of memory. CellAssign does not have an average over all tissues for “Tabula Muris” because it
was unable to annotate some tissues which do not have matched cell type marker genes in the database (e.g., adipose tissues).
See Supplementary Methods for details.
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Figure S10: “UNIFAN genes & gene sets” (default version) performs the best most of the time and both the annotator and its
features (gene set activity scores and genes) are crucial to UNIFAN’s performance. “UNIFAN genes & gene sets” uses both gene
set activity scores and a subset of genes as features for the annotator; “UNIFAN gene sets” and “UNIFAN genes” uses only the
gene set activity scores and the gene subset respectively. “UNIFAN no annotator” does not use the annotator (⌧ = 0). “UNIFAN
random” use randomly generated values as features for the annotator (the dimension of these values is the same as the default
version). “Initialization” is the initialization clustering results. For the Tabula Muris data, we take the average over all tissues.
The “Atlas lung” data provides two levels of cell type annotations and so we show results for both (less detailed annotation
comparison shown on the right).

Figure S11: Compare per tissue result for Tabula Muris among methods using ARI - the first 11 tissues. “UNIFAN genes & gene
sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.

19



Figure S12: Compare per tissue result for Tabula Muris among methods using ARI - the rest 10 tissues. “UNIFAN genes & gene
sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.

Figure S13: Compare per tissue result for Tabula Muris among methods using NMI - the first 11 tissues. “UNIFAN genes &
gene sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.

Figure S14: Compare per tissue result for Tabula Muris among methods using NMI - the rest 10 tissues. “UNIFAN genes & gene
sets” is the default UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator;
“UNIFAN gene sets” and “UNIFAN genes” uses only the gene set activity scores and the gene subset respectively. “Initialization”
is the initialization clustering results. The others are the prior methods we used for comparison.
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1.2.5 Models are Transferable Across Tissues and Species

Figure S15: Compare per tissue result for Tabula Muris using different gene set activity scores models - the first 11 tissues.
All versions of UNIFAN methods use models pre-trained on human tissues except for “UNIFAN gene sets”, which used models
trained on the same datasets as we discussed before. “UNIFAN gene sets merged human” uses the model pre-trained on all
available human tissues. “UNIFAN gene sets HuBMAP” uses the model pre-trained on the corresponding HuBMAP tissue
(HuBMAP spleen or thymus). “UNIFAN gene sets Atlas” uses the model pre-trained on the “Atlas lung” dataset.

Figure S16: Compare per tissue result for Tabula Muris using different gene set activity scores models - the rest 10 tissues.
All versions of UNIFAN methods use models pre-trained on human tissues except for “UNIFAN gene sets”, which used models
trained on the same datasets as we discussed before. “UNIFAN gene sets merged human” uses the model pre-trained on all
available human tissues. “UNIFAN gene sets HuBMAP” uses the model pre-trained on the corresponding HuBMAP tissue
(HuBMAP spleen or thymus). “UNIFAN gene sets Atlas” uses the model pre-trained on the “Atlas lung” dataset.
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1.2.6 UNIFAN Robust to Technical Variations

While we did not purposely design our method to tackle technical variations such as batch effect,

we found UNIFAN to be robust to non-biological variations in many cases. Figure S17 shows the

visualization and clustering results of the “HuBMAP lymph_node” dataset. Figure S17A shows

the UMAP visualization of the initial low-dimensional representations of the cells output from a

standard autoencoder, colored by cell type labels. In Figure S17B, the cells are colored by donor ID.

We see cells labeled by the same cell types segregated by donor ID in this low-dimensional space.

While other clustering methods such as DESC are impacted by this and failed to cluster cells from

the same type together (Figure S17C), UNIFAN successfully clustered them together as shown by

the UMAP visualization of the low-dimensional representations learned by UNIFAN (Figure S17E-G

). This may be attributed to our way of using the gene set activity scores to guide the clustering

decisions, which allows UNIFAN to focus on more relevant co-expression of genes and overcome

noise attributed to technical variations.
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Figure S17: UNIFAN overcomes technical variations when clustering “HuBMAP lymph_node”. A, B, C: UMAP visualization
of the initial low-dimensional representation of cells output from a standard autoencoder; A: Colored by true cell type labels; B:
colored by donor ID; C: colored by results from DESC. D: Legend for the visualization plots A, E colored by the true labels. E,

F, G: UMAP visualization of the low-dimensional representation ze of cells output from UNIFAN; E: Colored by true cell type
labels; F: colored by donor ID; G: colored by the clusters found by UNIFAN.
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1.2.7 UNIFAN Robust to Novel Cell Types with Novel Pathways

We conducted simulation experiments to test if UNIFAN is robust when cells contain novel pathways

that have not been documented in the pathway database we use. We applied UNIFAN to the

simulation datasets generated as described in section 1.1.6. Given we mainly focus on robustness on

novel pathways in this simulation experiment, we only ran the UNIFAN version which uses only

gene set activity scores as features for the annotator (“UNIFAN gene sets”). To evaluate UNIFAN’s

performance, we consider two metrics. The first one is adjusted Rand index (ARI) to assess

clustering performance. The second one is the ratio of pathways we used that are highly-weighted

by UNIFAN over all (real) pathways we used to generate a cell type. Specifically, given we construct

pseudo-pathways by combining two randomly selected real pathways, we break the pseudo-pathways

we used to generated a cell type into two and check how many of these are overlapped with the

highly-weighted gene sets found by UNIFAN. By highly-weighted, we mean those having coefficients

larger than 90% quantile of all coefficients for the corresponding cluster.

As Figure S18 shows, our method is generally robust to the cases where cell types contain

pathways that are not included in the current database. We observed that under different conditions

(e.g., different number of selected pseudo-pathways), the clusters we obtained always correspond to

the true cell types well (the adjusted Rand index is almost 1). Among all (real) pathways we used

to generate a cell type, about 30% of them are ranked high by UNIFAN.
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A B

Figure S18: Simulation results on UNIFAN’s robustness to novel cell types with novel pathways. A: adjusted Rand index
(ARI) of UNIFAN’s results on the simulation data; B: percent of (real) pathways used to generate a cell type ranked high by
UNIFAN. The values are averaged over all replicates and all cell types. 2-when using 2 as the mean expression values for genes
in pseudo-pathways; 3-when using 3 as the mean expression values for genes in pseudo-pathways; 3_dropout-when using 3 as
the mean expression values for genes in pseudo-pathways and applying 10% dropout;
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1.2.8 Runtime

We recorded the runtime of UNIFAN for several representative datasets and the results are shown in

Table S4. We also recorded the runtime of an unsupervised scRNA-seq clustering method DESC (Li

et al. 2020) and a cell type assignment method based on known markers CellAssign (AW Zhang

et al. 2019), as comparisons. All results reported in this section are from experiments conducted in

Linux Mint 19 with Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz and 16 GB memory without using

any GPU.

Dataset Number
of cells

Number
of genes

Time for train-
ing gene set
activity scores
model

Time for
clustering

Time for
DESC

Time for
CellAssign

Tabula
Muris
Aorta

366 22,904 13 min 13 min 26 s 1 min 38 s

Tabula
Muris
SCAT

1,721 22,904 51 min 17 min 2 min 18 s -

Tabula
Muris
Heart

4,433 22,904 2 hrs 8 min 30 min 5 min 54 s 5 min 10 s

pbmc28k 25,185 19,404 2 hrs 51 min 2 hrs 30 min 28 min 14 hrs 1 min
Atlas
lung 96,282 17,315 10 hrs 17 min 4 hrs 30 min 1 hr 26 min 3 hrs 43 min

Table S4: UNIFAN, DESC and CellAssign runtime for datasets with various sample and feature sizes. For UNIFAN, the runtime
is recorded in the two separate steps - training the gene set activity scores model and clustering. The training process for the
gene set activity scores model consumes most of the time. We were unable to run CellAssign on “Tabula Muris SCAT” because
this tissue does not have matched cell type marker genes in the marker database.
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