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Supplemental Figure S1. L1RSsomatic PCR validation results in additional single neurons. (A) PCR amplification 
results for the somatic L1 insertion 5ʹ junction (primer positions indicated in schematic at top). Reaction input consist-
ed of non-template control (NTC), 72 MDA-amplified ON22213 hippocampal neurons, 3 pools of ~20 MDA-ampli-
fied ON22213 hippocampal neurons, bulk ON22213 hippocampus and liver DNA, and bulk ON22212 liver. scWGS 
and RC-seq were applied to neurons marked with an asterisk. Red arrowheads indicate amplicons confirmed as on-tar-
get by capillary sequencing. A red cross indicates an amplicon of approximately the expected size that was subsequent-
ly determined by capillary sequencing to be off-target. (B) As for (A), except for the 3ʹ junction and using nested PCR. 
Reactions involved different primer pairs for the first (black) and second (grey) rounds of amplification. Numbers next 
to confirmed on-target bands indicate the estimated L1 poly(A) tail length in that amplicon. (C) Bidirectional capillary 
sequencing electropherogram of the somatic L1 insertion 3ʹ junction amplicon for neuron #15. Note: in (A) and (B), 
neurons #29, #55 and #57 PCR amplified at one junction and not the other. We ascribed this result to MDA dropout 
rather than truncation of L1RSsomatic in vivo.
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Supplemental Figure S2. Additional L1RSsomatic junction PCR data using an extended set of animal ON22213 
tissues. PCR amplification results are shown for the somatic L1 insertion 5ʹ junction (left) and 3ʹ junction (right), with 
primer positions indicated by schematics. Reaction inputs for each experiment consisted of non-template control 
(NTC), as well as DNA from an MDA-amplified hippocampal neuron (#15) where L1RSsomatic was first detected, four 
additional bulk hippocampus samples (labeled 2-5), two representative central nervous system samples (cerebellum 
and spinal cord), peripheral (sciatic) nerve, and two non-ectoderm samples comprising skeletal muscle (mesoderm) 
and liver (endoderm). Red arrowheads indicate amplicons confirmed as on-target by capillary sequencing.
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Supplemental Figure S3. Human and macaque mobile L1 sequence conservation. (A) Geneious Prime (www.ge-
neious.com) ClustalW alignment of the L1HS consensus (Khan et al. 2006), L1.3 (Dombroski et al. 1993), L1RS2 
consensus and ON22213 L1RSPRDM4 nucleotide sequences. Grey boxes represent fragments conserved against the 
L1HS consensus, and vertical black strokes/boxes represent variations to the L1HS consensus sequence. (B) As for 
(A), except showing amino acid conservation for ORF1 (top) and ORF2 (bottom). ORF1p and ORF2p functional 
domains (Khazina and Weichenrieder, 2018; Moran et al. 1996; Taylor et al. 2013) are shown underneath.
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Supplemental Figure S4. Human and mouse pluripotent cell ERV transcription measured via RNA-seq. (A) 
Human endogenous retrovirus-H (HERVH) is a highly expressed TE subfamily in human embryonic stem cells 
(hESCs) and is down-regulated upon differentiation (Grow et al. 2015; Lu et al. 2014; Zhang et al. 2019). To test the 
computational approach we applied to macaque RNA-seq data, we analyzed a published human RNA-seq duplicate 
time course of cardiomyocyte differentiation from hESCs (Zhang et al. 2019). We identified the same pattern of high 
HERVH expression in hESCs attenuated as differentiation progresses. (B) Similarly, murine endogenous retrovirus-L 
(MERVL) is differentially expressed in mouse pre-implantation (2C) embryos when compared to oocytes (Macfarlan 
et al. 2012; Peaston et al. 2004; Svoboda et al. 2004). A re-analysis of the triplicate RNA-seq data from Macfarlan et 
al. identified strong and consistent MERVL expression in 2C-embryo samples. Note: horizontal bars in (A) and (B) 
represent the mean of duplicate and triplicate values, respectively.
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Supplemental Figure S5. Young TE subfamily transcription analyzed with a second computational pipeline. 
RNA-seq counts were generated and normalized as tags-per-million (TPM) for the same samples shown in Fig. 4 and 
analyzed using TEtranscripts (Jin et al. 2015). 
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Supplemental Figure S6. Independently transcribed TE loci. (A) Integrative Genomics Viewer (Robinson et al. 2011) 
coverage (top) and alignment (bottom) tracks for an intergenic L1RS2. Plots display uniquely aligned RNA-seq reads 
from an 8-cell embryo replicate (SRR4242911) chosen due to maximum L1RS2 subfamily expression being observed at 
this time point. This particular element was the most highly expressed full-length L1RS2 copy in the SRR4242911 data-
set. (B) As per (A), except showing an intergenic AluYRa1 adjacent to KDF1 and displaying data from a morula replicate 
(SRR4242914). (C) Expression profiles of the L1RS2 and AluYRa1 insertions from (A) and (B), respectively, as well as 
that of the KDF1 gene adjacent to the AluYRa1, measured in RNA-seq tags-per-million (TPM). Data were obtained from 
prior analyses of germinal vesicle (GV) and metaphase II (MII) oocytes, pre-implantation embryo development stages 
(Wang et al. 2017) and adult hippocampus (Yin et al. 2020). Horizontal bars represent the mean of biological replicates.
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Supplemental Figure S7. Hypomethylated macaque TE loci. (A) A MacERV1 solo LTR4 located on chromosome 5 
and sharply hypomethylated in animal ON22213 liver. The first panel displays aligned ONT reads, with unmethylated 
CpGs colored in blue (hippocampus) and orange (liver), and methylated CpGs colored black. The second panel indi-
cates the relationship between CpG positions in genome space and CpG space, including those corresponding to the 
LTR4 (shaded brown). The third panel indicates the fraction of methylated CpGs for each tissue across CpG space. (B) 
As for (A), except showing an L1RS2 located on chromosome 19 and less than 50% methylated in both hippocampus 
and liver.
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