
SUPPLEMENTAL METHODS
Data sources
The effect of aneuploidy on gene expression was analyzed using DNA, RNA and
protein data generated through the Cancer Cell Line Encyclopedia and available in
processed form from the DepMap project (Nusinow et al. 2020; Nusinow and Gygi 2020;
Broad DepMap 2020, 2021; Barretina et al. 2012; Ghandi et al. 2019).

Protein expression data was retrieved from the DepMap “Proteomics” dataset
(downloaded August 3rd, 2020). The protein data had been normalized, log2

transformed, and mean expression was set at 0 (Nusinow et al. 2020; Nusinow and Gygi
2020). Multi-sample mass spectrometry has been shown to cause systemic
underestimation of protein fold changes, a phenomenon called ratio compression
(Savitski et al. 2013). However, the CCLE proteomics dataset was generated using
triple-stage mass spectrometry (MS3), which includes an additional round of peptide ion
fragmentation and isolation. The MS3 technique has been demonstrated to almost
completely eliminate ratio compression compared to standard tandem mass
spectrometry (Ting et al. 2011).

RNA expression data was retrieved from the DepMap “Expression” (Public 20Q4)
dataset (Broad DepMap 2020; Ghandi et al. 2019). The RNA data was log2 transformed
with a pseudocount of 1.

“Cell Line Sample Info” was downloaded from DepMap (May 21st 2020) and used to link
various data types (Broad DepMap 2020).

Relative gene copy number data was retrieved from DepMap “CCLE gene cn” (Public
21Q1) dataset on April 29, 2021 (Broad DepMap 2021). The data was log2 transformed
with a pseudocount of 1.

Chromosome arm copy number data were retrieved from Cohen-Sharir, Y et al. 2021
(Cohen-Sharir et al. 2021).

Oncogene and tumor suppressor gene lists were acquired from Bailey et al. (Bailey et al.
2018) based on a comprehensive analysis of TCGA data.

Aggregated reproducibility rank gene information was acquired from Upadhya & Ryan
(Upadhya and Ryan 2021).

Potential buffering factors explored in Figure 5 were retrieved from multiple sources.
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Several potential buffering factors were retrieved from MobiBD (Version: 4.0 - Release:
2020_09(Piovesan et al. 2021)). MobiBD data includes: Protein intrinsic disorder
(prediction-disorder- mobidb_lite), low complexity score (prediction-low_complexity-
merge), homology score (homology-domain -merge), loops in protein score
(prediction-lip -anchor), protein polyampholyte score (prediction-polyampholyte-
mobidb_lite_sub) and protein polarity (prediction-polar- mobidb_lite_sub).

Translation rate, transcription rate, protein length, mRNA length, mRNA abundance and
protein abundance data was retrieved from Hausser et al. 2019 (Hausser et al. 2019).
Protein half life data was from Methieson et al. 2018 (Mathieson et al. 2018), the mean
protein half life was used. mRNA decay rates were retrieved from Yang et al. 2003
(Yang et al. 2003).

UTR data (5’ and 3’) was retrieved from the UCSC human genome browser (hg38
GRCh38). The difference between transcription start sites and coding region start sites
was found for 5’ UTR, and the difference between coding sequence end and
transcription sequence end was found for 3’ UTR regions. Only manually curated (“NM”)
mRNA genes were analyzed.

Datasets for protein acetylation, methylation, phosphorylation, ubiquitination,
sumoylation and gene regulatory sites were downloaded from phosphosite plus
(Hornbeck et al. 2015) (last updated on April 19, 2021). The number of regulatory and/or
modification sites were found per human gene. Genes not found in the dataset were set
to zero modification sites.

The neutral variance for RNA and protein expression was calculated from DepMap
protein and RNA expression data. Cell lines without a gain or loss (neutral ploidy) of the
chromosome arm a gene was located on were used to calculate the neutral variance for
that gene. The coefficient of variance was taken from gene expression levels and log2

transformed.

The mutation counts (all) was calculated per gene using the DepMap CCLE mutations
public dataset (21Q2, Broad 2021(Broad DepMap 2021)). The mutation data was filtered
for the cell lines in our expression difference dataset, and the number of all mutations
was counted per gene. For the mutation counts (nonsense and missense), as well as
the mutation counts (frame shifts) only counted mutations of the indicated variants.

Non-exponential decay delta scores were taken from McShane et al. 2016 (McShane et
al. 2016).
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The aggregation score per protein was extracted from Ciryam et al. 2013 (Ciryam et al.
2013).

Protein complex (CORUM) score was extracted from the comprehensive resource of
mammalian protein complexes (CORUM) “complete complex” dataset, version 3.0 (last
updated 2018)(Giurgiu et al. 2019). All human protein complexes were extracted, and the
number of times a protein appeared in the dataset was calculated. Proteins not found in
protein complexes were given a score of zero.

The number of protein-protein interactions per protein was extracted from the Human
Integrated Protein-Protein Interaction rEference (HIPPIE), version 2.2 (last updated
February 2019)(Alanis-Lobato et al. 2017). Interactions with confidence values >0.6 were
used, and the sum of interactions per protein was calculated. Proteins not found to
interact with other proteins were given a score of zero.

Dependency scores were extracted from the DepMap Achilles gene dependency
(21Q2(Broad DepMap 2021)) dataset. We took the mean gene dependency from across
all reported cell lines.

Ovarian tumor proteomics data used in this publication were generated by the Clinical
Proteomic Tumor Analysis Consortium (NCI/NIH)(Edwards et al. 2015). Ovarian tumor
transcriptome data was acquired from Broad institute GDAC(Broad Institute TCGA
Genome Data Analysis Center 2016). Additionally, ovarian tumor arm call/aneuploidy data
was obtained from Taylor et al. (Taylor et al. 2018).

Stable aneuploidy cell line data were retrieved from Stingele et al. (Stingele et al. 2012).
Protein and RNA difference upon aneuploidy was calculated by taking the log2 fold
change between aneuploidy clones and their near-euploid cell line controls. For protein
data, the mean difference was taken for all four cell lines with a gain for Chromosome 5:
RPE-1 trisomy 12 and 5, HCT-116 tetraploidy 5, HCT-116 H2B-GFP tetraploidy 5 and
HCT-116 H2B-GFP trisomy 5. For RNA data, mean RNA difference was found from
RPE-1 trisomy 12 and 5 and HCT-116 tetraploidy 5, the only two Chromosome 5 gain
transcriptomes available. Mean gene expression difference was plotted against
DepMap protein difference data.

The reverse phase protein array (RPPA) values and antibody references were acquired
from the DepMap RPPA datasets (Ghandi et al. 2019): “CCLE_RPPA_20181003” and
“CCLE_RPPA_Ab_info_20181226”.

Down syndrome aneuploidy data was retrieved from Liu et al. (Liu et al. 2017) and
Letourneau et al. (Letourneau et al. 2014). Protein expression difference was calculated
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by taking the log2 fold change in quantile-normalized protein expression from 11 Down
syndrome fibroblast lines and matched controls. The difference in RNA expression was
reported as the log2 fold change in RNA expression between a pair of monozygotic twins
discordant for Chromosome 21.

Yeast aneuploidy gene expression difference was retrieved from Dephoure et al.
(Dephoure et al. 2014). Protein and RNA expression differences were reported as log2

ratios for genes located on duplicated chromosomes.

Pseudogene analysis was done on the main RNA expression dataset (see above).
Coding genes and pseudogenes were identified using BioMart “gene type” classification
(Smedley et al. 2015), with all pseudogene types merged. Non-coding RNA expression
data was retrieved from the Expression Atlas E-MTAB-2770 (Barretina et al. 2012) as this
dataset had more non-coding RNA expression; data was quantile normalized, log2

transformed, and the difference upon aneuploidy was found as above. The list of genes
per non-coding RNA category was retrieved from the HGNC non-coding RNA gene
group (Wright and Bruford 2011).

Dataset filtering (continued)
We generated two datasets measuring gene expression differences upon chromosome
gain and loss within cells with either low or high levels of cellular aneuploidy. We initially
included cell lines with proteomics data, RNA expression data, and chromosome arm
copy number data. Next, we isolated the quartile of the cell lines with the lowest cellular
aneuploidy score (from 0 to 1773), and the quartile of cell lines with the highest cellular
aneuploidy score (from 3309 to 6985). We only included a gene in our difference
analysis if we had RNA and protein expression data for that gene from at least 3 cell
lines per chromosome arm category, as described in the main methods section
(Supplemental Table S11).

We generated datasets measuring gene expression differences in near-diploid and
near-triploid cell lines separately. Our dataset of human cancer cell lines consisted of
50% (185/367) near-diploid cell lines and 37% (137/367) near-triploid cell lines, with the
remaining 13% spread across other ploidies. We therefore analyzed the near-diploid
and near-triploid cell lines separately, and we excluded the other ploidies due to the low
number of cell lines available.

We generated datasets controlling for one of several factors, these datasets measured
gene expression difference upon chromosome gain or loss. The “No mutations” dataset
removed mutated expression data for genes per cell line as listed in the DepMap CCLE
mutations public dataset (21Q2, Broad 2021(Broad DepMap 2021)); all mutations were
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removed. The “no flipped genes” dataset removed expression data for genes whose
gene copy number (DepMap “CCLE gene cn” (Public 21Q1)(Broad DepMap 2021))
increased (relative copy number >1.1, 10.38% of genes) upon chromosome arm loss, or
whose relative gene copy number decreased (relative copy number <0.9, 2.4% of
genes) upon chromosome arm gain. The “High RNA only” dataset removed all genes
whose mean RNA expression was in the bottom 20% of the RNA expression dataset
(between 0.00 and 0.19). The “high reproducibility genes” dataset took all the genes in
the previously published “aggregated reproducibility rank” from Upadhya &
Ryan(Upadhya and Ryan 2021) and removed the 20% least reproducible genes
(aggregated reproducibility rank below 0.346). Genes without a reproducibility rank were
excluded. Finally, the NSCLC dataset took data from only non-small cell lung cancer cell
lines (64 cell lines). The NSCLC dataset was not combined with the merged-control
dataset as it reduced the number of genes available for analysis to below one thousand.
All datasets only contained data from cells with RNA, protein, and gene copy number
data available, and only contained genes with 10 or more data points per chromosome
arm category. Filtering out genes with less than 10 data points per category was done
after removing undesired data points.

Assessing the conservation of aneuploidy-associated dosage compensation
Gene expression datasets from stable human aneuploidy cell lines, Down syndrome
fibroblast lines, and aneuploid yeast strains were acquired and processed as described
above. The yeast orthologs of human genes were identified using g:Profiler(Raudvere et
al. 2019). For this analysis, only one-to-one orthologs were considered. That is, we only
included a yeast gene if it had a single human ortholog and if that human gene only had
a single yeast ortholog. Dosage compensation across these various aneuploidy
conditions was compared using Pearson correlation coefficients.

Identifying genomic features that correlate with protein buffering
ROC plots and area under the curve analysis were performed using R package “pROC”
version 1.17.0.1 (Robin et al. 2011) and the various genetic, biochemical, and biophysical
datasets listed above. A gene’s classification as “buffering” was used as the true
positive “sensitivity” fraction. Significance was calculated by performing 10,000 random
permutations and bootstrapping significance for each factor.

The potential buffering factors we analyzed are not all independent of one another;
conversely, several factors are closely linked. For example, the number of
protein-protein interactions and number of protein complexes a protein is integrated in
are closely linked. The 30 genetic, biochemical and biophysical datasets we selected for
our analysis were chosen based on availability and relevance. Our factor analysis was
limited by the number of robust (>1500 data points) datasets of human data publicly
available for scientific use. We sought out factors we knew to be involved with
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transcription, translation, post-translational modifications, protein structure, protein
stability, and protein half life (Buccitelli and Selbach 2020). We were not able to identify a
dataset specifying all genes affected by various forms of transcriptional regulation.
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