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Supplemental Material
Definitions

e Combination: Multiple genomic entities considered together. Combinations with two
entities constitute a pair, three entities constitute a triplet, and so on. For example, genes A, B
and C can form four combinations: three pairs AB, AC and BC, and one triplet ABC.

e Size/length of a combination: Number of genomic entities under consideration. Pairs are of
length 2 and triplets are of length 3.

e Events: Genomic events such as a structural variant or loss-of-function (LoF) or missense
mutation observed within a single genomic unit such as a gene. Occurrence of an event is
denoted as {Gene A = 1}.

e Non-events: Absence of genomic events within a given genomic unit, denoted as {Gene B =
0}.

e Simultaneous events: When events are observed in all constituent entities of a combination.
Simultaneous occurrence of mutations in gene A and gene B are denoted as {Gene A=1 &
Gene B=1}.

e Simultaneous non-events: When no events are observed in all constituent entities of a
combination, denoted as {Gene A=0 & Gene B=0}.

¢ Non-simultaneous events: Events occur in at least one but not all constituent entities of a
combination, denoted as {Gene A=1 & Gene B=0}, {Gene A=0 & Gene B=1 & Gene C=1},

etc.
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A primer to the apriori algorithm

Combinatorial complexity

Current approaches for analysis of rare variants in complex disease deal with data sparsity by
comparing aggregate enrichment of a specific variant (such as a CNV) or collective burden of
variants between cases and controls. Analysis of combinations of rare events is challenging

because substantially larger sample sizes are required to observe such events. For example, two
independent rare variants ‘rvl’ and ‘rv2’ with a minor allele frequency of 5% (1 in 20
individuals) can be expected to be observed together only in 1/400 individuals. In fact, for every
‘n’ samples required to observe a rare variant at a given allele frequency in a cohort, it takes at
least n? samples to observe two rare variants of similar allele frequencies together. Both n and »?
increase exponentially with decreases in allele frequency thresholds. Even when large cohorts
are available, an efficient algorithm is required to overcome the combinatorial explosion and
efficiently calculate the frequency of simultaneously occurring rare events from sparse datasets.

List of parameters to constrain search and prune search space
The apriori algorithm is a breadth-first search algorithm that has become synonymous with two

data mining techniques, ‘association rule learning’ and ‘frequent itemset mining’. It is used to
either automatically identify interesting associations between two or more variables called
‘rules’, of the format ‘{Gene A=1, Gene B=1} => {Phenotype=Severe}’, or simply list
frequently occurring set of items called ‘itemsets’, of the format {Gene A=1, Gene B=1, Gene
C=1}, that meet a minimum frequency threshold (support) supplied to constrain the algorithm.
Rules have two sides, the ‘antecedent’ on the left and the ‘consequent’ on the right, connected by
the directionality of their association. The number of items in a rule is its /ength. The algorithm
can report one or more items in the antecedent, but its consequent can only be a single item.
Frequent itemsets are simply list of items without any relationship or directionality among them.
The algorithm reports the itemsets along with their absolute frequencies. For example, the rule
{Gene A=1, Gene B=1} => {Phenotype=Severe} has a length of 3, where {Gene A=1, Gene
B=1} is the antecedent and {Phenotype=Severe} is the consequent. Similarly, {Gene A=1, Gene
B=1, Gene C=1, Gene D=1} is an itemset of length 4.

Searching for patterns involving more than two items is computationally challenging due to the
resulting combinatorial explosion. For example, to identify rules of length 4 using just 100 items,
as many as 4 million possibilities (100C4) must be considered, which sharply increases to 75
million if the length is increased to 5 (100Cs). The apriori algorithm addresses this challenge by
constraining the search space using three important parameters that control the length,
support/frequency, and confidence of the final set of rules in the output (Supp. Figure 12).
Confidence is only applicable to rules, whereas the other two metrics are applicable to both rules
and frequent itemsets. The algorithm systematically prunes the search space by using a subset of
rules/itemsets of smaller lengths that meet the user-provided criteria for the three parameters to
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expand the search to rules/itemsets of larger lengths. This approach allows it to perform
computationally efficient searches.

The three parameters used to constrain the algorithm are as follows:

1) Length of the rule/itemset: The length of the rule/itemset is the primary determinant of the
search space due to its combinatorial relationship with the number of input items. While an
upper limit for length is often supplied to the algorithm, a lower limit can also be specified if
necessary.

2) Support for the rule/itemset: Support indicates the frequency in which the constituent items
of an itemset or a rule appear together within a set of observations. If 20 out of 100
individuals carry the variants A and B together, then the support for the itemset {A=1, B=1}
is 0.20. If all 20 individuals are associated with a ‘severe’ phenotype, then the support for the
rule {A=1, B=1}=>{severe} is also 0.2. Each observation containing these three items
serves as additional evidence supporting the existence of an association between the
antecedent and the consequent. Providing a threshold for ‘support’ (lower limit) limits the
search to only those itemsets and rules in which the constituent items appear together at least
as frequently as the threshold.

3) Confidence of the rule: Confidence indicates the probability of observing the consequent
when the antecedent is observed. For example, let’s assume the antecedent {A=1, B=1} is
observed in 25 out of 100 individuals (support for the antecedent = 0.25), and the antecedent
{A=1, B=1} is observed together with the consequent {severe phenotype} in 20 of those
instances (i.e., support for the rule {A=1, B=1}=>{severe phenotype} is 0.20). Here, 80% of
all individuals carrying variants A and B together have a severe phenotype, meaning that
confidence = [support for the rule/support for the antecedent] = 0.2/0.25 = 80%. Since rules
with high confidence could be predictive of the outcome, a lower limit for this parameter is
often provided to the algorithm.

It should be noted that the confidence metric reported for a rule does not take the frequency of
the consequent within the cohort into account. For example, if there are three times as many
cases as controls in a cohort (for a binary outcome), a genotype combination that occurs three
times as frequently in cases than controls would have a confidence of 75%. i.e., 3/4"" of all co-
occurring genotypic events is associated with one of the two possible outcomes. While 75%
confidence might suggest that a genotype combination is predictive of the outcome, it was
achieved simply due to the relatively higher frequency of one of the two binary outcomes in the
cohort. A fourth useful parameter named ‘Lift " takes this limitation into consideration and adjusts
the confidence by controlling for the frequency of the consequent, where Lift =
[Confidence/Frequency of the consequent]. So, the lift for an antecedent ‘A’ and the consequent
‘C’ is [P(ANC)/P(A)]/P(C) or simply P(ANC)/P(A)* P(C). Basic axioms of probability dictate
that if A and C are independent, P(ANC) would be the same as P(A)*P(C), making /ift a measure
of the extent of dependence between the antecedent and the consequent. Conversely, if the /if
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score is 1, the antecedent and consequent are independent of each other. Therefore, the /ift score
is directly proportional to the dependence between the antecedent and the consequent. After
incorporating the frequency of the consequent in the prior example, the /if score becomes 1. The
lift score can hence be used to identify truly dependent events among all high confidence rules.
Unlike length, support, and confidence, thresholds for /if cannot be supplied to constrain the
apriori algorithm prior to invoking it, but can instead be used post-hoc to identify high quality
rules.

Using the apriori algorithm

The ability of the apriori algorithm to generate results in two formats, ‘frequent itemsets’ and
‘rules’, provides flexibility to leverage it in multiple ways. These two formats allow genotypes to
be either analyzed independently or together with the phenotypes. ‘Frequent itemsets’ is the best
fit for counting the frequency of simultaneous events involving only the genotypes. For analyses

involving both genotypes and phenotypes, where any meaningful combination must involve at
least a single phenotype, ‘rules’ are the best fit since the algorithm can be constrained to include
only the phenotypes as the consequent item in the rule. We use both formats for counting the
frequency of simultaneous events along with the general principles of statistical inference in two
specific ways: one involving just the genotypes for case/control comparisons, and the other
involving both genotypes and phenotypes for assessing comorbidities.

Case/control enrichment analysis

RareComb can be used to identify genotype combinations that exhibit differential enrichment of
simultaneous events between two groups. As genotypes are analyzed exclusively in this
approach, ‘frequent itemsets’ are generated using the apriori algorithm. The minimum frequency
of simultaneous events (support threshold) in cases is provided as the initial constraint to the
algorithm, while being agnostic to the absolute frequency in controls. Once all genotype
combinations in which the frequency of simultaneous events is at least as high as the support
threshold in cases are identified, the p-values from the binomial test quantifying the magnitude
of enrichment relative to the expectation under the assumption of independence are calculated.
For the subset of combinations with higher-than-expected frequency of simultaneous events in
cases, the corresponding p-values in the control group are calculated. The combinations in which
simultaneous events occur more frequently than expected in both cases and controls are
discarded, since they signify potentially dependent genomic events (due to factors such as
linkage disequilibrium). Finally, combinations that are statistically significant in cases after
adjusting the p-values for multiple testing while remaining non-significant in controls are
considered to impact disease/phenotype.

Comorbidity analysis
Understanding the genetic basis of comorbid phenotypes associated with complex diseases is
challenging due to two main reasons. First, when multiple phenotypes are considered, even in a
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large cohort, the number of individuals with a specific combination of phenotypes is very small.
For every ‘n’ binary phenotype, 2" configurations of comorbidities are possible, and it is
challenging to find adequate samples representing each configuration in complex disease
cohorts. Second, even if the sample size is large enough to have adequate individuals for each
configuration, current methods are not able to effectively explain or predict associations with
combinations of phenotypes. In many analyses, either a new outcome variable is created based
on the composite configuration of the phenotypes, or one is derived based on how the comorbid
phenotypes cluster among themselves within the cohort. We extend our method to overcome
existing limitations to provide explanations for multiple phenotypes considered together as
individual units. While retaining granular phenotypes reduces the size of samples available
within each configuration, the rarity of such phenotypic configurations can be turned into an
advantage by screening for genotypes that are observed together more frequently than expected
within such rare phenotype configurations. Our framework can be used to measure the likelihood
of observing a set of phenotypes and genotypes together as frequently as they are observed
within the cohort using the frequencies of individual items. For example, let’s assume that 7
individuals in a cohort of size 2,000 are diagnosed with three phenotypes ‘p1°, ‘p2’ and ‘p3’
simultaneously, and 5 of them carry deleterious mutations simultaneously in genes ‘g1’ and ‘g2’.
Let’s also assume that phenotypes p1, p2 and p3 and genotypes ‘gl’ and ‘g2’ are each observed
independently in exactly 20 individuals within the cohort (1% of the cohort). One of the axioms
of probability dictates that if these five events are independent, the probability of observing them
all together in an individual is (0.01)°, making the odds of observing the combination ‘p1°, ‘p2’,
‘p3’, ‘gl’, ‘g2’ in 5 individuals by chance alone extremely unlikely. The method applies this
reasoning to identify combinations of phenotypes that occur together with combinations of
genotypes more frequently than expected by chance alone. Such a method can be challenging
due to the exorbitant number of combinations to be evaluated (100Cs = ~75 million; 100Cs =
~255 billion), but we address this challenge using the apriori algorithm to search for
combinations that occur at least as frequently as the support threshold provided to constrain the
algorithm.

The method analyzes the entire cohort and generates combinations that meet the input criterion
for ‘support’ provided to the apriori algorithm. For this approach, the apriori algorithm is made
to generate ‘rules’ with two specific constraints. First, only phenotypes are eligible to be the
consequent item. Second, both genotypes and phenotypes are eligible to appear in the list of
items in the antecedent portion of the rules. These constraints both limit the search space and
ensure that any combination reported by the algorithm includes at least a single phenotype. Once
the combinations that meet all input criteria for the apriori algorithm are obtained, the p-values
from the binomial tests are calculated by comparing the expected frequency with the observed
frequency of these qualifying combinations. The combinations that remain significant after
multiple testing correction are identified as genotypes that contribute towards the comorbid
phenotypes.



290 Supplemental Figures
Technical workflow of RareComb to analyze for pairs of genes
Gl G2 G3
Case 1 1 0 0
Case 2 0 0 0
— ( |Case3 0 1 1)
Case 4 0 0 0
Case 5 (f 1 > (1 1
Step 1 | Split cases J S 1D
; trol. Control 1 0 1 0
rom confros Control2 | 0 0 1
Control 3 1 0 0
Control 4 0 0 0
Control 5 1 1) 0
Step 2 | Calculate the frequency of individual events in each group
v Step 3 | Run the apriori algorithm independently on each group
to generate frequent itemsets for simultaneous events.
Item Size =1 Item Size =2 Item Size =1 Item Size =2
Events | Support Event Pairs {X,Y}| Support Events | Support Event Pairs {X,Y} [ Support
{Gl1=1} 2/5 {G1=1,G2=1} 1/5 {G1=1} 2/5 {G1=1,G2=1} 1/5
{G2=1} 2/5 {G1=1,G3=1} 1/5 {G2=1} 2/5 {G1=1,G3=1} 0
{G3=1} 2/5 {G2=1,G3=1} 2/5 {G3=1} 1/5 {G2=1,G3=1} 0
l Step 4 | Obtain P(X N'Y) l Step 4 | Obtain P(X NY)
Observed Expected Observed Expected
X Y XNy PXNY) PXNY) X Y XNy PXNY) PXNY)
Gl1=1|G2=1|{G1=1,G2=1}| 1/5=10.2 |2/5*2/5=0.16 Gl=1|G2=1|{G1=1,G2=1}| 1/5=0.2 |2/5*2/5=0.16
Gl1=1|G3=1|{G1=1,G3=1}| 1/5=0.2 |2/5*2/5=0.16 Gl1=1|G3=1|{G1=1,G3=1} 0 2/5%1/5=10.08
G2=1|G3=1|{G2=1,G3 =1} 2/5=0.4 |2/5*2/5=0.16 G2=1|G3=1|{G2=1,G3=1} 0 2/5%1/5=0.08
l Step 5 | Run binomial tests l Step 5 | Run binomial tests
X Y Observed | Expected | P(X> =x) | p-value X Y Observed | Expected | P(X> = x) | p-value
Gl=1|G2=1 0.2 0.16 0.58 Gl=1|G2=1 0.2 0.16 0.58
Gl=1|G3=1 0.2 0.16 0.58 Gl=1|G3=1 0.08 1.00
G2=1|G3=1 0.4 0.16 0.18 G2=1|G3=1 0.08 1.00
l Step 6 | Adjust for multiple tests & compare p-values
Cases Controls
X Y [P(X>=x)|p-value | P(X>=1x) | p-value
Gl=1|G2-1 0.58 0.58 Step 7 | Identify combinations with
Gl=1]G3=1 0.58 1.00 complementary p-value trend
G2=1|G3=1 0.18 1.00
291
292 Supplemental Figure S1: Technical workflow of RareComb. RareComb uses an input
293 Boolean matrix consisting of variant information and binary phenotypic outcome for case-
294  control analysis. It then applies the apriori algorithm independently to cases and controls to
295  obtain the frequencies of simultaneously occurring events that meet the selection thresholds for
296  length (pairs, triplets, etc.) and frequency. Binomial tests are applied to each eligible
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combination independently within cases and controls. Gene combinations are considered
significant (after multiple-testing correction), when mutations are observed simultaneously in
their constituent genes more frequently than expected under the assumption of independence
among them, in cases but not in controls.

Summary of frequency, effect size, and statistical power of significant gene pairs and triplets
associated with intellectual disability

Case Counts Control Counts Effect Size Power (5% Significance)
40- ?
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Supplemental Figure S2: Summary of significant gene pairs and triplets identified from the
SPARK cohort. Higher frequencies of simultaneous mutations are observed for pairs than for
triplets (‘Case Counts’/’Control Counts’ panels along the X-axis), since simultaneous events tend
to occur less frequently for combinations of larger sizes than smaller sizes. Notably, most
significant triplets were observed in five cases, whereas significant pairs were observed in five or
more number of cases. Effect sizes (Cohen’s d) quantify the differences in absolute frequency of
combinations in cases versus controls. Since we used a statistical power cut-off >90% to identify
570 significant triplets, effect size and power are not comparable between pairs and triplets.

10



315

316
317
318
319
320
321
322
323
324

325
326
327

Number and effect size of significant gene pairs in each of the select 8 probands with intellectual disability

SP0097208 SP0024724

SP0107507

SP0140686

SP0031607

SP0037459

SP0044060

SP0104180

3e-06-

2e-06-

1e-06-

0e+00-

HH!-.

IM'H'!

(sqo "sa dx3) anjea—d sase)

0.10-

0.05-

0.00-
1 1 2

2 3

2

|

Supplemental Figure S3: The range of p-values and Cohen’s d for mutated gene pairs in a
representative set of probands from the SPARK cohort. This figure illustrates that an
individual can carry more than one combination of mutated genes significantly associated with
the same phenotype, with each combination showing different enrichment (from binomial tests)
and effect sizes (Cohen’s d). Data from eight representative probands, each carrying multiple

significant pairs of mutated genes, are shown here. The X-axis corresponds to probands, and the

Y-axis shows p-values from binomial tests in cases and effect sizes measured using Cohen’s d.
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Comparison of the 1Q score distribution of individuals with mutations in either versus both genes
of select five gene pairs

Average 1Q of individuals with ___ Average 1Q of individuals with
mutations in both genes mutations in either of the genes
Gene Pair 1 Gene Pair 2 Gene Pair 3 Gene Pair 4 Gene Pair 5
50 84.25 46 85.63 42 81.1 48 84.63 62 86.26
| p=5.0e™" I I
0.02 (one-sample p=5.8¢0 mlm p=8.2e" p=1.7¢* _ p=3.6¢”
M| wilcoxon) _
> M 1 T[] L -
e - B i N 4
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a i 2
0.01 ] 1y i
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1Q Scores

Supplemental Figure S4: Comparison of 1Q scores of individuals carrying mutations in
either of the constituent genes (SSC Cohort) with those carrying mutations in both genes of
significant gene pairs. Distributions of IQ scores from individuals carrying mutations in either
of the two genes from select five mutated gene pairs are shown. The blue line indicates the mean
of the distribution of 1Q scores, and the red line indicates the mean IQ of individuals carrying
mutations in both genes. We find that carriers of both mutations tend to have lower 1Q scores on
average compared to the average IQ of carriers of either of the two mutations.
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Analysis workflow

A
SPARK Cohort
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336

337  Supplemental Figure S5: Rare variant pairs contributing to intellectual disability (ID),
338  obtained using a conservative approach that considers all combinations that meet the
339  frequency threshold in cases for multiple-testing correction. (A) An outline of the approach
340  used to identify and validate mutated gene pairs and enriched in probands with ID is shown. We
341  tested whether the 115 mutated gene pairs identified as significant in one cohort (SPARK) are also
342 associated with severe phenotypes in an independent cohort (SSC). To test this, we obtained the
343  mean IQ score of individuals from the SSC cohort carrying significant combinations identified
344  from the SPARK cohort. Empirical p-values were then calculated based on the deviation of the
345  mean IQ from the distribution of mean IQ scores obtained from 10,000 random draws in the
346  simulation. (B) The mean IQ of individuals with mutated gene pairs in the SSC cohort was
347  significantly lower (empirical p-value=0) when compared to the distribution of mean IQ scores
348  obtained from the simulation.
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Analysis workflow

A
SPARK Cohort
A 7,717 probands
ID No ID
1,590 cases 6,127 controls B Average 1Q of individuals with significant mutated
5,767 genes gene pairs compared to simulated data
Discovery with deleterious -
Cohort rare variants Mean IQ
=69.46 : 61.53
-value =:0
Identify significant 0.10/P :
pairs .
v |199 significant pairs | §
a
Identify carriers of SSC Cohort 0.05.
atleast one significant 2,247 probands
4 pair in SSC : (Available metric: 1Q Scores)
Simulation
10,000 draws of 96 0,00
random probands ' .
60 70 80 90 100
d Mean 1Q of 96 Distribution of Mean 1Q
Replication
CF‘,)ohort probands = 69.46 mean |Q scores
Compare the mean 1Q
with mean 1Q distribution
from simulation
v

| Empirical p-value = 0 |

Supplemental Figure S6: Rare variant pairs contributing to intellectual disability (ID),
obtained by analyzing male and female probands together. (A) An outline of the approach
used to identify and validate mutated gene pairs and enriched in probands with ID is shown. We
tested whether the 199 mutated gene pairs identified as significant in one cohort (SPARK) are
also associated with severe phenotypes in an independent cohort (SSC). To test this, we obtained
the mean 1Q score of individuals from the SSC cohort carrying significant combinations
identified from the SPARK cohort. Empirical p-values were then calculated based on the
deviation of the mean IQ from the distribution of mean IQ scores obtained from 10,000 random
draws in the simulation. (B) The mean IQ of individuals with mutated gene pairs in the SSC
cohort was significantly lower (empirical p-value=0) when compared to the distribution of mean
1Q scores obtained from the simulation.
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Average 1Q of individuals with significant mutated
gene triplets compared to simulated data

0.10
Mean 1Q = 73.25 :
."? empirical |
4 p-value = 0.0011 : !
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0.00 l||||||
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Supplemental Figure S7: Comparison of IQ scores of carriers of mutations in significant
gene triplets compared with the simulated distribution. The mean 1Q score of individuals

carrying significant gene triplets in the SSC cohort (73.25) is significantly lower (empirical p-
value = 0.0013) when compared to the distribution of mean IQ scores (82.4) obtained from the

simulation (see Figure 2A).
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A - Parental inheritance analysis workflow
SPARK Cohort

148 significant gene pairs

Identify variants in each
gene within gene pairs

142 distinct probands &
926 instances
(Genes —== Variants;
Probands ——= Sig.Pairs)

Identify parental origin for
each variant combination

Simulation

within each gene pair

967 instances

Remove instances with
oconflicts (i.e., both parents
carry one or both variants)

887 instances

Calculate proportions for
each inheritance category

SPARK Cohort
381,345 variants in
6,189 probands

Generate all possible
variant pairs

13.75 million pairs

1000 draws of 926
/ i \ random variant pairs

Comparisons

25%

2) Denovo + Maternal

244/887 = 28%

bb1/x = b1%

Category Proportion Proportion 1 Proportion 2 Proportion 1K
(1) BothDenovo | =25% | laatix=al%] | = a2¢

bb2/y = b2%

M—J/‘ Both Denovo
bb1k/z = b1k% .

3) Denovo + Paternal

17/887 = 2%

ccl/x =c1%

cc2ly = c2%

cclk/z = c1k%

4) Maternal + Paternal

108/887 = 12%

dd1/x = d1%

dd2/y = d2%

dd1k/z = d1k% 8%

5) Both Maternal

226/887 = 25%

eel/x =e1%

ee2ly = e2%

eelk/z = e1k%

([ 6) Both Paternal 717887 = 8% ffiilx= 1% fi2ly = 2% fi1kiz = fTR%_j\A

Both Paternal

B - Sibling inheritance analysis workflow

SPARK Cohort
148 significant gene pairs

Select probands with sibling
& ldentify variants in each
gene within gene pairs

Simulation

SPARK Cohort
Selected variants from
2,651 probands

147 distinct variant pairs & with a sibling

219 instances i Generate all possible
variant pairs
Identify carrier status of
corresponding

siblings for each instance 4.9 million pairs

Comparisons

1000 draws of 147
N . . random variant pairs
219 instances with carrier status 20.2%
in siblings
. Identify carrier status of
Calculate proportions for di
h inheritance category .. corresponding Neither found
eac siblings for each instance either foun
Category Proportion Proportion 1 Proportion 2 Proportion 1k 24.29,
1) Neither variants found [ 64/219 = 29.2% aal/x =al1% aa2ly = a2% aalk/z = a1k%
2) One variant found 102/219 = 46.6% bb1/x = b1% bb2/y = b2% bb1k/z = b1k%
3) Both variants found 53/219 = 24.2% ccl/x=c1% cc2ly =c2% cclk/z = c1k%
367 Both found

368  Supplemental Figure S8: Analysis of parental inheritance patterns. (A) Outline of the steps
369  involved in identifying the parental inheritance pattern of significant gene pairs and comparing
370  them with distributions obtained from simulations. (B) Outline of the steps involved in

371  identifying the carrier status of significant gene pairs in siblings and comparing them to

372 distributions obtained from simulations.
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Inheritance patterns of significant mutated gene pairs in probands
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Fraction of all instances with the inheritance pattern in probands with autism

Supplemental Figure S9: Analysis of parental inheritance pattern of significant gene pairs
associated with autism from the SPARK cohort. Histograms show the fraction of all instances
of mutated genes in a combination that belong to each of the six possible inheritance patterns
compared to simulated distributions. Significant pairs were obtained by applying RareComb to
SPARK data from probands as cases compared to parents as controls. For each simulation, the
inheritance status of random pairs of mutated genes from the cohort were identified, and the
fraction of those instances belonging to one of the six categories was calculated. Comparing the
observed fractions with the mean of simulated fractions show statistically significant enrichment
for instances when both variants are de novo or when one variant is de novo and the other
transmitted from the mother.
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Distribution of —log10(pvalues) from two separate analyses of the SPARK cohort

"1 All SPARK variants

1.5 || Variants in SSC & SPARK

1.0

Density

0.5

0.0 -

6 7 8 9
-log10(p-value)
Supplemental Figure S10: Comparison of p-values between 52 (obtained using all SPARK
variants) and 148 significant gene pairs (obtained using variants observed in both SPARK
& SSC cohorts). The shift in the distribution of p-values between the two analyses reflects the
fact that combinations with more significant p-values could be observed when the method is

applied to a larger set of genes compared to analysis using a smaller gene set. The larger the
sample space of genes, the higher the likelihood of finding highly significant combinations.

18



391

392
393

Gene Ontology (GO) terms enriched for the constituent genes of
significant pairs and triplets associated with intellectual disability

- catechol-containing compound biosynthetic process Fold
1 catecholamine biosynthetic process Enrichment
axon regeneration B
neuron projection regeneration KN
phenol-containing compound biosynthetic process 25
cellular biogenic amine biosynthetic process
amine biosynthetic process 20
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cell recognition
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-- axon development
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neuron differentiation

-- generation of neurons
-- neurogenesis

- nervous system process
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-- multicellular organismal process
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actin filament depolymerization
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sarcomere organization

cardiac myofibril assembly
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negative regulation of amyloid-beta formation
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positive regulation of myeloid leukocyte cytokine production involved in immune response
drug metabolic process

positive regulation of blood coagulation
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xenobiotic transport
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Supplemental Figure S11: GO term enrichment analysis for genes within significant pairs
and triplets. Fold enrichment of GO terms identified as statistically significant using the
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394  binomial test are listed. Seven of the nine enriched GO terms shared between the genes from
395  significant pairs and triplets were associated with nervous system development and function. For

396  example, several neurotransmitter-related terms showed as high as 40-fold enrichment for genes
397  from the significant pairs.

398
Fraction of all possible gene pairs in human phenotype ontology (HPO) database sharing 'x' number of phenotypes
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399

400  Supplemental Figure S12: Distribution of the expected number of phenotypes shared

401  between two genes within HPQ. Barplot represents the number of phenotypes shared by each
402  of the ~10 million gene pairs formed by 4,484 genes from HPO. We found that 60.9% of the
403  pairs shared either no phenotype (29.31%) or a single phenotype (31.54%) with each other.

404  These proportions serve as expected baselines for the binomial tests to compare and identify the

405  significance of the number of phenotypes shared between the significant gene pairs identified by
406  RareComb.
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Ilustration of the generalizable nature of RareComb

Pair Triplet
4 Cases Controls Cases Controls N\
Genes/Variants : A B A B A B C A B C
| 1 1 1 1
: : ! -]
3 3 3 3
4 4 M 2
5 5 5 5
6 6 6 6
Samples : .
15 15 15 15
e 16 116 116
"z n7 17 17
18 18 118 118
\ 19 119 19 119
120 120 120 120
P(A) 50/120 50/120 40120 40/120
P(B) 50/120 40/120 40/120 20/120
P(C) 40/120 40120
ANB 30 10
ANBNC 20 0
Observed. P(A N B) 30/120 = 0.25 10/120 = 0.08
&P(ANBNC) 20/120 = 0.167 0/120=0
Expected. P(A N B) 50/120 * 50/120 = 0.173 50/120 * 40/120 = 0.139

&P(ANBNC) (40/120)3 =0.037 40/120 * 20/120 * 40/120 = 0.018
Easei Controls Cases Controls
P-values P(X>=30) = 0.02 P(X>=10) = 0.97 P(X>=20)=0  P(X>=0)=1
Null binomial
distribution
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 0 5 10 15 20
X ~ Binom(120, p=0.173) X ~ Binom(120, p=0.138) X ~ Binom(120, p=0.037) X ~ Binom(120, p=0.018)
Cohen’s d (Effect Size) 0.4615 0.841
Statistical Power (5%) 0.947 1
Statistical Power (1%) K 0.841 / 1 j

Supplemental Figure S13: Generalizable nature of RareComb illustrated using specific
examples for pairs and triplets. The principles of probability theory were used to derive the
probability of co-occurring events expected under the assumption of independence for the
constituent events. This principle was used to calculate significance of mutated gene pairs, and
triplets, and can be extended to identify other higher-order combinations.
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Strength and utility of the apriori algorithm

A - Search process of the apriori algorithm

4 Input data Matrix representation )
Ph t
List of Clinical | Clinical | Disease ¢ Genotype » enotype
Probands | mutated genes | Feature 1| Feature 2| status Probands | G1 | G2 | G3 | G4 | G5 | C1 c2 | D1
P1 G2 0 0 0 P1 0 1 0 0 0 0 0 0
P2 G2, G3, G4 1 1 1 P2 0 1 1 1 0 1 1 1
>
P3 G1,G2, G4 0 0 1 P3 1 1 0 1 0 0 0 1
P4 G4 1 0 0 P4 0 0 0 1 0 1 0 0
P5 G2, G3, G4, G5 1 1 1 P5 0 1 1 1 1 1 1 1
Search progression using the genotypes
If support threshold/ minimum support req’d, k = 2/5 If support threshold/ minimum support req’d, k = 3/5
Final Result 1
Items | Support Items ) ltems |Support
{G2, G3} 2/5 {G2, G3} 2
S rt Select 12 {G2, G4} 3/5
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.19 =
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G4 4/5 Sizg S G1,62,G3 | Items Support G4 4/5 X
—65 |5 62,G3p| 25 ac. 7 [{62,G3,Ga)| 25 P e i
{G2,G4}| 35 3 oot ek /N
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{G3,G4}| 215 elec lsuppo e s>y Final Result 4
Final Result 2 Items
Items -
{G2, G3, G4}
-
B - Typical use cases: Association rules mining of frequent events
ft;:l::‘tur: ofda r(:;_l:,s))( =>Y: RHS (o1 Useful { Confidence = Supp(X,Y) / Supp(X) Example 2: :i(z:e 2f3 & Support 2 2/5
eft hand side _ or, H e _ * onfidence 2 0.75
(or) Antecedent = Consequent Metrics Lift = Supp(X,Y) / [Supp(X) * Supp(Y)]
Items
Example 1: Find all rules of size up to 3 with minimum support of 2/5, i.e., Support 2 2/5 {G2, G3 => G4}
Final Results 1 & 2 (63,6455 G2) 2 rules
(Items that meet the Size| Rule (X=>Y) |Confidence Lift ’
support criterion) 2 {G2} => {G3} 2/4=0.50 [2/[4*2]*5=1.25 Example 3: Size = 2 & Confidence > 0.75
Size ltems | Support 2 | {G23=>{G4} | 314=0.75 |3/[4*4]*5=0.094 &Lift21
2 {G2, G3} 25 | ol 2 | (G3}=>{G2} | 2:2= 1 |2[2*4]*5=1.25 Items
enerate
2 {G2, G4} 3/5 rules I 2 | {G3}=>{G4} | 212= 1 |2/2*4]*5=1.25 {G3=>G2} 2 rules
2 {G3, G4} 2/5 2 | {G4}=>{G2} | 3/4=0.75 |3/[4*4]*5=0.94 {G3=>G4}
3 [{62.6364 25 2 (G4 =>{G3} | 2/4=050 |2[472]"5=1.25 Example 4: Support 2 2/5 & Confidence > 0.75
3 [{G2,G3=>G4} | 212= 1 [2/[2*4]*5=1.25 & Lift> 2
3 [{G2,G4=>G3}| 2/3=0.66 |2/[3*2]*5=1.66 ltems
3 |[{G3,G4=>G2}| 2/12= 1 |2/[2*4]*5=1.25 - }None
-

Supplemental Figure S14: A primer to the apriori algorithm and association rule mining.
(A) Diagram showing the search progression of the apriori algorithm. The apriori algorithm
implemented in the R package ‘arules’ takes Boolean input data and searches for the frequency
of simultaneous events efficiently by continually pruning the search space during each step of its
progression, allowing it to enumerate the frequencies of combinations in a reasonable amount of
time. (B) A typical application of the apriori algorithm is for association rule mining to identify
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interesting relationships among highly frequent events. Parameters such as length, support and
confidence are used to both constrain the algorithm and to prioritize significant associations.

Power analysis for the binomial test
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Supplemental Figure S15: Power analysis of binomial tests to compare expected versus
observed frequencies of co-occurring events. The panels along the X-axis show the minimum
number of samples required for binomial tests to meet statistical powers of 80, 90 and 95%
respectively, while the panels along the Y-axis show the sample size requirements at 1% and 5%
statistical significance thresholds. Values along the X-axis represent the expected frequency of
co-occurring events (0.1%, 0.2% and 0.3%) in cases, and line colors correspond to three specific
frequencies (0.5%, 1% and 2%) in which co-occurring events are observed in cases. The results
demonstrate that higher sample sizes are needed when comparisons must be sensitive enough to
detect minor differences between expected and observed frequencies of co-occurring events,
whereas relatively smaller sample sizes may be sufficient to achieve higher statistical power
when such (i.e., exp. vs obs.) frequency differences are larger. Similarly, as expected, larger
sample sizes are warranted for binomial tests to achieve high statistical power and to meet more
stringent statistical significance thresholds.
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Power analysis for the 2-sample 2-proportion test
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Supplemental Figure S16: Power analysis for 2-sample 2-proportion test to compare the
frequencies of co-occurring events in cases and controls. The panels along the X-axis show
three specific frequencies of co-occurring events (0, 3, and 5) observed in 1,000 controls
samples, while the panels along the Y-axis show the sample size requirements at 1% and 5%
statistical significance thresholds. Values along the X-axis represent the statistical power
achieved, and Y-axis denotes the sample size needed to achieve the corresponding power. Each
line color represents four specific frequencies of simultaneous events (5, 10, 15 and 20 out of
1,000 samples) in cases. For example, to establish statistical difference between a co-occurring
event that occurs 10/1,000 times in cases (green) and 3/1,000 times in controls (middle panel
along the X-axis), it would take 19,174 samples to achieve a statistical power of 80% at 5%
significance threshold (bottom panel along the Y-axis). The colors missing in some of the panels
show that the sample size requirements are higher for such configurations to fit into this graph.
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Supplemental Figure S17: Power analysis for 2-sample 2-proportion test for different
sample sizes of case and control groups. The panels along the X and Y axes represent different
sample sizes for cases and controls respectively. The values along the x-axis represent the
frequency of co-occurring variants in cases and the color of lines correspond to the frequency of
co-occurring variants in controls. For a given sample size for cases, the statistical power
achieved increases with the increase in the number of control samples (along the y-axis panels).
For example, if a particular combination is only observed 5 times in 500 samples in both cases
and controls, statistical power available to establish difference in proportions is just 1%, but the
power increases to 64% when the combination is observed 5 times in 5,000 controls.
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Performance of RareComb
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Supplemental Figure S18: Performance of RareComb. Time taken by the pipeline to identify
significant pairs and triplets using input files of various width and length is shown. The panels
along the Y-axis represent the time taken to generate pairs versus triplets, and the Y-axis
represent the time taken, in minutes, by RareComb to generate results. The values along the X-
axis indicate the number of genes in the input file, and the line colors represent the sample size
within the input files. As expected, an increase in the number of predictors is accompanied by the
increase in the time taken by the method to generate pairs and triplets. Similarly, for pairs, the
time taken increases with the increase in sample size. However, due to stochasticity in the input
data and the complex relationship between the size of data under analysis and the minimum
frequency threshold provided to the apriori algorithm, the method generated triplets faster with
50,000 samples compared to 10,000 samples. Notably, the method can generate results for pairs
within 15 minutes and for triplets within three hours.
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Supplemental Tables

Supplemental Table S1 (Excel File): List of 148 gene pairs identified by RareComb as
significant when using variants common between SPARK and SSC cohorts to compare 1,215
probands diagnosed with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S2 (Excel File): Enrichment for specific variant types within 148
significant gene pairs in probands with Intellectual Disability (ID). Only missense, stop-loss, and
stop-gain mutations were part of all analyses.

Supplemental Table S3 (Excel File): List of 90 gene pairs with at least a single carrier in the
SSC cohort along with the 1Q of carriers of mutations in either vs. both genes of each gene pair.
The p-values are from the one-sample Wilcoxon test.

Supplemental Table S4 (Excel File): List of 115 gene pairs identified by RareComb as
significant using a conservative approach that considers all combinations that meet the frequency
threshold in cases for multiple-testing correction, when comparing 1,215 probands diagnosed
with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S5 (Excel File): List of 199 gene pairs identified by RareComb as
significant when considering both male and female probands, to compare 1,590 probands
diagnosed with intellectual disability (ID) with 6,127 probands without ID, using variants
common between SPARK and SSC cohorts.

Supplemental Table S6 (Excel File): List of 570 high quality gene triplets (statistical power at
5% > 90) identified by RareComb as significant when using variants common between SPARK
and SSC cohorts to compare 1,215 probands diagnosed with intellectual disability (ID) with
4,974 probands without ID.

Supplemental Table S7 (Excel File): List of 110 gene pairs identified by RareComb as
significant when comparing 7,596 Autism probands with 11,740 unaffected parents.

Supplemental Table S8 (Excel File): List of 52 gene pairs identified by RareComb as
significant when using ALL SPARK variants to compare 1,215 probands diagnosed with
intellectual disability (ID) and 4,974 probands without ID.

Supplemental Table S9 (Excel File): List of 230 high quality gene triplets (statistical power at
1% > 90) identified by RareComb as significant when using ALL SPARK variants to compare
1,215 probands diagnosed with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S10 (Excel File): List of 19 gene pairs identified by RareComb as

significant when using ALL SPARK variants from FEMALE probands to compare 375 probands
diagnosed with intellectual disability (ID) and 1,528 probands without ID.

27



519
520
521
522

523
524

525

526
527

528

529
530

Supplemental Table S11 (Excel File): Enrichment and depletion of HPO phenotypes for the 95
genes forming 52 significant gene pairs when analyzing ALL variants from the SPARK cohort
for the intellectual disability (ID) phenotype.

Supplemental Table S12 (Excel File): Summary of the number and fraction of gene pairs
among all the possible pairs of genes within HPO database.

Supplemental Table S13 (Excel File): List of combinations with four constituent elements
identified as significant by RareComb when assessing comorbid phenotypes.

Supplemental Table S14 (Excel File): List of combinations with five constituent elements
identified as significant by RareComb when assessing comorbid phenotypes.
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