
Supplementary Figure 1. Improved precision of DomCycle when compared to metaplasmidSPAdes and 
Recycler on tandem repeats. The 3 tools were tested on 10 negative control datasets. In each dataset, a 
10kb sequence r was repeated N consecutive times, and each unit was integrated M times in random 
location into a genome of length 1Mb. The 4 stretches of DNA between the tandem repeats are denoted 
a,b,c,d. The x-coverage of the resulting single circular genome was fixed at 50x. A) An example of a 
configuration in which N=2 and M=4. See legend of Figure 1 for graphical details. B) The assembly graph for 
the example in panel A. C) The performance of the 3 tools is shown for the 10 datasets. The DC_class
column is the result of DomCycle (dominant: dominant cycle found, not_dominant: one or more candidate 
cycles were found but discarded due to low score, none_found: No candidate cycles found). The DC_score
is the maximal score of the candidate cycles. The 3 right columns are the number of cycles reported by the 
3 tools (DC: DomCycle, mpSpades: metaplasmidSPAdes). Note that DomCycle successfully avoids reporting 
all of the 2-tandems and reports some 3-tandems with scores <2. These results partially explain why 
DomCycle achieves better precision. 

Repeats (N) Sites (M) DC_class DC_score DC_cycle_count mpSpades_cycle_count Recycler_cycle_count
2 1 not_dominant 0.828 0 0 1
2 2 not_dominant 0.877 0 1 0
2 4 none_found NA 0 1 0
2 10 not_dominant 0.834 0 1 1
2 50 none_found NA 0 1 0
3 1 not_dominant 0.389 0 2 2
3 2 dominant 1.532 1 1 2
3 4 dominant 1.748 1 1 1
3 10 dominant 1.738 1 1 1
3 50 dominant 1.817 1 1 1
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Supplementary Figure 2. Runtime for the entire pipeline of DomCycle, SCAPP, Recycler and 
metaplasmidSPAdes. All tools were on a machine with 1TB RAM and 80 CPU cores. Note that current 
implementations of DomCycle, SCAPP and Recycler are single threaded. All tools were benchmarked on the 
simulated dataset derived from 155 bacterial chromosomal genomes described in the paper. Recycler, 
SCAPP and DomCycle share the assembly step performed using MEGAHIT. Recycler and SCAPP share the 
read pre-processing step (‘mapping’). The read pre-processing step was performed on a single machine 
and can be accelerated using a distributed approach, which is outside the scope of this work. 
MetaplasmidSPAdes performs the entire process, from raw reads to genomes of putative mobile elements, 
in one step.
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Supplementary Figure 3. Recall and precision of DomCycle are robust to the choice of parameter 
thresholds. Recall and precision for the set of reference phages and plasmids are reported across a 
parameter scan for score threshold (applied to the local and global scores) and minimum contig length 
included in the input assembly. Minimum contig lengths are some multiple of the standard assembly k-mer
size (k=77).
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Supplementary Figure 4. Performance of Recycler and metaplasmidSPAdes  on simulated scenarios. Recall 
and precision for the set of simulated recombing plasmids (left) and integrating phage  (right) for Recycler 
(top) and metaplasmidSPAdes (bottom). 
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Supplementary Figure 5. The distribution of the global nucleotide score and local cycle score for each 
candidate cycle reported on the gut sample from a healthy adult (SRR8187104). Vetted dominant cycles 
are shown in black and candidate cycles filtered out by either the global nucleotide score test or the local 
cycle score test are shown in grey. Horizontal dotted lines drawn show the lower-bound threshold for 
classifying vetted dominant cycles without accounting for significance through p-values in both score tests. 
The Pearson correlation coefficient is computed between candidate cycle’s global nucleotide score and 
local cycle score.
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Supplementary Figure 6. Examples of candidate cycles filtered out due to poor local nucleotide-level 
scores in the gut of a healthy adult (SRR8187104). The local nucleotide-level score test calculates the p-
value for the hypothesis that the support coverage is greater than the total base pair non-support 
profile at each base in the candidate cycle (see Methods). In comparison to the global nucleotide-level 
score, the local score accounts for the singleton coverage and tests significance at each candidate cycle 
base. For instance, CYC244 (middle left) has out singleton coverage (light green) that exceeds the 
support coverage at the beginning of the cycle; accordingly, this cycle receives a non-significant local 
nucleotide-level score (𝑝 > 0.01) at the bases where the singleton out coverage exceeds the support. 
Intuitively, the high density of singleton reads on CYC244 indicates that there was assembly 
fragmentation near the contig junction at the beginning (and end) of the cycle. We conservatively 
assume that the missing singleton read side originated from a sequence that is missing in the assembly. 
Thus, we cannot confidently conclude that CYC244 is dominant. A similar rationale extends to other 
candidate cycles depicted.
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Supplementary Figure 7. Genome clustering for cycles reported by DomCycle based on an input MEGAHIT 
assembly (left) or metaSPAdes (right). The number of shared cycles was calculated by clustering the union 
of MEGAHIT and metaSPAdes cycles, then computing the number of MEGAHIT-reported cycles which share 
a cluster with a metaSPAdes-reported cycle.



Supplementary Figure 8. All ecMGEs identified in the gut of pilot subject 1. Each plot shows the coverage 
profile, gene positions, gene identity, Uniref cluster size, and gene classification for each cycle.
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Supplementary Figure 9. CrAssphage-like element identified in the gut of the central subject in the 
study. See Figure 4A for color legend.
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Supplementary Figure 10. We used the simulated chromosomal configuration benchmark in Figure 2 to 
estimate the false-positive rate of DomCycle, metaplasmidSPAdes, and SCAPP. The false-positive rate is 
significant compared to the element reporting rate on the central subject for metaplasmidSPAdes and 
SCAPP.
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Supplementary Figure 11. Harsh and loose scores were calculated on the set of elements reported by 
metaplasmidSPAdes on the focal subject. These scores were computed based on alternate read mapping 
and scoring procedure meant to reflect the DomCycle system most thoroughly (Methods), but adapted to 
the supplied metaplasmidSPAdes output. The distribution of harsh scores (left) and loose scores (right) for 
cycles reported by metaplasmidSPAdes. Cycles reported by metaplasmidSPAdes were aligned to cycles 
reported by DomCycle and categorized as either reported by DomCycle (red) or not (gray). Cycles reported 
by metaplasmidSPAdes and DomCycle have higher scores than cycles reported only by 
metaplasmidSPAdes. 
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Supplementary Figure 12. Results for a second deeply-sequenced gut sample from a healthy human adult 
(SRR8186375) recapitulate trends shown in Figure 4. (a) Empirical cumulative density functions (ECDF) for the 
median support coverage distribution for candidate pseudodominant genomes (light grey), the adjusted median 
coverage (AMC) distribution for pseudodominant genomes (dark grey), and AMC distribution for dominant 
cycles (black). (b) ECDF for the abundance percentiles (AP) of dominant cycles. The AP for each cycle is computed 
to be the percentile of the cycle AMC in the background distribution of AMCs among pseudo-dominant 
genomes. The dotted line shows the AP ECDF for pseudo-dominant genomes (KS-test, P < 2.8 ∗ 10!").
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Supplementary Figure 13. The 286 eMGEs were clustered using hierarchical clustering performed with single 
linkage. Shown are eMGEs for which the distance to their nearest neighbor was under 0.5 (i.e., >50% ANI). Left 
shows clustering dendrogram, with a scale bar showing a distance of 0.2 (equivalent to 80% ANI) and nodes 
colored by environment. Matrix squares colored by sequence identity, with perfect alignments (100% ANI) 
highlighted in orange. The 20 multi-member clusters (threshold 95% ANI), numbered M1 to M20, are marked on 
the plot. The PhiX cluster and all single-member clusters were omitted from downstream analysis.
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Supplementary Figure 14. The median of each intra-cluster mean metric as a function of clustering genomic 
similarity threshold. The three metrics for cluster tightness are robust to changes in the minimum genome 
similarity clustering threshold.
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Supplementary Figure 15. Clusters with one or more references in PLSDB. Legends as in Figure 6. The 5 clusters 
were found in multiple environments (human gut, sewage and rat microbiome) and are associated with diverse 
microbial hosts.
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Supplementary Figure 16. Putative recombination events are rare. For each cluster and each cluster member, the 
phylogenetic tree (as inferred by PhyML) was used to classify all polymorphic sites. A bi-allelic site was classified as 
consistent if the partitioning of samples matched an edge in the tree, as inconsistent otherwise. Non bi-allelic sites 
were classified as such. a) The breakdown of site classification for all clusters and all options of pivot cluster 
members. The pivot members selected for visualization purposes in Figure 6 are highlighted in bold. b) The 
maximal percentage of consistent sites out of all sites over all cluster members. Clusters with a value of zero (such 
as M1) have at least one tree topology that is consistent with all polymorphic sites.

a
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Supplementary Figure 17. Gut clusters with uneven distribution of SNPs along genomes. Groups of nearby SNPs 
can indicate a recombination event or positive selection. Legends as in Figure 6.
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