Supplementary Note 1
Theorem 1. Let  be a non-redundant contig set, let  be the assembly graph of , let  be a latent circuit coverage function, and let  be the induced edge coverage function of . For any cycle  in  it holds that .
Proof. Let  be a cycle and let  be a circuit over the contigs  that satisfies . We denote by  the number of times the circuit  crosses into the cycle , or formally . Since every entry of the circuit into the cycle has a matching exit event it holds that . We express as a function of :

Similarly,  also equals  and therefore:
	
	
	(1)


The set of circuits  can be expressed as a disjoint union of (1) the circuits that do not cross into the cycle , (2) the circuits that do not cross out of the cycle , and (3) the circuits  that cross into the cycle  once or more.
Let , be an edge in the cycle that gets a minimal coverage value. It holds that:

Since  and  (by definition) we can simplify:

By definition, any circuit  enters the cycle  precisely  times, and traverses the edge  up to  times on each visit. Therefore, it holds that . We substitute  to get the inequality:

Reorganizing the equation, we get:

By assigning equation 1 we get:
  

Supplementary Note 2
Proposition: All cycles returned by Algorithm 1 are dominant.
Proof. Assume  is added to the result set  in line 12 of Algorithm 1. It holds that  is a cycle since , i.e., the path is closed. The variable  is equal to the weight  (line 3) and verified to be equal or smaller than the weight of all edges in  (line 6), and therefore by definition . The variable  equals the  by construction due to line 11. Therefore, it holds that . According to Supplementary Note 1 we know that  and thus  

Supplementary Note 3
Proposition: Algorithm 1 returns all dominant cycles.
Proof. Assume  is a dominant cycle in the graph. Let  satisfy . Let us focus on the two algorithm loop attempts (in line 2) that start from  and . Suppose for the sake of contradiction that both runs fail and therefore  or  are not reported by the algorithm. Therefore, the algorithm leaves the cycle prematurely for both attempts and there exists two edges  and  such that  and . Averaging the two inequalities we get . By the definition of the external coverage, we have , and therefore , in contradiction to the fact that the cycle is dominant. Thus  or  are reported by Algorithm 1 

Supplementary Note 4
We estimate a lower bound on the expected time to coalescence of M1a as follows. We estimate the expected number of generations until coalescence  based on the equation , where  is the nucleotide diversity (average fraction of sites that differ between pairs of genomes) and  is the mutation rate (mutations/bp/generation). We denote by  the number of generations per year which allows us to express the time to coalescence in years as .
We estimate  as follows: According to the two references we identified for M1, the bacterial hosts of plasmid M1a are Bacteroides xylanisolvens (M1a) and Bacteroides fragilis (M1b). We use the mutation accumulation rate of B. fragilis in natural conditions that was estimated at 0.9 mutations/genome/year1. Dividing by the size of the B. fragilis genome (5.295Mb) we get  mutations/bp/year.
We estimate  as follows: Using the pairwise nucmer alignments (using show-coords) of the 8 M1a members, we found that pairs are separated on average by 1.75 SNPs. Dividing by the size of M1 (4148bp) we get .
Plugging in the estimates of  and , we get  years.
Noting that the plasmid in gut #2 is an outlier in terms of the number of differentiating SNPs, we computed the same estimate of years to coalescence without that plasmid. In that case we have only 0.85 SNPs between pairs on average, which results in ,  and  years.
One caveat worth mentioning is that this analysis is typically performed using neutral mutations (such as intra-genic synonymous mutations). Due to the small number of polymorphic sites, we use here all mutations (both in the estimation of  and of ).
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