
	 1 

Supplemental Materials 
 

Contents: 
 
Computational Methods and Analysis 
 
1 Polymorphism as a function of age across datasets Page 8 
2 Quasi-phasing Page 17 
3 False positive rate for SNV changes Page 20 
 
List of Figures: 
 
S1 Sampling time points and sample sizes for infants and mothers analyzed in 

this paper 
 

Page 3 

S2 Shannon alpha diversity displayed by dataset. 
 

Page 4 

S3 Shannon alpha diversity in mothers’ gut microbiomes at time of delivery 
versus healthy non-pregnant women.   
 

Page 5 

S4 Within-sample polymorphism over different life stages for the most 
prevalent species in our dataset 
 

Page 6 

S5 Within-sample polymorphism in the Shao et al. data set. 
 

Page 7 

S6 Between-dataset comparisons of E. coli polymorphism levels for matched 
life stages. 
 

Page 8 

S7 Number of QP versus non-QP samples 
 

Page 9 

S8 Proportions of high coverage species that are quasi-phaseable (QP) per host 
sample, categorized by life stage. 
 

Page 10 

S9 Decay in rates of SNV change, gene gain, gene loss and replacement rates 
over life stage. 
 

Page 11 

S10 Evolution and replacement rates in infants versus adults matched for 
duration of sampling. 
 

Page 12 

S11 Difference in rates of evolution and strain replacement for C-section versus 
vaginally born and breast versus formula fed babies. 
 

Page 13 

S12 Prevalence of genes that are gained or lost in putative SNV modification 
events with respect to infant and HMP adult cohorts. 
 

Page 14 

S13 Prevalence of sweeping SNVs in the infant, HMP adult, and mother cohorts Page 15 



	 2 

S14 Comparison of HMP (adult) and infant prevalences of sweeping alleles 
involved in putative modification events. 
 

Page 16 

S15 Allele frequency distributions for three infant hosts. 
 

Page 18 

S16 Quasi-phasing of two hypothetical samples with difference allele 
frequencies. 
 

Page 19 

S17 Schematic of allele frequency changes detected. Page 20 
 
 
List of Tables: 
 
Table S1: Statistical significance comparing polymorphism rates between datasets for matched 
age categories. These rates were computed with Mann-Whitney U tests and are compared against 
a Bonferroni-corrected significance level α=0.05/18. 
 
Table S2: Statistical significance comparing evolutionary rates and replacement rates between 
life stages, plotted in Figure 2. These significance values were computed with permutation tests 
and are corrected with the Benjamini-Hochberg method.   
 
Table S3: Parallelism of SNV changes. Reported are numbers of SNV changes in evolutionary 
modification events, numbers of unique hosts experiencing such SNV changes, and expected 
number of SNV changes under the null, grouped by PATRIC gene ID. 
 
 
  



	 3 

 

 
Figure S1: Sampling timepoints and sample sizes for infants and mothers analyzed in this 
paper. M indicates mother. Only those mothers sampled around the time of delivery were 
included in this analysis. “D1” indicates day 1, “W1” indicates week 1, “M1” indicates month 1, 
“Y1” indicates year 1, and so on. “M” indicates mother samples at delivery and “HMP” includes 
all HMP1-2 adult samples. Some infants from Shao et al. 2019 were sampled multiple times 
between day 7 and 14, and thus were grouped in the Week 1 category.  
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Figure S2: Shannon alpha diversity displayed by dataset. Samples sizes (n) are shown in 
parentheses. Overall, alpha diversity increases as a function of age of the host (p value = 2*10^-
16, glmmTMB(alpha_div ~ day + (1|sample) + (1|subject) + (1|dataset)), using all samples from 
infants).  
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Figure S3: Shannon alpha diversity in mothers’ gut microbiomes at time of delivery versus 
healthy non-pregnant women. Plotted are alpha diversity values for mothers at time of delivery 
in the Backhed, Ferretti, Yassour, and Shao datasets, and non-pregnant women in the HMP and 
Qin et al. datasets. To assess whether pregancy results in a significant difference in alpha 
diversity, we fit a GLMM with pregnancy status as the predictor and study and host as random 
effects (alpha diversity ~ pregnancy status + (1|study) + (1|host)) and obtained a coefficient of 
0.44 for pregnancy status with a p value of 0.035.  
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Figure S4: Within-sample polymorphism over different life stages for the most prevalent 
species in our dataset. The next 12 most prevalent species, after E. coli, which is shown in 
Figure 1B, are displayed here. The same life stages as in Figure 1 are shown, where “B” 
indicates birth, “D1” indicates day 1, “W1” indicates week 1, “M1” indicates month 1, “Y1” 
indicates year 1, and so on. “M” indicates mother samples at delivery and “HMP” includes all 
HMP1-2 adult samples. pS indicates synonymous polymorphism rate, where a polymorphism 
was defined as a site with allele frequency between 0.2 and 0.8.  
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Figure S5: Within-sample polymorphism in the Shao et al. data set. To assess if 
polymorphism rates generally follow the same trends within a dataset versus across datasets, we 
we examine polymorphism rates for the 14 most prevalent species in our dataset using data from 
Shao et al only.  
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Polymorphism as a function of age across datasets 
 
To assess the effect of dataset on polymorphism, we compared distributions of polymorphism 
per sample-species pair for matched age categories across different datasets for the 13 most 
prevalent species (in infants). Up to 12 pairwise comparisons for each species were considered 
for the following age categories: 1 day (Backhed and Ferretti), 3 days (Backhed and Ferretti), 4 
days (Backhed and Yassour), 1 week (Ferretti, Yassour and Shao), 2 weeks (Yassour and Shao), 
1 month (Ferretti, Yassour and Shao), 4 months (Backhed and Ferretti), and 12 months (Backhed 
and Shao). Due to non-normal polymorphism distributions, we used the Mann Whitney U 
statistic to test for significant differences in polymorphism between datasets. Of 18 tests across 
the 13 species satisfying a minimum sample size requirement of 10, one test was significant 
(Backhed vs. Ferretti at 12 months, P=0.00018) using a Bonferroni-corrected significance level 
α=0.05/18. Of 45 tests satisfying a laxer sample size threshold of 5, only the aforementioned 
comparison remained significant. All test results are reported in Table S1. 
 
 

 
Figure S6: Between-dataset comparisons of E. coli polymorphism levels for matched life 
stages. P values from Mann-Whitney U tests are reported in grey.  
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Figure S7: Number of QP versus non-QP samples. The 153 species that have greater than 10 
QP samples across all hosts are shown; species are ordered by the number of QP samples in 
infants 
 
 

 

 
Figure S8: Proportions of high coverage species that are quasi-phaseable (QP) per host 
sample, categorized by life stage. Other than ‘Mother’ and ‘HMP’, category label refers to life 
stage within infants. Here, ‘host sample’ is defined as a single metagenomic sample. 
Distributions are plotted per infant dataset, as well as in the combined dataset. 
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Figure S9: Decay in rates of SNV change, gene gain, gene loss and replacement rates over 
life stage. The same timepoint pair categories as in Figure 2 were considered: mother-infant 
within the first week, infant-infant within the first week, infant-infant week 1-month 1, infant-
infant month 1-year 1, and adult-adult. Days after birth were assigned to be the median day in a 
given life stage interval. Mothers were assigned day 0, infant meconium samples were assigned 
day 1, and adult timepoints were arbitrarily assigned to be approximately 40 years after birth. A 
linear model was fit with either rate of evolutionary change or replacement as the response 
variable and days after birth as the predictor. P values are reported, as are the correlation 
coefficients, r2. 
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Figure S10: Evolution and replacement rates in infants versus adults matched for duration 
of sampling. Shown are 1000 bootstrapped (A) SNV change, (B) replacement, and (C) gene 
change rates for all infant-infant vs. HMP adult-adult QP pairs matched for duration between 
timepoints of 4 to 8 months. To assess if there are significant differences between infant and 
adult distributions for SNV change, replacement, gene gain, and gene loss rates, we performed a 
permutation test consisting of 10,000 permutations. The distributions of the difference in rates 
between infants and adults are plotted, with the observed value indicated with an asterix. P 
values are reported below each permutation distribution plot. Adjusted p values with the 
Benjamini-Hochberg method are 0.0013, 0.0002, 0.017, and 0.0002, respectively.  
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Figure S11: Difference in rates of evolution and strain replacement for C-section versus 
vaginally born and breast versus formula fed babies. We assessed whether rates of SNV 
changes associated with evolutionary modifications, strain replacement, gene gains, and gene 
loss are significantly different between C-section and vaginally born babies as well as between 
breast versus formula-fed babies. In the breast versus formula comparison, we did not include 
babies on mixed diets. We performed 10,000 permutations, and the resulting distributions are 
shown above. The astrix shows the observed difference, and reported are associated p values. In 
red are those p values that pass the 0.05 significance threshold. Note that only the difference in 
gene gain rate for delivery mode for day 0 – week 1 survives multiple hypothesis correction with 
a Bonferroni adjusted p value. We analyzed infants in the day 0 to week 1 and week 1 to month 1 
categories because these had the maximal number of samples available. The sample sizes were 
as follows: Day 0-Week 1: Vaginal: 127; C-section: 52; Breast: 112; Formula: 67. Week 1-
Month 1: Vaginal: 149; C-section: 59; Breast: 136; Formula: 72. 
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Figure S12: Prevalence of genes that are gained or lost in modification events with respect 
to infant and HMP adult cohorts.  
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Figure S13: Prevalence of sweeping SNVs in the infant, HMP adult, and mother cohorts. 
The top left plot shows the prevalence of SNVs sweeping in infants with respect to a prevalence 
cohort defined by infants. By contrast, the top right plot shows the prevalence of same SNVs 
sweeping in infants, but with respect to a prevalence cohort defined by mothers.  dN/dS of each 
prevalence bin are reported in blue with 95% confidence intervals reported in gray. 
  



	 16 

 
 

 
Figure S14: Comparison of HMP (adult) and infant prevalences of sweeping alleles 
involved in putative modification events. The cohort in which the sweeping allele was 
identified is indicated at top (e.g ‘Infant-Infant’, ‘Mother-Infant’, ‘Adult-Adult’). The colorbar 
indicates number of SNV changes. 
 
 
  



	 17 

Quasi-phasing 
 
A major goal in this paper is to infer evolutionary changes from metagenomic samples. Here, an 
evolutionary change represents a change in allele frequency over time among lineages belonging 
to a strain. Unfortunately, two major potential confounders of evolutionary changes in 
metagenomic data are strain fluctuations and sampling error, since both can generate allele 
frequency changes.  
 
To control for these potential confounders, we “quasi-phase” samples with sufficiently simple 
lineage structures. Quasi-phasing means that pairs of alleles can be confidently assigned to a 
single lineage’s genome. In doing so, we can identify evolutionary changes that accrue on the 
background of a single lineage. The approach we take is similar to that of Truong et al. 2017 in 
which a dominant allele is assigned to a dominant strain, but in Garud, Good et al. 2019 we put 
bounds on the error for phasing (for further statistical details, please see the supplement of 
Garud, Good et al. 2019).  
 
To quasi-phase, we leverage knowledge about the lineage structure of a given species within a 
host. As described in Garud, Good et al. 2019, hosts are typically colonized by a small handful of 
genetically distinct lineages belonging to the same species. In Figure S15, we plot a distribution 
of allele frequencies for the common species Bacteroides vulgatus in three infant samples from 
Backhed et al. 2015, which as we describe below, illustrate a range of typical within-host lineage 
structures. 
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Figure S15: Allele frequency distributions for three infant hosts. Plotted are allele frequency 
distributions for the species B. vulgatus from three infant hosts from the Backhed et al. dataset. 
Only major allele frequencies are plotted. Figures (A) and (B) depict distributions from quasi-
phaseable samples, in which the majority of polymorphic sites have a within-host frequency 
≥0.8. The sample in figure (C) is not quasi-phaseable since a large fraction of sites have a 
frequency < 0.8. 
 
 
In Figure S15A, there is a mass of sites with allele frequencies (f) close to 0. As described in 
Garud, Good et al. 2019, these sites are likely is comprised of a mixture of sequencing errors and 
low frequency mutations that have arisen due to the expansion of a single lineage within a host. 
By contrast, in Figures S1B and C there are a mass of sites with allele frequencies close to 0 and 
another mass of sites with allele frequencies peaked at intermediate frequencies. As described in 
Garud, Good et al. 2019, these peaked distributions are inconsistent with a single lineage 
expanding within a host and instead represent multiple, divergent lineages present within a host. 
The allele frequencies at which these distributions are peaked are representative of the relative 
frequencies at which lineages are colonizing the host.  
 
In scenario A, a new mutation that arises represents a true evolutionary modification rather than 
a strain fluctuation, because there is only one strain colonizing the host. However, in scenarios B 
and C, a shift in frequency of the multiple strains could also generate an allele frequency change. 
In scenarios B and C we attempt to solve this problem by identifying samples in which a 
nucleotide confidently to a single lineage’s haplotype, or, in other words, can be ‘quasi-phased’.  
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Scenarios A and B are fairly straightforward to quasi-phase. In this scenario, there is typically a 
single dominant allele (Figure S16), which can be assigned to the dominant lineage. Even in the 
case where an allele is mis-assigned, there will still be a lineage harboring both alleles, even if it 
is not the dominant lineage (Figure 16, Garud et al. 2019, SI text). However, in scenario C, two 
strains are present at roughly 50% frequency. In this scenario, there is no allele that is dominant 
and there is a ~50% chance of incorrectly assigning an allele to the dominant lineage (Figure 
S16). 
 

 
Figure S16: Quasi-phasing of two hypothetical samples with difference allele frequencies. 
Hypothetical read pileups for two sites in Scenarios B and C. In Scenario B, there is a dominant 
lineage present at >80% frequency, whereas in Scenario C two lineages colonize the host at 
roughly 50% frequency (Fig S1). In Scenario B, the dominant alleles at both sites 1 and 2 can be 
assigned to the dominant lineage. If there is a phasing error, there still will be a fraction of cells 
that possess the pair of Ts on the same haplotype (see Garud, Good et al. 2019). By contrast, in 
Scenario C, there is a 50% chance that the alleles will be assigned to the incorrect lineage. In this 
scenario, it is unlikely that there will be any lineage that harbors both Ts.   
 
 
Thus, samples with a large number of intermediate frequency alleles are more suspect to phasing 
errors. Quasi-phaseable samples are those that have few alleles at intermediate frequency. To 
identify quasi-phaseable samples, we wish to identify an allele frequency cutoff, f*, that signifies 
the upper bound of what constitutes ‘intermediate frequency’. With such a cutoff, we can then 
assess the probability that an observed frequency, 𝑓#, is greater than f* given k alternate alleles 
and D number of reads and a true allele frequency of f: 
 
Eq 1: 

Pr[𝑓# ≥f* | D, f] = $ %!"&𝑓
"(1 − 𝑓)!#"

"$%∗!
                                                                

 
As described in Garud, Good et al. 2019, this probability can be computed across the genome to 
obtain a genome-wide error rate of incorrectly phasing an allele. With sufficient depth D, which 
we assign to be a minimum of 20 in our analysis, and a sufficiently high f*, which we set to be 
0.8, sampling error is minimized. Quasi-phaseable samples are identified if they contain 
sufficiently low numbers of sites with 𝑓#<f* , as described in greater detail in Garud, Good et al. 
2019.  
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3. False positive rate for SNV changes 
 
We next quantified SNV changes between quasi-phaseable time point pairs from the same host. 
To do so, we identified extreme allele frequency changes from ≤0.2 to ≥0.8 (or vice versa) 
between two samples, S1 and S2 (Figure S17).  
 

 
Figure S17: Schematic of allele frequency changes detected. To detect evolutionary changes 
within a host over time, we identified sites that changed allele frequency from <=0.2 to >=0.8, or 
vice versa.  
 
 
We compute the probability of observing an allele frequency due to sampling error (Perr) as 
follows: 
 
Eq2:     
 
Perr = ∫%P%𝑓'. ≤ 0.22𝐷', 𝑓& ∗ %𝑓(. ≥ 0.8	2𝐷(, 𝑓) 	+ 	P(𝑓'. ≥ 0.8	|	𝐷', 𝑓) ∗ %𝑓(. ≤ 0.2	2𝐷(, 𝑓)) ∗
𝑃(𝐷', 𝐷(, 𝑓) 	𝑑𝐷'𝑑𝐷(𝑑𝑓   
 
 
Where 𝑓'. and 𝑓(. are allele frequencies in samples 1 and 2, respectively, and D1 and D2 are read 
depths in samples 1 and 2 respectively. f is assumed to be the same in both samples 1 and 2 
under the null hypothesis where there is no evolutionary change. P(𝑓#' ≥ f*) is computed as eq1. 
P(D1, D2,f) ~ P(D1)P(D2)P(f) and is estimated empirically from the data as described in Garud et 
al. 2019 SI text 1.  
 
To compute a genome-wide false positive rate, we can multiply the per-site error rate by the 
length of the genome, L to estimate the total expected number of false positives: 
 
Nerr = Perr * L  
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For a depth of 20 in samples 1 and 2 (the minimum depth we require) and a true allele frequency 
f=0.2 in both samples, the probability of observing an allele frequency change by chance from 
0.2 to 0.8 is 1.7*10^-8. Multiplying this by a mean genome size of 10^6, the expected number of 
false positives for a given genome is 0.017, which is <<1.  
 
A similar logic as in Eq2 is applied for inferring gene changes, as described in greater depth in 
Garud, Good et al. 2019.  
 
 
 
 


