Supplementary Materials

Contents

(1 Supplementary Methods| 2
1. - DRMN-ST: Structure prior approach.| 4
[1.2 DRMN-FUSED: Parameter prior approach.| 7
(1.3 EM algorithm for DRMN learning| 12
(1.4 Examining different features n DRMN| oL o oo 14
|1.5 Effect of hyper-parameters on DRMN-FUSED results|. 17
[1.6 Predicting regulators for transitioning gene sets| 18

[References| 20

1 Supplementary Methods

Notation. Let X denote an N x C matrix of cell type-specific expression values for NV genes in C' cell
types, where each column X(:, ¢) is the measurement of all genes in cell type ¢ € {1,--- ,C}, and X (g, ¢)
is the expression level of gene g in cell type c. Y = {Y1, -+, Y} denotes collection of feature matrices,
one for each cell type, c. Each Y, is an N x F matrix, with the ¢ row, Y.(g, :) specifying the values of
F features for gene g. The values inside each feature matrix, Y. can be either context-independent (e.g.,
a sequence-based motif network) or context-specific (e.g., a motif network informed by accessibility value,
histone modifications). Let 7 denote the lineage tree which describes how the C' cell types are related and
K denote the number of gene modules. For each cell type ¢, R, =< G, ©. >, denotes the RMN for c. G,
is a bipartite graph specifying the edges between F’ features and K modules, and O, are the parameters of
the regulator programs for each module that relate the selected regulatory features to the expression of genes
in the module. Let M be a N x C matrix denoting the module assignments of the N genes across all cell
types, with M(g, ¢) denoting the module assignment of gene g in cell type c. In DRMN, we additionally
have transition probability distributions IT = {II;, ..., IIc'} (Figure |1, which capture the dynamics of the
module assignments in one cell type ¢ given its parent cell type, pa(c) in the lineage tree 7. Specifically,
I1.(4, 7) is the probability of any gene being in module j given that its parental assignment is to module i.
For the root cell type, this is simply a prior probability over modules. We first define the RMN model for

one cell type and extend it to multiple related cell types for DRMN.

RMN. In RMN each cell type’s data is modeled independently and we optimize the posterior probability
of each cell type ¢’s model as: P(R.|X¢, Y.), where X(:,c) = X, which by Bayes rule is proportional to
P(X Y. R.)P(R,). For the last term, we assume P(R.|Y.) = P(R.) and denotes a prior on the struc-
ture of the model. The data likelihood for each cell type, cis P(X.|R¢, Y.), and is obtained by marginaliz-
ing out the hidden module variables, ML(:, ¢): > _py(. o) P(X(:; ¢), M(:, ¢)|Re, Yc). This will further decom-
pose for each gene’s expression X(c, 9) as [T, > nig,e) P(X (9, 0)[M(g, ¢), Re, Ye(g,:)) P(M(g, ¢)|Re),
where M(g, ¢) is the module assignment for gene g in cell type ¢. Thus the RMN model specifies each
gene’s expression to be generated from a mixture model where P(M(c, g)|R.) = P(M(c, g)) is the prior

probability of each module specified by M(c, g). Letting, X(g,c) = X4 and M(g, ¢) = M4, we rewrite

the probability of each gene as P(X4|R., My, Yc(g,:)). Let Y denote the subset of regulatory features

associated module ¢ and cell type ¢ and F,; denote the number of columns of Ygi). For M., = 1, the
)

expression of a gene, X, and features Y((;i are modeled jointly as a Fi; + 1 dimensional Gaussian. The

expression of a gene given the features is a conditional mean derived as a linear combination of the feature
values with parameters 6.; and conditional variance 3

from module 7 in cell type c given its features Yg]) is:

(4) - Given, (901' and 2
cg

s the probability of X.(g)

z[Y ()

P(Xcg|Mg07 Rm Ygl) (gv)) ~ N Z ecz(f>Y¢(:Z) (ga f)a Eﬂy&? (1)
fe{0--F.}

Here, f = 0 corresponds to the bias term.

DRMN. The DRMN model is defined by a set of RMNs, R = {Ry,--- , R¢} linked via the lineage tree
7, and the posterior likelihood of the model given the data, P(R4,--- ,R¢|X1, -+, X, Y1,--- , Yo, 7).
Based on Bayes rule, this can be rewritten as P(Xy,--- ,X¢, |R1,--- ,Re, Y1, , Yo)P(Ry,--- ,Re).
As in the case of RMN, we introduce the module variables and decompose this over a gene, but now across

all the cell types together:
HP(X1g7 Tt 7—XCg‘M1g7 ot 7MCQ7 Ra y)P(Mlga T 7MCg‘R7 T)P(R’T) (2)
g

Given the module assignments, the gene expression across cell types are independent of each other.

Hence the probability of each gene expression is:

(H P(X69’M697R67Y6(973))> P(Myg, -+, Mcg|T)P(R|T)

Due to the tree structure, we assume the module assignment in a current cell type ¢, M., is inde-
pendent of everything else, given its parent pa(c) = ¢ in 7. Thus, P(Mg, -, Mcgy|7T) is rewritten as

P(Mig) I1eer P(Meg|Mey), where 1 denotes the root of the tree and ¢ — ¢ € 7 denotes a parent child

relationship in 7. Combining the two, the probability of a gene’s expression across cell types is:

P(Xlg|MlgaRl7Y1(gv 3))P(Mlg) (H P(Xcg|McgaRCvYC(gv :))P(MCQ|MC’9)) P(R|T) (3)

c—cder

P(Xcg|Meg,Re,Yc(g,:)) is computed in the same way as Eqn |1 P(M.4|M4) is obtained from
the transition probabilities. P(R|7), specifies a prior over the structure/feature sets in each of the cell
type-specific RMN models, R.. The prior controls for each module, what sets of features get associated
with each module ¢, and how they change over time. We used two formulations for the prior to enable
sharing information: DRMN-Structure Prior (DRMN-ST) defines a structure prior over the graph structures
P(G4y, ..., G¢) while DRMN-FUSED uses a regularized regression framework and implicitly defines priors
on the P(©1,---,0¢). In both frameworks, we share information between the cell types/conditions to
learn the regulatory programs of each cell type/condition. The procedure is specific to DRMN-ST and

DRMN-FUSED.

1.1 DRMN-ST: Structure prior approach.

In DRMN-ST, information is shared by specifying a structure prior, P(G1, ..., G¢), defined only over the
graphs. The parameters are set to their maximum likelihood setting. P(G1, ..., G¢) determines how infor-
mation is shared between different cell types at the level of the network structure and encourages similarity
of features, indicative of regulators, between cell types. P(G1,...,G¢) is computed using the transition

matrices {IIy,...,II¢} and decomposes over individual regulator-module edges within each cell type as

follows:
P(Gy,-+,Ge) = [] P(Asoi) 4
f—k
where
P(Ipk) = P(I7°%) H P(I;akuﬁl—m) (5
c'—cev

where I%_,; is an indicator function for the presence of the edge f — i for cell type ¢, between a regulator
f and a module i. To define P (I Fsi |I C;i), we use the transition probability of the modules as:

=I¢

f—i

I.(ili) if I

’ f—i
P(I;Hillﬁﬁi) =
1—TI.(i]7)

o1 otherwise,

where K is the number of modules. Here the first option gives the probability of maintaining the same
state from parent to child cell types (is present or absent in both ¢ and ¢’), and the second option gives the

probability of changing the edge state. The data likelihood is written as

P(XP R, YI) (6)

where ng) is gene expression vector of module £ in cell line c, Y((;k) is the feature matrix of module £ in

cell line ¢, and R, =< G, 1, O, > is the regulatory program of module % consisting of G ;. the inferred
interactions and O, ;, the corresponding regression coefficients. The data likelihood can be estimated as a

conditional normal distribution

PXPRee Y~ I M| Y 0eNYE (0. 0), Baigs @

gemodulek f€Gek

and X, , denotes conditional variance. We incorporated the structure prior within a greedy hill climb-

ing algorithm for estimating the DRMN model. AlgorithmTjoutlines the greedy hill climbing algorithm that
is called in each iteration of EM algorithm (see Algorithm [6) for each module k. The parameter mazIter
is set to 5, meaning that at most 5 new regulators can be added to the regulatory program of a module in

each iteration of the EM algorithm.

Algorithm 1: DRMN-ST algorithm

Input:

- X((;k) Gene expression vector for module & in cell line ¢
- ng) Feature matrix for module £ in cell line ¢

- U Lineage tree

Output:

-R.; =< G, O > The updated regulatory program
for maxIter number of iterations do

for each feature f do

for each cell line c do
scoreImprovement < improvement of data likelihood when adding f to regulatory

program of k

if scoreImprovement > 0 then
‘ I]‘i el

end

else
‘ I]‘i <0

end

end
Calculate P(G1,--- ,G¢) > Prior term, see equations {4 and

Calculate P (ng) IR ng)) > Data likelihood term, see equations |6{and

end
Add f*, feature with highest overall score improvement to the model.

end

1.2 DRMN-FUSED: Parameter prior approach.

In DRMN-FUSED, we use a fused group LASSO formulation to share information between the cell types
for each module k. We assume that genes are already assigned to a module and optimize the following

objective:

m@inz IXP = YPOL13 + p1]|Okll1 + p2l POk 11 + p3]|Ok 2.1, ®)

where Xﬁk) is the expression vector of genes in module & in cell line c, ng) is the feature matrix for

genes in module &, and 6. is a 1 x F' vector of regression coefficients for the same module and cell line
(non-zero values correspond to selected features). 6.4 is analogous to the parameters for the conditional
mean for each gene in Eqn(l] ©y is the C' by F' matrix resulting from stacking up the 6. vectors as rows.
¥ is a C — 1 by C matrix, encoding the lineage tree. Each row of ¥ corresponds to a branch of the tree

and each column corresponds to a cell type. If row i of ¥ corresponds to a branch ¢/ — ¢ in the lineage

tree, ¥(i,c’) =1, ¥(i,c¢) = —1, and all other values in that row are 0. YOy, is a C' — 1 by F' matrix, where
row ¢ correspond to O, — Ok, the difference between regression coefficients of cell lines ¢ and c. |||
denotes [1-norm (sum of absolute values), ||.||2 denotes l2-norm (square root of sum of square of value),

and ||.||2,1 denotes l3 ;-norm (sum of ly-norm of columns of the given matrix). pi, p2 and p3 correspond
to hyper parameters, with p; for sparsity penalty, po to encourage similarity between selected features of
consecutive cell lines in the lineage tree, and p3 to encourage selecting the same features for all cell types.
Thus, p2 controls the extent to which more closely related cell types are closer in their regression weights,
while p3 controls the extent to which all the cell types share similarity in their regulatory programs. We set
these hyper parameters based on cross-validation by performing a grid search for p;, p2 and p3 as described
in the dataset-specific application sections. We implemented the optimization algorithm by extending the
algorithm described in the MALSAR MATLAB package (Zhou et al. 2012) to handle branching topologies
as described below. The learning algorithm uses an accelerated gradient method (Nesterov 2005; Nesterov
2007) to minimize the objective function above.

The FUSED LASSO objective is not smooth and therefore requires special handling, that is they have a

smooth (I3 loss) and a non-smooth part (Fused LASSO part). We follow the implementation in the MALSAR

package (Zhou et al. 2012)), which makes use of Nesterov’s accelerated gradient method (AGM) for com-
posite functions (Nesterov [2005; Nesterov 2007). The MALSAR package uses the efficient fused LASSO
algorithm which internally makes use of the Fused LASSO Signal Approximator (FLSA) algorithm (Liu
et al. 2010). The FLSA algorithm is an iterative algorithm that makes use of a Sub-Gradient Finding Algo-
rithm (SFA). However, the original implementation of this algorithm in the MALSAR MATLAB package is
suitable only for linear time-series data. We extend this algorithm to handle general branching structure by
re-implementing the Subgradient Finding Algorithm with gradient descent (Algorithm [5| SFA).
Algorithm 2]is the main algorithm for the AGM method. The parameters « and +, control the step size
of AGM. The algorithm has two nested loops. The outer loop updates the step size parameters executing the
main AGM framework. The inner loop uses the fused LASSO penalty to estimate new regression weights
(Algorithm [3), which internally calls Algorithmd|(FLSA) and Algorithm[5|(SFA) and updates the model

parameters due to the non-smooth part.

Algorithm 2: DRMN-FUSED algorithm

Input:
- ng) Gene expression vector for module % in cell line ¢
- Yék) Feature matrix for module £ in cell line ¢

- P15 P2, P3
- U Lineage tree
Output:
- W the resulting regression weights (C' x F, number of tasks by number of features)
Wy
Wo
w=1 .
We
Initialze:
Initialize regression weights for each task, W, = 0, Wc‘)ld =0
t=1,ta=0,7v=1,%nc = 2, > Rate parameters for AGM
Foia =0
while not converged do
o = L=l
wrew = (14 o)W, — anld
VWiew = (ng)WCT - ng))Tng) > Compute gradient for the squared loss for all ¢

Frew = 3, 3IXE = Y Pwreer| 2
while True do
Ve = Wrew — VWIew [~ > Get initial estimate of regression weight for all ¢
WPrel = getFGLASSO(V, 2+, 22, 22, W) 1> Fused Group LASSO projection (Algorithm b
Foroj = Y0, 31|67 — YEIWE T3
AWpTDj — Wpraj — Wnew
Fy = Frew + 32 j(AWPT 0 VW), 5 + Z|| AW |3
if F.,; < F, then
| break
end

Y =7 X Yinc

end
weld = 1,
We = Wer
k k

Frew = 3o |XE —YWIB + pol [W]ly + pal (W] [1 + ps][W] 21
if | Frew — Foia| < tolerance then

| converged=true
end
Fold = Fnew
told =1

t=11+V1+4£?)

end

Algorithm 3: getFGLASSO algorithm

Input:

- V: C x F, matrix of initial regression weights, C' is the number of tasks, F' is the number of

features)
- AL, A2, A3
- U Lineage tree
Output:
- WProJ Fused Group LASSO projection
fori =1...F do
v="V;
w = ﬂsa(v,)\1,)\2, \I’)
max(||w]|2—A3,0)

Wi = Twil2

X W
end

mej = (Wl,Wg, ,WF)

> Column ¢ of matrix V'

Algorithm 4: flsa algorithm

Input:

- v, C x 1, column of estimate of regression weights, C' is the number of tasks

- A1, Ao, regularization parameters of Fused LASSO

- U Lineage tree
Output:

- w updated estimate of regression weights based on Fused LASSO penalty

Solve YWU'z = Uv for z
Zmaz = ||2|]0o
if Ao > 2,00 then
t = mean(v)
t—XA ift >N\
t=qt+ XN\ ift<—X\
0 otherwise
w = (t,t,....0)7
end
else
w = SFAG(v, \2, ¥, z)
W(Z) -\ ifW(’i) > A\

0 otherwise

W(Z) = W(’L) + M ifW(’i) < =)\

> Get the max absolute value of z

> Soft-thresholding

> C x 1 vector

> Soft-thresholding on all elements of w

10

Algorithm 5: Subgradient Finding Algorithm with Gradient descent (SFA)

Input:

-V, \9,Z

-U: Lineage

Output:

- w: updated estimate of regression weight
L=largest eigen value of ¥

while not converged do
> Convergence determined by max iterations or the duality gap

g=U0Tz — Uy > Compute gradient

z=1z-(g9/L)

z(i) = Az 1fz(z) > A2 > Project z in the limit of [— g, A2]
—1xXo ifz(i) < —Ao

s=UUTz — Uy > get the gradient again

gap = Xol||s|1+ < s,z > > Get the duality gap

if gap < tolerance then
| convergence=true

end

end
w=v-—Ulg

11

1.3 EM algorithm for DRMN learning

DRMN:Ss are learned by optimizing the overall DRMN likelihood using an Expectation Maximization (EM)
style algorithm that searches over the space of possible graphs for a local optimum (Algorithm [6). In the
Maximization (M) step, we estimate transition parameters (M1 step) and the regulatory program structure
(M2 step). In the Expectation (E) step, we compute the expected probability of a gene’s expression profile
to be generated by one of the regulatory programs. The M2 step uses multi-task learning to jointly learn the

regulatory programs for all cell types using either the framework of DRMN-ST or DRMN-FUSED.

Algorithm 6: DRMN Algorithm
Input:
- Expression data X = {Xy, -+, X¢},
- Regulatory features Y = {Y1,---,Y¢},
- Initial module assignments M = {M;, ..., M¢}
Output:
- Regulatory programs R = {R; = (G1,01),....,Rc = (G¢,0¢0)},
- Transition probabilities IT = {IIy, ..., I}
while not converged do
M1: Estimate transition parameters (II,--- , II¢)
M2: Update regulatory programs (G1,--- ,G¢,01,--- ,0¢)
E: Update module assignment probabilities and module assignments (I', M, ..., M¢)
end

Update soft module assignments (E step): Let %g‘,jc be the probability of gene g in cell type c to belong
to module 4, given that in its parent cell type ¢, it belonged to module j. Let T' denote these probabilities
for all genes across cell types. We also introduce o, a vector of size K x 1 where each element ag(c’)
specifies the probability of observations given the parent state is ¢’. We estimate the probabilities using a
dynamic programming procedure, where values at internal nodes in the lineage tree are computed using the

values for all descendent nodes, down to the leaves.

If ¢ is a leaf node, we calculate
¥ = P(Xgel RV, Y (g,)T (i)

where the first term is the probability of observing expression of gene ¢ in cell type ¢ in module ¢ and Rg)

12

is the regulatory program and features of module i. The second term is the probability of transitioning from
module j in the parent cell type ¢’ to module 7 in cell type c.

For a non-leaf cell type c:

7 = P RY, YD (g, IL(il)] o

c—ler

For both internal and leaf cell types, we write the joint probability of gene g in cell type c to belong

,C

to module ¢, and, in its parent cell type ¢/, to module j as ’yf’jc = ‘(]J 7 where « () = ’y “ is the
> g

probability of g’s expression in any module given parent module j.

Estimate transition parameters (M1 step): Let 'yk . be the joint probability of gene g to belong to

module £ in cell type ¢, and, module £’ in its parent cell type ¢’ (computed above). We calculate the

Z 'Ykk/

probability of transitioning from &’ in ¢/ to k in ¢ as T .(k, k') = =25 —.
Zg,k,k/ ’Yk,k/

Update regulatory programs (M2 step): Recall that the regulatory program for each cell type cis R, =<
G, ©. >, where G, is a set of regulatory interactions f — 4 from a regulatory feature f to a module ¢, and
O, are the parameters of a regression function for each module that relates the selected regulatory features
to the expression of the genes in a module. G(ci) denotes the set of features for module ¢. In the DRMN-ST
approach, the regulatory interactions are learned for one module at a time, across all cell types at a time
using a greedy hill-climbing framework. At initialization, for each module ¢, G((;i) is an empty graph, and
the Gaussian parameters are computed as the empirical mean and variance of the genes initially assigned
to module ¢ in each cell type. In each iteration, we score each potential regulatory feature based on its
improvement to the likelihood of the model, and choose the regulator with maximum improvement. This
regulator is added to the module’s regulatory program for all cell types for which it improves the cell type-

specific likelihood. In DRMN-FUSED, the structure and parameters of Rg) are learned by optimizing the

objective in Eqn8|using an accelerated gradient method (Nesterov 2005; Nesterov 2007).

Termination: DRMN inference runs for a set number of iterations or until convergence. Final module
assignments are computed as maximum likelihood assignments using a dynamic programming approach.

While module assignments between consecutive iterations do not change significantly, the final module as-

13

signments are significantly different from the initial module assignments, and predictive power of model
significantly improves as iterations progress (though improvements are small after 10 iterations, Supple-
mental Figure [S17). In our experiments, we ran DRMN for up to ten iterations. When using greedy hill

climbing approach, the M2 step was run until up to five regulators were added per module.

1.4 Examining different features in DRMN

We used DRMN’s expression modeling framework to examine the contribution of different regulatory fea-
tures, such as sequence motifs, histone modifications and accessibility to variation in expression at each time
point or cellular stage of a dynamic process. We used a nested CV scheme described in Section Evaluating
the ability to model expression. These feature set types were examined with the reprogramming array and
sequencing datasets. Briefly, we perform 3 fold cross validation, where we split the genes into 3 sets, use
two to train our models, and use the trained model to predict the expression for genes in the remaining set.
Our metric for comparison was Pearson’s correlation between true and predicted expression in each module

in a test set. We considered the following features for each gene to predict its expression.

e Motif. We defined motif features based on the presence of a motif instance of a transcription factor
(TF) within the gene’s promoter region, defined as 2500 around the gene TSS. We downloaded a
meta-compilation of position weight matrices (PWMs) from various resources (see dataset-specific
sections for details) for human (e.g., Cis-BP) or mouse (Cis-BP for dedifferentiation and Sherwood et
al (Sherwood et al. |[2014]) for the two reprogramming datasets). For the two reprogramming datasets,
we applied FIMO (Grant et al. 2011) to scan the mouse genome for significant motif instances (p <
le — 5). For the dedifferentiation and human ESC differentiation the PIQ software (Sherwood et al.
2014) was used to identify the significant motif instances. For each gene, we generated a vector of
motif presence, one dimension for each motif with the value equal to the —log;,(p-value) of a motif
instance. If a gene had multiple motif instances for the same motif, we used the most significant

instance (smallest p-value).

e Histone. For datasets with histone modifications measured, we used each histone mark as a separate

feature. This included 8 features for the reprogramming array dataset, 9 features for the sequencing

14

dataset and 8 features for the HIESC differentiation dataset. The feature value was the aggregated

count value around the gene TSS followed by log transformation.

e Histone + Motif. This was the concatenation of histone modification features (Histone) where avail-

able, with the motif features for each gene.

e Accessibility. The Accessibility feature was a single feature repressing the aggregated ATAC-seq or
DNase-seq reads around the gene promoter. After aggregating to the gene promoter, we quantile

normalized and log transformed the values.

o Accessibility + Motif. This feature set represents the concatenation of the ATAC feature with the

Motif feature set for each gene.

e Q-Motif. This feature set represents sequence-specific motif features scored by the ATAC-seq/DNase-
seq signal producing a total of as many features as there are motifs with significant instances. We used
BEDTools (bedtools genomecov —ibam input.bam -bg -pc > output.counts)to
obtain the aggregated signal on each base pair. We defined the feature value as the log-transformed
mean read count under each motif instance. If multiple instances of the same motif were mapped to
the same transcript, the signal was summed. If a TF was mapped to multiple transcripts of the same

gene, or multiple motifs of the same TF were mapped to the same gene, the max value was used.

e Histone + Accessibility + Motif. This feature set represents the concatenation of the Histone feature

set, ATAC feature and the Motif feature set.

e Histone + Q-Motif. Similar to the Histone + Motif feature set, Histone + Q-Motif represents the

concatenation of the Histone and Q-Motif feature set for each gene.

e Histone + Accessibility + Q-Motif. This feature set is similar to Histone+ATAC+Motif and represents

the concatenation of Histone and Q-Motif feature sets with the ATAC feature.

We first compared DRMN-ST (Figure [S3B,C) and DRMN-FUSED (Figure [S3D.E) using sequence-
specific motifs alone (Motif), histone marks (Histone) and a combination of the two (Histone+Motif), as

these features were available for both array and sequencing datasets. In both models, motifs alone (blue

15

markers) have low predictive power across different & for both array (Figure [S3B, D) and sequencing
(FigureS3IC, E) data. As expected, histone marks alone (red marker) have higher predictive power, however
adding both histone marks and motif features (magenta) has the best performance for £ = 3 and 5, with
the improved performance being more striking for DRMN-ST. For DRMN-Fused, Histone only and His-
tone+Motif seemed to perform similarly, although at higher k using histone marks alone is better. Between
different cell types the performance was consistent in array data, while for sequencing data, the MEF and
MEFA438 cell types were harder to predict than ESC and preIPSC (Supplemental Figure [ST).

We next examined the contribution of accessibility (ATAC-seq) data in predicting expression using the
sequencing dataset for which accessibility was available (Figure [S3|C, E). We incorporated the ATAC-
seq data in five ways: a single feature defined by the aggregated accessibility of a particular promoter
and individual motifs (Accessibility+motif, orange markers), using ATAC-seq to quantify the strength of a
motif instance (Q-Motif, light blue markers), combining the Accessibility feature with histone and motifs
(dark purple marker), combining Q-Motif with histone (Histone+Q-motif, light green), and the Accessibility
feature with histone and Q-motifs (Histone+Accessibility+Q-motif, dark green, Figure @]C, E). We also
considered ATAC-seq alone but this was not very helpful (Supplemental Figure [S2).

Combining the Accessibility feature together with Motif improves performance over Motif alone (Figure[S3(C,
E orange vs. dark blue markers). The Q-Motif feature (light blue markers) was better than the Motif only
(dark blue) at lower k£ (k=3), however, it did not outperform Motif at higher k. One possible explanation
is that the Q-Motif feature is sparser than Motif because a motif instance that is not accessible will have
a zero value and does not add predictive power at higher k. Finally, Accessibility feature combined with
Histone+Motif features is comparable to Histone+Motifs (Figure[S3|C, magenta markers). We observe sim-
ilar trends with Histone+Q-Motif and Histone+Accessibility+Q-motif features (Figure [S3|C, light and dark
green Figure [S3C). It is possible that the overall cell type specific information captured by the accessibility
profile is redundant with the large number of chromatin marks in this dataset and we might observe a greater
benefit of ATAC-seq if there were fewer or no marks.

When we directly compared DRMN-ST to DRMN-FUSED, DRMN-FUSED was able to outperform
DRMN-ST on both Motif and Histone and comparable on Histone+motif on array data (Figure [S3F). On

the sequencing data, DRMN-FUSED had a higher performance that DRMN-ST on Motif, Q-Motif, Acce-

16

sibility+motif and Histone alone features (Figure [S3G). It is likely that DRMN-ST learns a sparser model
at the cost of predictive power (Supplemental Figure [S4). For the application of DRMNs to real data, we

focus on DRMN-FUSED due to its improved performance.

1.5 Effect of hyper-parameters on DRMN-FUSED results

We used the reprogramming array and sequencing datasets to study the effect of hyper-parameters on
the performance of DRMN-FUSED with different feature sets. The hyper-parameters are p; (sparsity
in each task), po (selection of more similar features for closely related cell types) and ps (selection of
similar features for all cell types). We performed a grid search on a range of parameters values: p; €
{0.5,1,2,5,10, 20, 30,40, 50, 60, 70, 80, 90, 100, 110, 120, 130}, p2 € {0,10,20,30,40,50} and p3 =
{0, 10, 20, 30,40, 50} (Supplemental Figure . To compare different feature sets we used three-fold
cross validation as described in Section Evaluating the ability to model expression to assess the predicted
expression for each module and cell stage. We used the average over modules and cell stages to assess
DRMN performance for a particular feature set and hyper-parameter setting. We observe that increase in p3
was generally not beneficial for the Motif feature for all £ (number of modules), and for k¥ > 7 when using
Histone and Histone+Motif (blue p3=0 vs. cyan, p3=50, Supplemental Figure [S19). For a fixed value of
p3, increasing sparsity p; is beneficial for the Histone and Histone + Motif features, upto p; = 30 — 60,
beyond which the performance decreases or does not improve. The py feature was also most useful when
using the Histone feature.

For the sequencing dataset we considered all the feature types described in the section, Feature sets
tested in DRMN, Supplemental Methods. The Motif feature was generated in a similar manner as the
reprogramming array dataset. In addition, we included, Q-Motif, Accessibility and their combinations with
the Histone feature. Similar to the array dataset, we used this dataset to study the effect of hyper-parameters,
p1, p2 and p3 on the performance of DRMN-FUSED using a similar three-fold cross-validation framework
(Supplemental Figures [S21] [S22] [S23). As in the array dataset, increasing values of p3 was not benefi-
cial for Motif or Q-Motif alone. Higher value of p3 was useful for some of settings of histones features
combined with Accessibility, Motif or Q-motif (k = 3,5 for generally lower values of p;, Supplemental

Figures[S21],[S22],[S23). We next investigate the impact of p; and py, for different values of p3. We observe

17

that when using histone features (Histone+Motif, Histone+Accessibility+Motif, Histone+Accessibility+Q-
Motif), increase in pa (increasing the similarity of inferred networks) improves the predictive power of the
method. Increase in p; is beneficial for these features up to a limit (typically, p1=60 or 70). Conversely,
for the feature sets that do not use histone features (Motif, Q-Motif, and Accessibility+Motif), increase in
p1 (sparser models) decrease the predictive power of the model, which is consistent with the decrease in

performance of Motif features in the array dataset.

1.6 Predicting regulators for transitioning gene sets

Simple linear regression approach. To identify regulators associated with transitioning gene sets in
datasets with < 5 samples (the two reprogramming datasets and HIESC differentiation dataset), we used
a simple regression-based approach to find regulators that can explain the overall variation in expression
of genes in the set. Briefly, for each transitioning gene set with n genes across C' cell types, we created a
n x C' X 1 expression vector by stacking of the C'-dimensional vector for each of the genes across the C' cell
types. We repeated this procedure for all the features associated with the gene set to produce an * C' x F
matrix, where F' is the total number of features in our dataset. Next, we used regularized regression to se-
lect which features are most predictive of the expression levels. Any regularized regression framework can
be used; we used the sparsity imposing regression framework of the MERLIN algorithm (Roy et al. 2013),
which uses a probabilistic framework with a prior term (tuned using a hyper-parameter) to infer sparser mod-
els. We ran MERLIN (with default settings) on each transitioning gene set to identify regulatory features
associated with that set. We finally filtered the predicted regulators per gene set by assessing the correlation
of the regulator/feature with the gene expression of a gene across the cell lines and included a regulator if

was correlated to at least 5 genes with a Pearson’s correlation of 0.6 or higher.

Multi-Task Group LASSO. To identify regulators associated with transitioning gene sets in datasets with
> 6 samples, e.g., the dedifferentiation dataset, we used a multi-task regression framework called Multi-
Task Group LASSO (MTG-LASSO). In MTG-LASSO, we perform multiple regression tasks, one for each
gene in the set to select regulatory features as predictors for each gene’s expression levels. The “group”

penalty of MTG-LASSO enables us to select the same regulator for all genes in the gene set but with

18

different parameters. The regulatory feature defines the “group”, which is the set of regression weights for
the regulator and each gene in the gene set. MTG-LASSO selects or unselects entire groups, and therefore,

regulatory feature, of regression weights. The MTG-LASSO objective for each gene set s is:

. 2
Ill}llsﬁz Hng - Ysg\IJngQ + A; ||¢f-||27
g

Here X, is the C' x 1 vector of expression values over C' samples for gene g, and Y, is the C' x F
matrix of regulatory features for g over samples. Wyy = [th14,- - , 9 FQ}T is the F' x 1 vector of regression
weights for predicting g’s expression from the F' regulatory features. The first term denotes the regression
task for each gene g, while the second term denotes the L1/L2 regularization required for the MTG-LASSO
framework. The sum over f imposes the L1 penalty selecting a small number of groups (one ¢ for each
feature f), and the ||y ||2 imposes the L2 norm for smoothness of the regression coefficients across genes.
A is the hyper-parameter controlling for the strength of the regularization.

We applied MTG-LASSO to each transitioning gene set using the MATLAB SLEP v4.1 package (Jura
et al. 2008)) to infer the most predictive regulatory features for the gene set. We performed leave-one-out
cross-validation, where one sample is left out from training, a model is fit on the remaining samples and used
to predict the left out sample. We computed a confidence for each feature based on the percentage of models
in which the feature is selected. Additionally, we computed a p-value for the selection of each regulator
by comparing the number of times it was selected to a null distribution of feature selection obtained from
randomizing the data 40 times and training MTG-LASSO models. A feature was selected as a regulator if
it was in at least 60% of the trained values and had a p-value< 0.05. We tried different hyper-parameter
values (A € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}) and selected the value that resulted in reasonable
number of regulators across all transitioning gene sets (A = 0.7). Once regulators were selected for each
gene set, we further filtered the features based on the Pearson’s correlation of the gene expression and feature

values as in the simple regression case.

19

References

Grant CE, Bailey TL, and Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformat-
ics. 27: 1017-1018.

Jura J, Wegrzyn P, Korostynski M, Guzik K, Oczko-Wojciechowska M, Jarzab M, Kowalska M, Piechota
M, Przewlocki R, and Koj A. 2008. Identification of interleukin-1 and interleukin-6-responsive genes in
human monocyte-derived macrophages using microarrays. Biochimica et Biophysica Acta (BBA) - Gene
Regulatory Mechanisms. 1779: 383-389.

LiuJ, Yuan L, and Ye J 2010. An Efficient Algorithm for a Class of Fused Lasso Problems. In: Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD
’10. Washington, DC, USA: Association for Computing Machinery, pp. 323-332.

Nesterov Y. 2005. Smooth minimization of non-smooth functions. Mathematical Programming. 103: 127-
152.

Nesterov Y. 2007. Gradient methods for minimizing composite objective function. Center for Operations
Research and Econometrics (CORE). 5: 4.

Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, and Gasch AP. 2013. Integrated Module and Gene-Specific
Regulatory Inference Implicates Upstream Signaling Networks. PLoS Comput. Biol. 9: e1003252+.
Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP, Karun V, Jaakkola T, and

Gifford DK. 2014. Discovery of directional and nondirectional pioneer transcription factors by modeling
DNase profile magnitude and shape. Nat Biotechnol. 32: 171-178.
Zhou J, Chen J, and Ye J 2012. MALSAR: Multi-tAsk Learning via StructurAl Regularization — User’s

Manual Version 1.1.

20

	Supplementary Methods
	DRMN-ST: Structure prior approach.
	DRMN-FUSED: Parameter prior approach.
	EM algorithm for DRMN learning
	Examining different features in DRMN
	Effect of hyper-parameters on DRMN-FUSED results
	Predicting regulators for transitioning gene sets

	References

