
Supplementary Materials

Contents

1 Supplementary Methods 2

1.1 DRMN-ST: Structure prior approach. 4

1.2 DRMN-FUSED: Parameter prior approach. 7

1.3 EM algorithm for DRMN learning . 12

1.4 Examining different features in DRMN . 14

1.5 Effect of hyper-parameters on DRMN-FUSED results . 17

1.6 Predicting regulators for transitioning gene sets . 18

References 20

1

1 Supplementary Methods

Notation. Let X denote an N × C matrix of cell type-specific expression values for N genes in C cell

types, where each column X(:, c) is the measurement of all genes in cell type c ∈ {1, · · · , C}, and X(g, c)

is the expression level of gene g in cell type c. Y = {Y1, · · · ,YC} denotes collection of feature matrices,

one for each cell type, c. Each Yc is an N × F matrix, with the gth row, Yc(g, :) specifying the values of

F features for gene g. The values inside each feature matrix, Yc can be either context-independent (e.g.,

a sequence-based motif network) or context-specific (e.g., a motif network informed by accessibility value,

histone modifications). Let τ denote the lineage tree which describes how the C cell types are related and

K denote the number of gene modules. For each cell type c, Rc =< Gc,Θc >, denotes the RMN for c. Gc

is a bipartite graph specifying the edges between F features and K modules, and Θc, are the parameters of

the regulator programs for each module that relate the selected regulatory features to the expression of genes

in the module. Let M be a N × C matrix denoting the module assignments of the N genes across all cell

types, with M(g, c) denoting the module assignment of gene g in cell type c. In DRMN, we additionally

have transition probability distributions Π = {Π1, ...,ΠC} (Figure 1), which capture the dynamics of the

module assignments in one cell type c given its parent cell type, pa(c) in the lineage tree τ . Specifically,

Πc(i, j) is the probability of any gene being in module j given that its parental assignment is to module i.

For the root cell type, this is simply a prior probability over modules. We first define the RMN model for

one cell type and extend it to multiple related cell types for DRMN.

RMN. In RMN each cell type’s data is modeled independently and we optimize the posterior probability

of each cell type c’s model as: P (Rc|Xc,Yc), where X(:, c) = Xc which by Bayes rule is proportional to

P (Xc|Yc,Rc)P (Rc). For the last term, we assume P (Rc|Yc) = P (Rc) and denotes a prior on the struc-

ture of the model. The data likelihood for each cell type, c is P (Xc|Rc,Yc), and is obtained by marginaliz-

ing out the hidden module variables, M(:, c):
∑

M(:,c) P (X(:, c),M(:, c)|Rc,Yc). This will further decom-

pose for each gene’s expression X(c, g) as
∏
g

∑
M(g,c) P (X(g, c)|M(g, c),Rc,Yc(g, :))P (M(g, c)|Rc),

where M(g, c) is the module assignment for gene g in cell type c. Thus the RMN model specifies each

gene’s expression to be generated from a mixture model where P (M(c, g)|Rc) = P (M(c, g)) is the prior

probability of each module specified by M(c, g). Letting, X(g, c) = Xcg and M(g, c) = Mcg, we rewrite

2

the probability of each gene as P (Xcg|Rc,Mcg,Yc(g, :)). Let Y
(i)
c denote the subset of regulatory features

associated module i and cell type c and Fci denote the number of columns of Y
(i)
c . For Mcg = i, the

expression of a gene, Xcg and features Y
(i)
c are modeled jointly as a Fci + 1 dimensional Gaussian. The

expression of a gene given the features is a conditional mean derived as a linear combination of the feature

values with parameters θci and conditional variance Σ
x|Y(i)

cg
. Given, θci and Σ

x|Y(i)
cg

, the probability of Xc(g)

from module i in cell type c given its features Y
(i)
cg is:

P (Xcg|Mgc,Rc,Y
(i)
c (g, :)) ∼ N

 ∑
f∈{0···Fci}

θci(f)Y(i)
c (g, f),Σ

x|Y(i)
cg

 (1)

Here, f = 0 corresponds to the bias term.

DRMN. The DRMN model is defined by a set of RMNs, R = {R1, · · · ,RC} linked via the lineage tree

τ , and the posterior likelihood of the model given the data, P (R1, · · · ,RC |X1, · · · ,XC ,Y1, · · · ,YC , τ).

Based on Bayes rule, this can be rewritten asP (X1, · · · ,XC , |R1, · · · ,RC ,Y1, · · · ,YC)P (R1, · · · ,RC).

As in the case of RMN, we introduce the module variables and decompose this over a gene, but now across

all the cell types together:

∏
g

P (X1g, · · · , XCg|M1g, · · · ,MCg,R,Y)P (M1g, · · · ,MCg|R, τ)P (R|τ) (2)

Given the module assignments, the gene expression across cell types are independent of each other.

Hence the probability of each gene expression is:

(∏
c

P (Xcg|Mcg,Rc,Yc(g, :))

)
P (M1g, · · · ,MCg|τ)P (R|τ)

Due to the tree structure, we assume the module assignment in a current cell type c, Mcg is inde-

pendent of everything else, given its parent pa(c) = c′ in τ . Thus, P (M1g, · · · ,MCg|τ) is rewritten as

P (M1g)
∏
c′→c∈τ P (Mcg|Mc′g), where 1 denotes the root of the tree and c′ → c ∈ τ denotes a parent child

3

relationship in τ . Combining the two, the probability of a gene’s expression across cell types is:

P (X1g|M1g,R1,Y1(g, :))P (M1g)

(∏
c→c′∈τ

P (Xcg|Mcg,Rc,Yc(g, :))P (Mcg|Mc′g)

)
P (R|τ) (3)

P (Xcg|Mcg,Rc,Yc(g, :)) is computed in the same way as Eqn 1. P (Mcg|Mc′g) is obtained from

the transition probabilities. P (R|τ), specifies a prior over the structure/feature sets in each of the cell

type-specific RMN models, Rc. The prior controls for each module, what sets of features get associated

with each module i, and how they change over time. We used two formulations for the prior to enable

sharing information: DRMN-Structure Prior (DRMN-ST) defines a structure prior over the graph structures

P (G1, ..., GC) while DRMN-FUSED uses a regularized regression framework and implicitly defines priors

on the P (Θ1, · · · ,ΘC). In both frameworks, we share information between the cell types/conditions to

learn the regulatory programs of each cell type/condition. The procedure is specific to DRMN-ST and

DRMN-FUSED.

1.1 DRMN-ST: Structure prior approach.

In DRMN-ST, information is shared by specifying a structure prior, P (G1, ..., GC), defined only over the

graphs. The parameters are set to their maximum likelihood setting. P (G1, ..., GC) determines how infor-

mation is shared between different cell types at the level of the network structure and encourages similarity

of features, indicative of regulators, between cell types. P (G1, ..., GC) is computed using the transition

matrices {Π1, ...,ΠC} and decomposes over individual regulator-module edges within each cell type as

follows:

P (G1, · · · , GC) =
∏
f→k

P (If→k) (4)

where

P (If→k) = P (Irootf→k)
∏

c′→c∈Ψ

P (Icf→k|Ic
′
f→k) (5)

4

where Icf→i is an indicator function for the presence of the edge f → i for cell type c, between a regulator

f and a module i. To define P (Icf→i|Ic
′
f→i), we use the transition probability of the modules as:

P (Icf→i|Ic
′
f→i) =


Πc(i|i) if Icf→i = Ic

′
f→i

1−Πc(i|i)
K−1 otherwise,

where K is the number of modules. Here the first option gives the probability of maintaining the same

state from parent to child cell types (is present or absent in both c and c′), and the second option gives the

probability of changing the edge state. The data likelihood is written as

P (X(k)
c |Rc,k,Y

(k)
c) (6)

where X
(k)
c is gene expression vector of module k in cell line c, Y

(k)
c is the feature matrix of module k in

cell line c, and Rc,k =< Gc,k,Θc,k > is the regulatory program of module k consisting of Gc,k the inferred

interactions and Θc,k the corresponding regression coefficients. The data likelihood can be estimated as a

conditional normal distribution

P (X(k)
c |Rc,k,Y

(k)
c) ∼

∏
g∈modulek

N

 ∑
f∈Gc,k

θc,k(f)Y(k)
c (g, f),Σx|Gc,k

 (7)

and Σx|Gc,k
denotes conditional variance. We incorporated the structure prior within a greedy hill climb-

ing algorithm for estimating the DRMN model. Algorithm 1 outlines the greedy hill climbing algorithm that

is called in each iteration of EM algorithm (see Algorithm 6) for each module k. The parameter maxIter

is set to 5, meaning that at most 5 new regulators can be added to the regulatory program of a module in

each iteration of the EM algorithm.

5

Algorithm 1: DRMN-ST algorithm
Input:
- X

(k)
c Gene expression vector for module k in cell line c

- Y
(k)
c Feature matrix for module k in cell line c

- Ψ Lineage tree
Output:
- Rc,k =< Gc,k,Θc,k > The updated regulatory program
for maxIter number of iterations do

for each feature f do
for each cell line c do

scoreImprovement← improvement of data likelihood when adding f to regulatory
program of k

if scoreImprovement > 0 then
Icf→k ← 1

end
else

Icf→k ← 0

end
end
Calculate P (G1, · · · , GC) . Prior term, see equations 4 and 5
Calculate P (X

(k)
c |Rc,k,Y

(k)
c) . Data likelihood term, see equations 6 and 7

end
Add f∗, feature with highest overall score improvement to the model.

end

6

1.2 DRMN-FUSED: Parameter prior approach.

In DRMN-FUSED, we use a fused group LASSO formulation to share information between the cell types

for each module k. We assume that genes are already assigned to a module and optimize the following

objective:

min
Θ

∑
c

||X(k)
c −Y(k)

c θTck||22 + ρ1||Θk||1 + ρ2||ΨΘk||1 + ρ3||Θk||2,1, (8)

where X
(k)
c is the expression vector of genes in module k in cell line c, Y

(k)
c is the feature matrix for

genes in module k, and θck is a 1 × F vector of regression coefficients for the same module and cell line

(non-zero values correspond to selected features). θck is analogous to the parameters for the conditional

mean for each gene in Eqn 1. Θk is the C by F matrix resulting from stacking up the θck vectors as rows.

Ψ is a C − 1 by C matrix, encoding the lineage tree. Each row of Ψ corresponds to a branch of the tree

and each column corresponds to a cell type. If row i of Ψ corresponds to a branch c′ → c in the lineage

tree, Ψ(i, c′) = 1, Ψ(i, c) = −1, and all other values in that row are 0. ΨΘk is a C − 1 by F matrix, where

row i correspond to Θc′,k − Θc,k, the difference between regression coefficients of cell lines c′ and c. ||.||1

denotes l1-norm (sum of absolute values), ||.||2 denotes l2-norm (square root of sum of square of value),

and ||.||2,1 denotes l2,1-norm (sum of l2-norm of columns of the given matrix). ρ1, ρ2 and ρ3 correspond

to hyper parameters, with ρ1 for sparsity penalty, ρ2 to encourage similarity between selected features of

consecutive cell lines in the lineage tree, and ρ3 to encourage selecting the same features for all cell types.

Thus, ρ2 controls the extent to which more closely related cell types are closer in their regression weights,

while ρ3 controls the extent to which all the cell types share similarity in their regulatory programs. We set

these hyper parameters based on cross-validation by performing a grid search for ρ1, ρ2 and ρ3 as described

in the dataset-specific application sections. We implemented the optimization algorithm by extending the

algorithm described in the MALSAR MATLAB package (Zhou et al. 2012) to handle branching topologies

as described below. The learning algorithm uses an accelerated gradient method (Nesterov 2005; Nesterov

2007) to minimize the objective function above.

The FUSED LASSO objective is not smooth and therefore requires special handling, that is they have a

smooth (l2 loss) and a non-smooth part (Fused LASSO part). We follow the implementation in the MALSAR

7

package (Zhou et al. 2012), which makes use of Nesterov’s accelerated gradient method (AGM) for com-

posite functions (Nesterov 2005; Nesterov 2007). The MALSAR package uses the efficient fused LASSO

algorithm which internally makes use of the Fused LASSO Signal Approximator (FLSA) algorithm (Liu

et al. 2010). The FLSA algorithm is an iterative algorithm that makes use of a Sub-Gradient Finding Algo-

rithm (SFA). However, the original implementation of this algorithm in the MALSAR MATLAB package is

suitable only for linear time-series data. We extend this algorithm to handle general branching structure by

re-implementing the Subgradient Finding Algorithm with gradient descent (Algorithm 5, SFAG).

Algorithm 2 is the main algorithm for the AGM method. The parameters α and γ, control the step size

of AGM. The algorithm has two nested loops. The outer loop updates the step size parameters executing the

main AGM framework. The inner loop uses the fused LASSO penalty to estimate new regression weights

(Algorithm 3), which internally calls Algorithm 4 (FLSA) and Algorithm 5 (SFAG) and updates the model

parameters due to the non-smooth part.

8

Algorithm 2: DRMN-FUSED algorithm
Input:
- X

(k)
c Gene expression vector for module k in cell line c

- Y
(k)
c Feature matrix for module k in cell line c

- ρ1, ρ2, ρ3

- Ψ Lineage tree
Output:
- W the resulting regression weights (C × F , number of tasks by number of features)

W =


W1

W2
...

WC


Initialze:
Initialize regression weights for each task, Wc = 0, W old

c = 0
t = 1, told = 0, γ = 1, γinc = 2, . Rate parameters for AGM
Fold = 0
while not converged do

α = told−1
t

Wnew
c = (1 + α)Wc − αW old

c

∇Wnew
c = (Y

(k)
c W ᵀ

c −X
(k)
c)ᵀY

(k)
c . Compute gradient for the squared loss for all c

Fnew =
∑

c
1
2 ||X

(k)
c −Y

(k)
c Wnewᵀ

c ||22
while True do

Vc = Wnew
c −∇Wnew

c /γ . Get initial estimate of regression weight for all c
W proj = getFGLASSO(V, ρ1γ ,

ρ2
γ ,

ρ3
γ ,Ψ) . Fused Group LASSO projection (Algorithm 3)

Fproj =
∑

c
1
2 ||X

(k)
c −Y

(k)
c W projᵀ

c ||22
∆W proj = W proj −Wnew

Fγ = Fnew +
∑

i,j(∆W
proj �∇Wnew)i,j + γ

2 ||∆W
proj ||22

if Fproj ≤ Fγ then
break

end
γ = γ × γinc

end
W old
c = Wc

Wc = W proj
c

Fnew =
∑

c ||X
(k)
c −Y

(k)
c W ᵀ

c ||22 + ρ1||W ||1 + ρ2||ΨW ||1 + ρ3||W ||2,1
if |Fnew − Fold| < tolerance then

converged=true
end
Fold = Fnew
told = t
t = 1

2(1 +
√

1 + 4t2)

end

9

Algorithm 3: getFGLASSO algorithm
Input:
- V : C × F , matrix of initial regression weights, C is the number of tasks, F is the number of
features)

- λ1, λ2, λ3

- Ψ Lineage tree
Output:
- W proj Fused Group LASSO projection
for i = 1...F do

v = V.,i . Column i of matrix V
w = flsa(v, λ1, λ2,Ψ)

wi = max(||w||2−λ3,0)
||w||2 ×w

end
W proj = (w1,w2, ...,wF)

Algorithm 4: flsa algorithm
Input:
- v, C × 1, column of estimate of regression weights, C is the number of tasks
- λ1, λ2, regularization parameters of Fused LASSO
- Ψ Lineage tree
Output:
- w updated estimate of regression weights based on Fused LASSO penalty
Solve ΨΨTz = Ψv for z
zmax = ||z||∞ . Get the max absolute value of z
if λ2 ≥ zmax then

t = mean(v)

t =


t− λ1 if t > λ1

t+ λ1 if t < −λ1

0 otherwise

. Soft-thresholding

w = (t, t, ..., t)ᵀ . C × 1 vector
end
else

w = SFAG(v, λ2,Ψ, z)

w(i) =


w(i)− λ1 if w(i) > λ1

w(i) + λ1 if w(i) < −λ1

0 otherwise

. Soft-thresholding on all elements of w

end

10

Algorithm 5: Subgradient Finding Algorithm with Gradient descent (SFAG)
Input:
-v, λ2,z
-Ψ: Lineage
Output:
- w: updated estimate of regression weight
L=largest eigen value of Ψ
while not converged do

. Convergence determined by max iterations or the duality gap
g = ΨΨTz−Ψv . Compute gradient
z = z− (g/L)

z(i) =

{
λ2 if z(i) > λ2

−1 ∗ λ2 if z(i) < −λ2

. Project z in the limit of [−λ2, λ2]

s = ΨΨTz−Ψv . get the gradient again
gap = λ2||s||1+ < s, z > . Get the duality gap
if gap < tolerance then

convergence=true
end

end
w = v −ΨTz

11

1.3 EM algorithm for DRMN learning

DRMNs are learned by optimizing the overall DRMN likelihood using an Expectation Maximization (EM)

style algorithm that searches over the space of possible graphs for a local optimum (Algorithm 6). In the

Maximization (M) step, we estimate transition parameters (M1 step) and the regulatory program structure

(M2 step). In the Expectation (E) step, we compute the expected probability of a gene’s expression profile

to be generated by one of the regulatory programs. The M2 step uses multi-task learning to jointly learn the

regulatory programs for all cell types using either the framework of DRMN-ST or DRMN-FUSED.

Algorithm 6: DRMN Algorithm
Input:
- Expression data X = {X1, · · · ,XC},
- Regulatory features Y = {Y1, · · · ,YC},
- Initial module assignments M = {M1, ...,MC}
Output:
- Regulatory programs R = {R1 = (G1,Θ1), ...,RC = (GC ,ΘC)},
- Transition probabilities Π = {Π1, ...,ΠC}
while not converged do

M1: Estimate transition parameters (Π1, · · · ,ΠC)
M2: Update regulatory programs (G1, · · · , GC ,Θ1, · · · ,ΘC)
E: Update module assignment probabilities and module assignments (Γ,M1, ...,MC)

end

Update soft module assignments (E step): Let γg,ci|j be the probability of gene g in cell type c to belong

to module i, given that in its parent cell type c′, it belonged to module j. Let Γ denote these probabilities

for all genes across cell types. We also introduce αcg, a vector of size K × 1 where each element αcg(c
′)

specifies the probability of observations given the parent state is c′. We estimate the probabilities using a

dynamic programming procedure, where values at internal nodes in the lineage tree are computed using the

values for all descendent nodes, down to the leaves.

If c is a leaf node, we calculate

γg,ci|j = P (Xgc|R(i)
c ,Y

(i)
c (g, :))Πc(i|j)

where the first term is the probability of observing expression of gene g in cell type c in module i and R
(i)
c

12

is the regulatory program and features of module i. The second term is the probability of transitioning from

module j in the parent cell type c′ to module i in cell type c.

For a non-leaf cell type c:

γg,ci|j = P (Xgc|R(i)
c ,Y

(i)
c (g, :))Πc(i|j)

∏
c→l∈τ

αlg(i)

For both internal and leaf cell types, we write the joint probability of gene g in cell type c to belong

to module i, and, in its parent cell type c′, to module j as γg,ci,j =
γg,c
i|j

αc
g(j) , where αcg(j) =

∑
i γ

g,c
i|j is the

probability of g’s expression in any module given parent module j.

Estimate transition parameters (M1 step): Let γg,ck,k′ be the joint probability of gene g to belong to

module k in cell type c, and, module k′ in its parent cell type c′ (computed above). We calculate the

probability of transitioning from k′ in c′ to k in c as Πc(k, k
′) =

∑
g γ

g,c

k,k′∑
g,k,k′ γ

g,c

k,k′
.

Update regulatory programs (M2 step): Recall that the regulatory program for each cell type c is Rc =<

Gc,Θc >, where Gc is a set of regulatory interactions f → i from a regulatory feature f to a module i, and

Θc are the parameters of a regression function for each module that relates the selected regulatory features

to the expression of the genes in a module. G(i)
c denotes the set of features for module i. In the DRMN-ST

approach, the regulatory interactions are learned for one module at a time, across all cell types at a time

using a greedy hill-climbing framework. At initialization, for each module i, G(i)
c is an empty graph, and

the Gaussian parameters are computed as the empirical mean and variance of the genes initially assigned

to module i in each cell type. In each iteration, we score each potential regulatory feature based on its

improvement to the likelihood of the model, and choose the regulator with maximum improvement. This

regulator is added to the module’s regulatory program for all cell types for which it improves the cell type-

specific likelihood. In DRMN-FUSED, the structure and parameters of R
(i)
c are learned by optimizing the

objective in Eqn 8 using an accelerated gradient method (Nesterov 2005; Nesterov 2007).

Termination: DRMN inference runs for a set number of iterations or until convergence. Final module

assignments are computed as maximum likelihood assignments using a dynamic programming approach.

While module assignments between consecutive iterations do not change significantly, the final module as-

13

signments are significantly different from the initial module assignments, and predictive power of model

significantly improves as iterations progress (though improvements are small after 10 iterations, Supple-

mental Figure S17). In our experiments, we ran DRMN for up to ten iterations. When using greedy hill

climbing approach, the M2 step was run until up to five regulators were added per module.

1.4 Examining different features in DRMN

We used DRMN’s expression modeling framework to examine the contribution of different regulatory fea-

tures, such as sequence motifs, histone modifications and accessibility to variation in expression at each time

point or cellular stage of a dynamic process. We used a nested CV scheme described in Section Evaluating

the ability to model expression. These feature set types were examined with the reprogramming array and

sequencing datasets. Briefly, we perform 3 fold cross validation, where we split the genes into 3 sets, use

two to train our models, and use the trained model to predict the expression for genes in the remaining set.

Our metric for comparison was Pearson’s correlation between true and predicted expression in each module

in a test set. We considered the following features for each gene to predict its expression.

• Motif. We defined motif features based on the presence of a motif instance of a transcription factor

(TF) within the gene’s promoter region, defined as ±2500 around the gene TSS. We downloaded a

meta-compilation of position weight matrices (PWMs) from various resources (see dataset-specific

sections for details) for human (e.g., Cis-BP) or mouse (Cis-BP for dedifferentiation and Sherwood et

al (Sherwood et al. 2014) for the two reprogramming datasets). For the two reprogramming datasets,

we applied FIMO (Grant et al. 2011) to scan the mouse genome for significant motif instances (p <

1e − 5). For the dedifferentiation and human ESC differentiation the PIQ software (Sherwood et al.

2014) was used to identify the significant motif instances. For each gene, we generated a vector of

motif presence, one dimension for each motif with the value equal to the −log10(p-value) of a motif

instance. If a gene had multiple motif instances for the same motif, we used the most significant

instance (smallest p-value).

• Histone. For datasets with histone modifications measured, we used each histone mark as a separate

feature. This included 8 features for the reprogramming array dataset, 9 features for the sequencing

14

dataset and 8 features for the H1ESC differentiation dataset. The feature value was the aggregated

count value around the gene TSS followed by log transformation.

• Histone + Motif. This was the concatenation of histone modification features (Histone) where avail-

able, with the motif features for each gene.

• Accessibility. The Accessibility feature was a single feature repressing the aggregated ATAC-seq or

DNase-seq reads around the gene promoter. After aggregating to the gene promoter, we quantile

normalized and log transformed the values.

• Accessibility + Motif. This feature set represents the concatenation of the ATAC feature with the

Motif feature set for each gene.

• Q-Motif. This feature set represents sequence-specific motif features scored by the ATAC-seq/DNase-

seq signal producing a total of as many features as there are motifs with significant instances. We used

BEDTools (bedtools genomecov -ibam input.bam -bg -pc > output.counts) to

obtain the aggregated signal on each base pair. We defined the feature value as the log-transformed

mean read count under each motif instance. If multiple instances of the same motif were mapped to

the same transcript, the signal was summed. If a TF was mapped to multiple transcripts of the same

gene, or multiple motifs of the same TF were mapped to the same gene, the max value was used.

• Histone + Accessibility + Motif. This feature set represents the concatenation of the Histone feature

set, ATAC feature and the Motif feature set.

• Histone + Q-Motif. Similar to the Histone + Motif feature set, Histone + Q-Motif represents the

concatenation of the Histone and Q-Motif feature set for each gene.

• Histone + Accessibility + Q-Motif. This feature set is similar to Histone+ATAC+Motif and represents

the concatenation of Histone and Q-Motif feature sets with the ATAC feature.

We first compared DRMN-ST (Figure S3B,C) and DRMN-FUSED (Figure S3D,E) using sequence-

specific motifs alone (Motif), histone marks (Histone) and a combination of the two (Histone+Motif), as

these features were available for both array and sequencing datasets. In both models, motifs alone (blue

15

markers) have low predictive power across different k for both array (Figure S3B, D) and sequencing

(FigureS3C, E) data. As expected, histone marks alone (red marker) have higher predictive power, however

adding both histone marks and motif features (magenta) has the best performance for k = 3 and 5, with

the improved performance being more striking for DRMN-ST. For DRMN-Fused, Histone only and His-

tone+Motif seemed to perform similarly, although at higher k using histone marks alone is better. Between

different cell types the performance was consistent in array data, while for sequencing data, the MEF and

MEF48 cell types were harder to predict than ESC and preIPSC (Supplemental Figure S1).

We next examined the contribution of accessibility (ATAC-seq) data in predicting expression using the

sequencing dataset for which accessibility was available (Figure S3C, E). We incorporated the ATAC-

seq data in five ways: a single feature defined by the aggregated accessibility of a particular promoter

and individual motifs (Accessibility+motif, orange markers), using ATAC-seq to quantify the strength of a

motif instance (Q-Motif, light blue markers), combining the Accessibility feature with histone and motifs

(dark purple marker), combining Q-Motif with histone (Histone+Q-motif, light green), and the Accessibility

feature with histone and Q-motifs (Histone+Accessibility+Q-motif, dark green, Figure S3C, E). We also

considered ATAC-seq alone but this was not very helpful (Supplemental Figure S2).

Combining the Accessibility feature together with Motif improves performance over Motif alone (Figure S3C,

E orange vs. dark blue markers). The Q-Motif feature (light blue markers) was better than the Motif only

(dark blue) at lower k (k=3), however, it did not outperform Motif at higher k. One possible explanation

is that the Q-Motif feature is sparser than Motif because a motif instance that is not accessible will have

a zero value and does not add predictive power at higher k. Finally, Accessibility feature combined with

Histone+Motif features is comparable to Histone+Motifs (Figure S3C, magenta markers). We observe sim-

ilar trends with Histone+Q-Motif and Histone+Accessibility+Q-motif features (Figure S3C, light and dark

green Figure S3C). It is possible that the overall cell type specific information captured by the accessibility

profile is redundant with the large number of chromatin marks in this dataset and we might observe a greater

benefit of ATAC-seq if there were fewer or no marks.

When we directly compared DRMN-ST to DRMN-FUSED, DRMN-FUSED was able to outperform

DRMN-ST on both Motif and Histone and comparable on Histone+motif on array data (Figure S3F). On

the sequencing data, DRMN-FUSED had a higher performance that DRMN-ST on Motif, Q-Motif, Acce-

16

sibility+motif and Histone alone features (Figure S3G). It is likely that DRMN-ST learns a sparser model

at the cost of predictive power (Supplemental Figure S4). For the application of DRMNs to real data, we

focus on DRMN-FUSED due to its improved performance.

1.5 Effect of hyper-parameters on DRMN-FUSED results

We used the reprogramming array and sequencing datasets to study the effect of hyper-parameters on

the performance of DRMN-FUSED with different feature sets. The hyper-parameters are ρ1 (sparsity

in each task), ρ2 (selection of more similar features for closely related cell types) and ρ3 (selection of

similar features for all cell types). We performed a grid search on a range of parameters values: ρ1 ∈

{0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}, ρ2 ∈ {0, 10, 20, 30, 40, 50} and ρ3 =

{0, 10, 20, 30, 40, 50} (Supplemental Figure S19). To compare different feature sets we used three-fold

cross validation as described in Section Evaluating the ability to model expression to assess the predicted

expression for each module and cell stage. We used the average over modules and cell stages to assess

DRMN performance for a particular feature set and hyper-parameter setting. We observe that increase in ρ3

was generally not beneficial for the Motif feature for all k (number of modules), and for k ≥ 7 when using

Histone and Histone+Motif (blue ρ3=0 vs. cyan, ρ3=50, Supplemental Figure S19). For a fixed value of

ρ3, increasing sparsity ρ1 is beneficial for the Histone and Histone + Motif features, upto ρ1 = 30 − 60,

beyond which the performance decreases or does not improve. The ρ2 feature was also most useful when

using the Histone feature.

For the sequencing dataset we considered all the feature types described in the section, Feature sets

tested in DRMN, Supplemental Methods. The Motif feature was generated in a similar manner as the

reprogramming array dataset. In addition, we included, Q-Motif, Accessibility and their combinations with

the Histone feature. Similar to the array dataset, we used this dataset to study the effect of hyper-parameters,

ρ1, ρ2 and ρ3 on the performance of DRMN-FUSED using a similar three-fold cross-validation framework

(Supplemental Figures S21, S22, S23). As in the array dataset, increasing values of ρ3 was not benefi-

cial for Motif or Q-Motif alone. Higher value of ρ3 was useful for some of settings of histones features

combined with Accessibility, Motif or Q-motif (k = 3, 5 for generally lower values of ρ1, Supplemental

Figures S21, S22, S23). We next investigate the impact of ρ1 and ρ2, for different values of ρ3. We observe

17

that when using histone features (Histone+Motif, Histone+Accessibility+Motif, Histone+Accessibility+Q-

Motif), increase in ρ2 (increasing the similarity of inferred networks) improves the predictive power of the

method. Increase in ρ1 is beneficial for these features up to a limit (typically, ρ1=60 or 70). Conversely,

for the feature sets that do not use histone features (Motif, Q-Motif, and Accessibility+Motif), increase in

ρ1 (sparser models) decrease the predictive power of the model, which is consistent with the decrease in

performance of Motif features in the array dataset.

1.6 Predicting regulators for transitioning gene sets

Simple linear regression approach. To identify regulators associated with transitioning gene sets in

datasets with ≤ 5 samples (the two reprogramming datasets and H1ESC differentiation dataset), we used

a simple regression-based approach to find regulators that can explain the overall variation in expression

of genes in the set. Briefly, for each transitioning gene set with n genes across C cell types, we created a

n ∗C × 1 expression vector by stacking of the C-dimensional vector for each of the genes across the C cell

types. We repeated this procedure for all the features associated with the gene set to produce a n ∗ C × F

matrix, where F is the total number of features in our dataset. Next, we used regularized regression to se-

lect which features are most predictive of the expression levels. Any regularized regression framework can

be used; we used the sparsity imposing regression framework of the MERLIN algorithm (Roy et al. 2013),

which uses a probabilistic framework with a prior term (tuned using a hyper-parameter) to infer sparser mod-

els. We ran MERLIN (with default settings) on each transitioning gene set to identify regulatory features

associated with that set. We finally filtered the predicted regulators per gene set by assessing the correlation

of the regulator/feature with the gene expression of a gene across the cell lines and included a regulator if

was correlated to at least 5 genes with a Pearson’s correlation of 0.6 or higher.

Multi-Task Group LASSO. To identify regulators associated with transitioning gene sets in datasets with

≥ 6 samples, e.g., the dedifferentiation dataset, we used a multi-task regression framework called Multi-

Task Group LASSO (MTG-LASSO). In MTG-LASSO, we perform multiple regression tasks, one for each

gene in the set to select regulatory features as predictors for each gene’s expression levels. The “group”

penalty of MTG-LASSO enables us to select the same regulator for all genes in the gene set but with

18

different parameters. The regulatory feature defines the “group”, which is the set of regression weights for

the regulator and each gene in the gene set. MTG-LASSO selects or unselects entire groups, and therefore,

regulatory feature, of regression weights. The MTG-LASSO objective for each gene set s is:

min
Ψs

∑
g

||Xsg −YsgΨsg||22 + λ
∑
f

||ψf.||2,

Here Xsg is the C × 1 vector of expression values over C samples for gene g, and Ysg is the C × F

matrix of regulatory features for g over samples. Ψsg = [ψ1g, · · · , ψFg]T is the F × 1 vector of regression

weights for predicting g’s expression from the F regulatory features. The first term denotes the regression

task for each gene g, while the second term denotes the L1/L2 regularization required for the MTG-LASSO

framework. The sum over f imposes the L1 penalty selecting a small number of groups (one θf. for each

feature f), and the ||θf.||2 imposes the L2 norm for smoothness of the regression coefficients across genes.

λ is the hyper-parameter controlling for the strength of the regularization.

We applied MTG-LASSO to each transitioning gene set using the MATLAB SLEP v4.1 package (Jura

et al. 2008) to infer the most predictive regulatory features for the gene set. We performed leave-one-out

cross-validation, where one sample is left out from training, a model is fit on the remaining samples and used

to predict the left out sample. We computed a confidence for each feature based on the percentage of models

in which the feature is selected. Additionally, we computed a p-value for the selection of each regulator

by comparing the number of times it was selected to a null distribution of feature selection obtained from

randomizing the data 40 times and training MTG-LASSO models. A feature was selected as a regulator if

it was in at least 60% of the trained values and had a p-value< 0.05. We tried different hyper-parameter

values (λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}) and selected the value that resulted in reasonable

number of regulators across all transitioning gene sets (λ = 0.7). Once regulators were selected for each

gene set, we further filtered the features based on the Pearson’s correlation of the gene expression and feature

values as in the simple regression case.

19

References

Grant CE, Bailey TL, and Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformat-

ics. 27: 1017–1018.

Jura J, Wegrzyn P, Korostynski M, Guzik K, Oczko-Wojciechowska M, Jarzab M, Kowalska M, Piechota

M, Przewlocki R, and Koj A. 2008. Identification of interleukin-1 and interleukin-6-responsive genes in

human monocyte-derived macrophages using microarrays. Biochimica et Biophysica Acta (BBA) - Gene

Regulatory Mechanisms. 1779: 383–389.

Liu J, Yuan L, and Ye J 2010. An Efficient Algorithm for a Class of Fused Lasso Problems. In: Proceedings

of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD

’10. Washington, DC, USA: Association for Computing Machinery, pp. 323–332.

Nesterov Y. 2005. Smooth minimization of non-smooth functions. Mathematical Programming. 103: 127–

152.

Nesterov Y. 2007. Gradient methods for minimizing composite objective function. Center for Operations

Research and Econometrics (CORE). 5: 4.

Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, and Gasch AP. 2013. Integrated Module and Gene-Specific

Regulatory Inference Implicates Upstream Signaling Networks. PLoS Comput. Biol. 9: e1003252+.

Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP, Karun V, Jaakkola T, and

Gifford DK. 2014. Discovery of directional and nondirectional pioneer transcription factors by modeling

DNase profile magnitude and shape. Nat Biotechnol. 32: 171–178.

Zhou J, Chen J, and Ye J 2012. MALSAR: Multi-tAsk Learning via StructurAl Regularization – User’s

Manual Version 1.1.

20

	Supplementary Methods
	DRMN-ST: Structure prior approach.
	DRMN-FUSED: Parameter prior approach.
	EM algorithm for DRMN learning
	Examining different features in DRMN
	Effect of hyper-parameters on DRMN-FUSED results
	Predicting regulators for transitioning gene sets

	References

