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Figure S1: Sampling timepoints and sample sizes for infants and mothers analyzed in this
paper. M indicates mother. Only those mothers sampled around the time of delivery were
included in this analysis. “D1” indicates day 1, “W1” indicates week 1, “M1” indicates month 1,
“Y'1” indicates year 1, and so on. “M” indicates mother samples at delivery and “HMP” includes
all HMP1-2 adult samples. Some infants from Shao et al. 2019 were sampled multiple times
between day 7 and 14, and thus were grouped in the Week 1 category.
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Figure S2: Shannon alpha diversity displayed by dataset. Samples sizes (n) are shown in

parentheses. Overall, alpha diversity increases as a function of age of the host (p value = 2*10"-
16, glmmTMB(alpha div ~ day + (1|sample) + (1|subject) + (1|dataset)), using all samples from
infants).
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Figure S3: Shannon alpha diversity in mothers’ gut microbiomes at time of delivery versus
healthy non-pregnant women. Plotted are alpha diversity values for mothers at time of delivery
in the Backhed, Ferretti, Yassour, and Shao datasets, and non-pregnant women in the HMP and
Qin et al. datasets. To assess whether pregancy results in a significant difference in alpha
diversity, we fit a GLMM with pregnancy status as the predictor and study and host as random
effects (alpha diversity ~ pregnancy status + (1|study) + (1]host)) and obtained a coefficient of
0.44 for pregnancy status with a p value of 0.035.
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Figure S4: Within-sample polymorphism over different life stages for the most prevalent
species in our dataset. The next 12 most prevalent species, after E. coli, which is shown in
Figure 1B, are displayed here. The same life stages as in Figure 1 are shown, where “B”
indicates birth, “D1” indicates day 1, “W1” indicates week 1, “M1” indicates month 1, “Y1”
indicates year 1, and so on. “M” indicates mother samples at delivery and “HMP” includes all
HMP1-2 adult samples. pS indicates synonymous polymorphism rate, where a polymorphism
was defined as a site with allele frequency between 0.2 and 0.8.
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Figure S5: Within-sample polymorphism in the Shao et al. data set. To assess if
polymorphism rates generally follow the same trends within a dataset versus across datasets, we
we examine polymorphism rates for the 14 most prevalent species in our dataset using data from

Shao et al only.




Polymorphism as a function of age across datasets

To assess the effect of dataset on polymorphism, we compared distributions of polymorphism
per sample-species pair for matched age categories across different datasets for the 13 most
prevalent species (in infants). Up to 12 pairwise comparisons for each species were considered
for the following age categories: 1 day (Backhed and Ferretti), 3 days (Backhed and Ferretti), 4
days (Backhed and Yassour), 1 week (Ferretti, Yassour and Shao), 2 weeks (Yassour and Shao),
1 month (Ferretti, Yassour and Shao), 4 months (Backhed and Ferretti), and 12 months (Backhed
and Shao). Due to non-normal polymorphism distributions, we used the Mann Whitney U
statistic to test for significant differences in polymorphism between datasets. Of 18 tests across
the 13 species satisfying a minimum sample size requirement of 10, one test was significant
(Backhed vs. Ferretti at 12 months, P=0.00018) using a Bonferroni-corrected significance level
a=0.05/18. Of 45 tests satisfying a laxer sample size threshold of 5, only the aforementioned
comparison remained significant. All test results are reported in Table S1.
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Figure S6: Between-dataset comparisons of E. coli polymorphism levels for matched life
stages. P values from Mann-Whitney U tests are reported in grey.
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Figure S7: Number of QP versus non-QP samples. The 153 species that have greater than 10
QP samples across all hosts are shown; species are ordered by the number of QP samples in

infants
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Figure S8: Proportions of high coverage species that are quasi-phaseable (QP) per host
sample, categorized by life stage. Other than ‘Mother’ and ‘HMP’, category label refers to life
stage within infants. Here, ‘host sample’ is defined as a single metagenomic sample.
Distributions are plotted per infant dataset, as well as in the combined dataset.
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Figure S10: Evolution and replacement rates in infants versus adults matched for duration
of sampling. Shown are 1000 bootstrapped (A) SNV change, (B) replacement, and (C) gene
change rates for all infant-infant vs. HMP adult-adult QP pairs matched for duration between
timepoints of 4 to 8 months. To assess if there are significant differences between infant and
adult distributions for SNV change, replacement, gene gain, and gene loss rates, we performed a
permutation test consisting of 10,000 permutations. The distributions of the difference in rates
between infants and adults are plotted, with the observed value indicated with an asterix. P
values are reported below each permutation distribution plot. Adjusted p values with the
Benjamini-Hochberg method are 0.0013, 0.0002, 0.017, and 0.0002, respectively.
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Figure S11: Difference in rates of evolution and strain replacement for C-section versus
vaginally born and breast versus formula fed babies. We assessed whether rates of SNV
changes associated with evolutionary modifications, strain replacement, gene gains, and gene
loss are significantly different between C-section and vaginally born babies as well as between
breast versus formula-fed babies. In the breast versus formula comparison, we did not include
babies on mixed diets. We performed 10,000 permutations, and the resulting distributions are
shown above. The astrix shows the observed difference, and reported are associated p values. In
red are those p values that pass the 0.05 significance threshold. Note that only the difference in
gene gain rate for delivery mode for day 0 — week 1 survives multiple hypothesis correction with
a Bonferroni adjusted p value. We analyzed infants in the day 0 to week 1 and week 1 to month 1
categories because these had the maximal number of samples available. The sample sizes were
as follows: Day 0-Week 1: Vaginal: 127; C-section: 52; Breast: 112; Formula: 67. Week 1-

Month 1: Vaginal: 149; C-section: 59; Breast: 136; Formula: 72.
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Figure S12: Prevalence of genes that are gained or lost in modification events with respect
to infant and HMP adult cohorts.
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Figure S13: Prevalence of sweeping SNVs in the infant, HMP adult, and mother cohorts.
The top left plot shows the prevalence of SNVs sweeping in infants with respect to a prevalence
cohort defined by infants. By contrast, the top right plot shows the prevalence of same SNVs
sweeping in infants, but with respect to a prevalence cohort defined by mothers. dn/ds of each
prevalence bin are reported in blue with 95% confidence intervals reported in gray.
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Figure S14: Comparison of HMP (adult) and infant prevalences of sweeping alleles
involved in putative modification events. The cohort in which the sweeping allele was
identified is indicated at top (e.g ‘Infant-Infant’, ‘Mother-Infant’, ‘Adult-Adult’). The colorbar
indicates number of SNV changes.



Quasi-phasing

A major goal in this paper is to infer evolutionary changes from metagenomic samples. Here, an
evolutionary change represents a change in allele frequency over time among lineages belonging
to a strain. Unfortunately, two major potential confounders of evolutionary changes in
metagenomic data are strain fluctuations and sampling error, since both can generate allele
frequency changes.

To control for these potential confounders, we “quasi-phase” samples with sufficiently simple
lineage structures. Quasi-phasing means that pairs of alleles can be confidently assigned to a
single lineage’s genome. In doing so, we can identify evolutionary changes that accrue on the
background of a single lineage. The approach we take is similar to that of Truong et al. 2017 in
which a dominant allele is assigned to a dominant strain, but in Garud, Good et al. 2019 we put
bounds on the error for phasing (for further statistical details, please see the supplement of
Garud, Good et al. 2019).

To quasi-phase, we leverage knowledge about the lineage structure of a given species within a
host. As described in Garud, Good et al. 2019, hosts are typically colonized by a small handful of
genetically distinct lineages belonging to the same species. In Figure S15, we plot a distribution
of allele frequencies for the common species Bacteroides vulgatus in three infant samples from
Backhed et al. 2015, which as we describe below, illustrate a range of typical within-host lineage
structures.
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Figure S15: Allele frequency distributions for three infant hosts. Plotted are allele frequency
distributions for the species B. vulgatus from three infant hosts from the Backhed et al. dataset.
Only major allele frequencies are plotted. Figures (A) and (B) depict distributions from quasi-
phaseable samples, in which the majority of polymorphic sites have a within-host frequency
>0.8. The sample in figure (C) is not quasi-phaseable since a large fraction of sites have a
frequency < 0.8.

In Figure S15A, there is a mass of sites with allele frequencies (f) close to 0. As described in
Garud, Good et al. 2019, these sites are likely is comprised of a mixture of sequencing errors and
low frequency mutations that have arisen due to the expansion of a single lineage within a host.
By contrast, in Figures S1B and C there are a mass of sites with allele frequencies close to 0 and
another mass of sites with allele frequencies peaked at intermediate frequencies. As described in
Garud, Good et al. 2019, these peaked distributions are inconsistent with a single lineage
expanding within a host and instead represent multiple, divergent lineages present within a host.
The allele frequencies at which these distributions are peaked are representative of the relative
frequencies at which lineages are colonizing the host.

In scenario A, a new mutation that arises represents a true evolutionary modification rather than
a strain fluctuation, because there is only one strain colonizing the host. However, in scenarios B
and C, a shift in frequency of the multiple strains could also generate an allele frequency change.
In scenarios B and C we attempt to solve this problem by identifying samples in which a
nucleotide confidently to a single lineage’s haplotype, or, in other words, can be ‘quasi-phased’.
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Scenarios A and B are fairly straightforward to quasi-phase. In this scenario, there is typically a
single dominant allele (Figure S16), which can be assigned to the dominant lineage. Even in the
case where an allele is mis-assigned, there will still be a lineage harboring both alleles, even if it
is not the dominant lineage (Figure 16, Garud et al. 2019, SI text). However, in scenario C, two
strains are present at roughly 50% frequency. In this scenario, there is no allele that is dominant
and there is a ~50% chance of incorrectly assigning an allele to the dominant lineage (Figure
S16).

Scenario B: Scenario C:
f>0.5 f=0.5
Site 1 Site 2 Site1 Site 2 Site1 Site 2 Site 1 Site 2
A =G. AL T =
E — E — A G A T
= = R = = = = R =
=EE E E =EE E s

Figure S16: Quasi-phasing of two hypothetical samples with difference allele frequencies.
Hypothetical read pileups for two sites in Scenarios B and C. In Scenario B, there is a dominant
lineage present at >80% frequency, whereas in Scenario C two lineages colonize the host at
roughly 50% frequency (Fig S1). In Scenario B, the dominant alleles at both sites 1 and 2 can be
assigned to the dominant lineage. If there is a phasing error, there still will be a fraction of cells
that possess the pair of Ts on the same haplotype (see Garud, Good et al. 2019). By contrast, in
Scenario C, there is a 50% chance that the alleles will be assigned to the incorrect lineage. In this
scenario, it is unlikely that there will be any lineage that harbors both Ts.

Thus, samples with a large number of intermediate frequency alleles are more suspect to phasing
errors. Quasi-phaseable samples are those that have few alleles at intermediate frequency. To
identify quasi-phaseable samples, we wish to identify an allele frequency cutoff, /*, that signifies
the upper bound of what constitutes ‘intermediate frequency’. With such a cutoff, we can then
assess the probability that an observed frequency, f, is greater than /* given k alternate alleles
and D number of reads and a true allele frequency of f:

Eq 1:
PIf 2/ IDA=)  (FEa- P

As described in Garud, Good et al. 2019, this probability can be computed across the genome to
obtain a genome-wide error rate of incorrectly phasing an allele. With sufficient depth D, which
we assign to be a minimum of 20 in our analysis, and a sufficiently high /*, which we set to be
0.8, sampling error is minimized. Quasi-phaseable samples are identified if they contain
sufficiently low numbers of sites with f<f* , as described in greater detail in Garud, Good et al.
2019.
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3. False positive rate for SNV changes

We next quantified SNV changes between quasi-phaseable time point pairs from the same host.
To do so, we identified extreme allele frequency changes from <0.2 to >0.8 (or vice versa)
between two samples, S1 and S2 (Figure S17).

1
A
0.8
Allele
frequency
0.2
A 4
0

Figure S17: Schematic of allele frequency changes detected. To detect evolutionary changes
within a host over time, we identified sites that changed allele frequency from <=0.2 to >=0.8, or
vice versa.

We compute the probability of observing an allele frequency due to sampling error (Per) as
follows:

Eq2:

Per = [(P(fi 0.2|Dy, f) * (2 =2 0.8|Dy, f) + P(fi =0.8| Dy, f) x(f2 <0.2|Dy, ) *
P(Dy,D,, ) dDydD,df

Where f;and f,are allele frequencies in samples 1 and 2, respectively, and D; and D; are read
depths in samples 1 and 2 respectively. fis assumed to be the same in both samples 1 and 2

under the null hypothesis where there is no evolutionary change. P(f; = f*) is computed as eql.
P(D1, D».f) ~ P(D1)P(D2)P(f) and is estimated empirically from the data as described in Garud et
al. 2019 SI text 1.

To compute a genome-wide false positive rate, we can multiply the per-site error rate by the
length of the genome, L to estimate the total expected number of false positives:

Nerr = Perr *L
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For a depth of 20 in samples 1 and 2 (the minimum depth we require) and a true allele frequency
/=0.2 in both samples, the probability of observing an allele frequency change by chance from
0.2 to 0.8 is 1.7*107-8. Multiplying this by a mean genome size of 106, the expected number of
false positives for a given genome is 0.017, which is <<I.

A similar logic as in Eq2 is applied for inferring gene changes, as described in greater depth in
Garud, Good et al. 2019.
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