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Supplemental Material 97 

Definitions 98 

• Combination: Multiple genomic entities considered together. Combinations with two 99 

entities constitute a pair, three entities constitute a triplet, and so on. For example, genes A, B 100 

and C can form four combinations: three pairs AB, AC and BC, and one triplet ABC. 101 

• Size/length of a combination: Number of genomic entities under consideration. Pairs are of 102 

length 2 and triplets are of length 3. 103 

• Events: Genomic events such as a structural variant or loss-of-function (LoF) or missense 104 

mutation observed within a single genomic unit such as a gene. Occurrence of an event is 105 

denoted as {Gene A = 1}. 106 

• Non-events: Absence of genomic events within a given genomic unit, denoted as {Gene B = 107 

0}. 108 

• Simultaneous events: When events are observed in all constituent entities of a combination. 109 

Simultaneous occurrence of mutations in gene A and gene B are denoted as {Gene A=1 & 110 

Gene B=1}. 111 

• Simultaneous non-events: When no events are observed in all constituent entities of a 112 

combination, denoted as {Gene A=0 & Gene B=0}. 113 

• Non-simultaneous events: Events occur in at least one but not all constituent entities of a 114 

combination, denoted as {Gene A=1 & Gene B=0}, {Gene A=0 & Gene B=1 & Gene C=1}, 115 

etc. 116 

 117 
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 123 
 124 
 125 
 126 
 127 
 128 
 129 
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A primer to the apriori algorithm  131 

Combinatorial complexity 132 
Current approaches for analysis of rare variants in complex disease deal with data sparsity by 133 
comparing aggregate enrichment of a specific variant (such as a CNV) or collective burden of 134 
variants between cases and controls. Analysis of combinations of rare events is challenging 135 
because substantially larger sample sizes are required to observe such events. For example, two 136 
independent rare variants ‘rv1’ and ‘rv2’ with a minor allele frequency of 5% (1 in 20 137 
individuals) can be expected to be observed together only in 1/400 individuals. In fact, for every 138 
‘n’ samples required to observe a rare variant at a given allele frequency in a cohort, it takes at 139 
least n2 samples to observe two rare variants of similar allele frequencies together. Both n and n2 140 
increase exponentially with decreases in allele frequency thresholds. Even when large cohorts 141 
are available, an efficient algorithm is required to overcome the combinatorial explosion and 142 
efficiently calculate the frequency of simultaneously occurring rare events from sparse datasets. 143 
 144 
List of parameters to constrain search and prune search space 145 
The apriori algorithm is a breadth-first search algorithm that has become synonymous with two 146 
data mining techniques, ‘association rule learning’ and ‘frequent itemset mining’. It is used to 147 
either automatically identify interesting associations between two or more variables called 148 
‘rules’, of the format  ‘{Gene A=1, Gene B=1} => {Phenotype=Severe}’, or simply list 149 
frequently occurring set of items called ‘itemsets’, of the format {Gene A=1, Gene B=1, Gene 150 
C=1}, that meet a minimum frequency threshold (support) supplied to constrain the algorithm. 151 
Rules have two sides, the ‘antecedent’ on the left and the ‘consequent’ on the right, connected by 152 
the directionality of their association. The number of items in a rule is its length. The algorithm 153 
can report one or more items in the antecedent, but its consequent can only be a single item. 154 
Frequent itemsets are simply list of items without any relationship or directionality among them. 155 
The algorithm reports the itemsets along with their absolute frequencies. For example, the rule 156 
{Gene A=1, Gene B=1} => {Phenotype=Severe} has a length of 3, where {Gene A=1, Gene 157 
B=1} is the antecedent and {Phenotype=Severe} is the consequent. Similarly, {Gene A=1, Gene 158 
B=1, Gene C=1, Gene D=1} is an itemset of length 4.  159 
 160 
Searching for patterns involving more than two items is computationally challenging due to the 161 
resulting combinatorial explosion. For example, to identify rules of length 4 using just 100 items, 162 
as many as 4 million possibilities (100C4) must be considered, which sharply increases to 75 163 
million if the length is increased to 5 (100C5). The apriori algorithm addresses this challenge by 164 
constraining the search space using three important parameters that control the length, 165 
support/frequency, and confidence of the final set of rules in the output (Supp. Figure 12). 166 
Confidence is only applicable to rules, whereas the other two metrics are applicable to both rules 167 
and frequent itemsets. The algorithm systematically prunes the search space by using a subset of 168 
rules/itemsets of smaller lengths that meet the user-provided criteria for the three parameters to 169 
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expand the search to rules/itemsets of larger lengths. This approach allows it to perform 170 
computationally efficient searches.  171 
 172 
The three parameters used to constrain the algorithm are as follows: 173 
1) Length of the rule/itemset: The length of the rule/itemset is the primary determinant of the 174 

search space due to its combinatorial relationship with the number of input items. While an 175 
upper limit for length is often supplied to the algorithm, a lower limit can also be specified if 176 
necessary.  177 

2) Support for the rule/itemset: Support indicates the frequency in which the constituent items 178 
of an itemset or a rule appear together within a set of observations. If 20 out of 100 179 
individuals carry the variants A and B together, then the support for the itemset {A=1, B=1} 180 
is 0.20. If all 20 individuals are associated with a ‘severe’ phenotype, then the support for the 181 
rule {A=1, B=1}=>{severe} is also 0.2.  Each observation containing these three items 182 
serves as additional evidence supporting the existence of an association between the 183 
antecedent and the consequent. Providing a threshold for ‘support’ (lower limit) limits the 184 
search to only those itemsets and rules in which the constituent items appear together at least 185 
as frequently as the threshold.  186 

3) Confidence of the rule: Confidence indicates the probability of observing the consequent 187 
when the antecedent is observed. For example, let’s assume the antecedent {A=1, B=1} is 188 
observed in 25 out of 100 individuals (support for the antecedent = 0.25), and the antecedent 189 
{A=1, B=1} is observed together with the consequent {severe phenotype} in 20 of those 190 
instances (i.e., support for the rule {A=1, B=1}=>{severe phenotype} is 0.20). Here, 80% of 191 
all individuals carrying variants A and B together have a severe phenotype, meaning that 192 
confidence = [support for the rule/support for the antecedent] = 0.2/0.25 = 80%. Since rules 193 
with high confidence could be predictive of the outcome, a lower limit for this parameter is 194 
often provided to the algorithm.  195 

 196 
It should be noted that the confidence metric reported for a rule does not take the frequency of 197 
the consequent within the cohort into account. For example, if there are three times as many 198 
cases as controls in a cohort (for a binary outcome), a genotype combination that occurs three 199 
times as frequently in cases than controls would have a confidence of 75%. i.e., 3/4th of all co-200 
occurring genotypic events is associated with one of the two possible outcomes. While 75% 201 
confidence might suggest that a genotype combination is predictive of the outcome, it was 202 
achieved simply due to the relatively higher frequency of one of the two binary outcomes in the 203 
cohort. A fourth useful parameter named ‘Lift’ takes this limitation into consideration and adjusts 204 
the confidence by controlling for the frequency of the consequent, where Lift = 205 
[Confidence/Frequency of the consequent]. So, the lift for an antecedent ‘A’ and the consequent 206 
‘C’ is [P(A∩C)/P(A)]/P(C) or simply P(A∩C)/P(A)* P(C). Basic axioms of probability dictate 207 
that if A and C are independent, P(A∩C) would be the same as P(A)*P(C), making lift a measure 208 
of the extent of dependence between the antecedent and the consequent. Conversely, if the lift 209 
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score is 1, the antecedent and consequent are independent of each other. Therefore, the lift score 210 
is directly proportional to the dependence between the antecedent and the consequent. After 211 
incorporating the frequency of the consequent in the prior example, the lift score becomes 1. The 212 
lift score can hence be used to identify truly dependent events among all high confidence rules. 213 
Unlike length, support, and confidence, thresholds for lift cannot be supplied to constrain the 214 
apriori algorithm prior to invoking it, but can instead be used post-hoc to identify high quality 215 
rules. 216 
 217 
Using the apriori algorithm 218 
The ability of the apriori algorithm to generate results in two formats, ‘frequent itemsets’ and 219 
‘rules’, provides flexibility to leverage it in multiple ways. These two formats allow genotypes to 220 
be either analyzed independently or together with the phenotypes. ‘Frequent itemsets’ is the best 221 
fit for counting the frequency of simultaneous events involving only the genotypes. For analyses 222 
involving both genotypes and phenotypes, where any meaningful combination must involve at 223 
least a single phenotype, ‘rules’ are the best fit since the algorithm can be constrained to include 224 
only the phenotypes as the consequent item in the rule. We use both formats for counting the 225 
frequency of simultaneous events along with the general principles of statistical inference in two 226 
specific ways: one involving just the genotypes for case/control comparisons, and the other 227 
involving both genotypes and phenotypes for assessing comorbidities.  228 
 229 
Case/control enrichment analysis 230 
RareComb can be used to identify genotype combinations that exhibit differential enrichment of 231 
simultaneous events between two groups. As genotypes are analyzed exclusively in this 232 
approach, ‘frequent itemsets’ are generated using the apriori algorithm. The minimum frequency 233 
of simultaneous events (support threshold) in cases is provided as the initial constraint to the 234 
algorithm, while being agnostic to the absolute frequency in controls. Once all genotype 235 
combinations in which the frequency of simultaneous events is at least as high as the support 236 
threshold in cases are identified, the p-values from the binomial test quantifying the magnitude 237 
of enrichment relative to the expectation under the assumption of independence are calculated. 238 
For the subset of combinations with higher-than-expected frequency of simultaneous events in 239 
cases, the corresponding p-values in the control group are calculated. The combinations in which 240 
simultaneous events occur more frequently than expected in both cases and controls are 241 
discarded, since they signify potentially dependent genomic events (due to factors such as 242 
linkage disequilibrium). Finally, combinations that are statistically significant in cases after 243 
adjusting the p-values for multiple testing while remaining non-significant in controls are 244 
considered to impact disease/phenotype.  245 
 246 
Comorbidity analysis 247 
Understanding the genetic basis of comorbid phenotypes associated with complex diseases is 248 
challenging due to two main reasons. First, when multiple phenotypes are considered, even in a 249 
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large cohort, the number of individuals with a specific combination of phenotypes is very small. 250 
For every ‘n’ binary phenotype, 2n configurations of comorbidities are possible, and it is 251 
challenging to find adequate samples representing each configuration in complex disease 252 
cohorts. Second, even if the sample size is large enough to have adequate individuals for each 253 
configuration, current methods are not able to effectively explain or predict associations with 254 
combinations of phenotypes. In many analyses, either a new outcome variable is created based 255 
on the composite configuration of the phenotypes, or one is derived based on how the comorbid 256 
phenotypes cluster among themselves within the cohort. We extend our method to overcome 257 
existing limitations to provide explanations for multiple phenotypes considered together as 258 
individual units. While retaining granular phenotypes reduces the size of samples available 259 
within each configuration, the rarity of such phenotypic configurations can be turned into an 260 
advantage by screening for genotypes that are observed together more frequently than expected 261 
within such rare phenotype configurations. Our framework can be used to measure the likelihood 262 
of observing a set of phenotypes and genotypes together as frequently as they are observed 263 
within the cohort using the frequencies of individual items. For example, let’s assume that 7 264 
individuals in a cohort of size 2,000 are diagnosed with three phenotypes ‘p1’, ‘p2’ and ‘p3’ 265 
simultaneously, and 5 of them carry deleterious mutations simultaneously in genes ‘g1’ and ‘g2’. 266 
Let’s also assume that phenotypes p1, p2 and p3 and genotypes ‘g1’ and ‘g2’ are each observed 267 
independently in exactly 20 individuals within the cohort (1% of the cohort). One of the axioms 268 
of probability dictates that if these five events are independent, the probability of observing them 269 
all together in an individual is (0.01)5, making the odds of observing the combination ‘p1’, ‘p2’, 270 
‘p3’, ‘g1’, ‘g2’ in 5 individuals by chance alone extremely unlikely. The method applies this 271 
reasoning to identify combinations of phenotypes that occur together with combinations of 272 
genotypes more frequently than expected by chance alone. Such a method can be challenging 273 
due to the exorbitant number of combinations to be evaluated (100C5 = ~75 million; 100C5 = 274 
~255 billion), but we address this challenge using the apriori algorithm to search for 275 
combinations that occur at least as frequently as the support threshold provided to constrain the 276 
algorithm.  277 
 278 
The method analyzes the entire cohort and generates combinations that meet the input criterion 279 
for ‘support’ provided to the apriori algorithm. For this approach, the apriori algorithm is made 280 
to generate ‘rules’ with two specific constraints. First, only phenotypes are eligible to be the 281 
consequent item. Second, both genotypes and phenotypes are eligible to appear in the list of 282 
items in the antecedent portion of the rules. These constraints both limit the search space and 283 
ensure that any combination reported by the algorithm includes at least a single phenotype. Once 284 
the combinations that meet all input criteria for the apriori algorithm are obtained, the p-values 285 
from the binomial tests are calculated by comparing the expected frequency with the observed 286 
frequency of these qualifying combinations. The combinations that remain significant after 287 
multiple testing correction are identified as genotypes that contribute towards the comorbid 288 
phenotypes. 289 
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Supplemental Figures 290 

 291 
Supplemental Figure S1: Technical workflow of RareComb. RareComb uses an input 292 
Boolean matrix consisting of variant information and binary phenotypic outcome for case-293 
control analysis. It then applies the apriori algorithm independently to cases and controls to 294 
obtain the frequencies of simultaneously occurring events that meet the selection thresholds for 295 
length (pairs, triplets, etc.) and frequency. Binomial tests are applied to each eligible 296 
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combination independently within cases and controls. Gene combinations are considered 297 
significant (after multiple-testing correction), when mutations are observed simultaneously in 298 
their constituent genes more frequently than expected under the assumption of independence 299 
among them, in cases but not in controls. 300 
 301 
 302 

 303 
Supplemental Figure S2: Summary of significant gene pairs and triplets identified from the 304 
SPARK cohort. Higher frequencies of simultaneous mutations are observed for pairs than for 305 
triplets (‘Case Counts’/’Control Counts’ panels along the X-axis), since simultaneous events tend 306 
to occur less frequently for combinations of larger sizes than smaller sizes. Notably, most 307 
significant triplets were observed in five cases, whereas significant pairs were observed in five or 308 
more number of cases. Effect sizes (Cohen’s d) quantify the differences in absolute frequency of 309 
combinations in cases versus controls. Since we used a statistical power cut-off >90% to identify 310 
570 significant triplets, effect size and power are not comparable between pairs and triplets.  311 
 312 

 313 
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 315 
Supplemental Figure S3: The range of p-values and Cohen’s d for mutated gene pairs in a 316 
representative set of probands from the SPARK cohort. This figure illustrates that an 317 
individual can carry more than one combination of mutated genes significantly associated with 318 
the same phenotype, with each combination showing different enrichment (from binomial tests) 319 
and effect sizes (Cohen’s d). Data from eight representative probands, each carrying multiple 320 
significant pairs of mutated genes, are shown here. The X-axis corresponds to probands, and the 321 
Y-axis shows p-values from binomial tests in cases and effect sizes measured using Cohen’s d.  322 
 323 
 324 

 325 
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 328 
Supplemental Figure S4: Comparison of IQ scores of individuals carrying mutations in 329 
either of the constituent genes (SSC Cohort) with those carrying mutations in both genes of 330 
significant gene pairs. Distributions of IQ scores from individuals carrying mutations in either 331 
of the two genes from select five mutated gene pairs are shown. The blue line indicates the mean 332 
of the distribution of IQ scores, and the red line indicates the mean IQ of individuals carrying 333 
mutations in both genes. We find that carriers of both mutations tend to have lower IQ scores on 334 
average compared to the average IQ of carriers of either of the two mutations. 335 
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 336 
Supplemental Figure S5: Rare variant pairs contributing to intellectual disability (ID), 337 
obtained using a conservative approach that considers all combinations that meet the 338 
frequency threshold in cases for multiple-testing correction. (A) An outline of the approach 339 
used to identify and validate mutated gene pairs and enriched in probands with ID is shown. We 340 
tested whether the 115 mutated gene pairs identified as significant in one cohort (SPARK) are also 341 
associated with severe phenotypes in an independent cohort (SSC). To test this, we obtained the 342 
mean IQ score of individuals from the SSC cohort carrying significant combinations identified 343 
from the SPARK cohort. Empirical p-values were then calculated based on the deviation of the 344 
mean IQ from the distribution of mean IQ scores obtained from 10,000 random draws in the 345 
simulation.  (B) The mean IQ of individuals with mutated gene pairs in the SSC cohort was 346 
significantly lower (empirical p-value=0) when compared to the distribution of mean IQ scores 347 
obtained from the simulation. 348 
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 349 
Supplemental Figure S6: Rare variant pairs contributing to intellectual disability (ID), 350 
obtained by analyzing male and female probands together. (A) An outline of the approach 351 
used to identify and validate mutated gene pairs and enriched in probands with ID is shown. We 352 
tested whether the 199 mutated gene pairs identified as significant in one cohort (SPARK) are 353 
also associated with severe phenotypes in an independent cohort (SSC). To test this, we obtained 354 
the mean IQ score of individuals from the SSC cohort carrying significant combinations 355 
identified from the SPARK cohort. Empirical p-values were then calculated based on the 356 
deviation of the mean IQ from the distribution of mean IQ scores obtained from 10,000 random 357 
draws in the simulation.  (B) The mean IQ of individuals with mutated gene pairs in the SSC 358 
cohort was significantly lower (empirical p-value=0) when compared to the distribution of mean 359 
IQ scores obtained from the simulation. 360 
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 361 
Supplemental Figure S7: Comparison of IQ scores of carriers of mutations in significant 362 
gene triplets compared with the simulated distribution. The mean IQ score of individuals 363 
carrying significant gene triplets in the SSC cohort (73.25) is significantly lower (empirical p-364 
value = 0.0013) when compared to the distribution of mean IQ scores (82.4) obtained from the 365 
simulation (see Figure 2A). 366 
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 367 
Supplemental Figure S8: Analysis of parental inheritance patterns. (A) Outline of the steps 368 
involved in identifying the parental inheritance pattern of significant gene pairs and comparing 369 
them with distributions obtained from simulations. (B) Outline of the steps involved in 370 
identifying the carrier status of significant gene pairs in siblings and comparing them to 371 
distributions obtained from simulations.  372 
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 373 
Supplemental Figure S9: Analysis of parental inheritance pattern of significant gene pairs 374 
associated with autism from the SPARK cohort. Histograms show the fraction of all instances 375 
of mutated genes in a combination that belong to each of the six possible inheritance patterns 376 
compared to simulated distributions. Significant pairs were obtained by applying RareComb to 377 
SPARK data from probands as cases compared to parents as controls. For each simulation, the 378 
inheritance status of random pairs of mutated genes from the cohort were identified, and the 379 
fraction of those instances belonging to one of the six categories was calculated. Comparing the 380 
observed fractions with the mean of simulated fractions show statistically significant enrichment 381 
for instances when both variants are de novo or when one variant is de novo and the other 382 
transmitted from the mother.  383 
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 384 
Supplemental Figure S10: Comparison of p-values between 52 (obtained using all SPARK 385 
variants) and 148 significant gene pairs (obtained using variants observed in both SPARK 386 
& SSC cohorts). The shift in the distribution of p-values between the two analyses reflects the 387 
fact that combinations with more significant p-values could be observed when the method is 388 
applied to a larger set of genes compared to analysis using a smaller gene set. The larger the 389 
sample space of genes, the higher the likelihood of finding highly significant combinations. 390 
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 391 
Supplemental Figure S11: GO term enrichment analysis for genes within significant pairs 392 
and triplets. Fold enrichment of GO terms identified as statistically significant using the 393 
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binomial test are listed. Seven of the nine enriched GO terms shared between the genes from 394 
significant pairs and triplets were associated with nervous system development and function. For 395 
example, several neurotransmitter-related terms showed as high as 40-fold enrichment for genes 396 
from the significant pairs. 397 
 398 

 399 
Supplemental Figure S12: Distribution of the expected number of phenotypes shared 400 
between two genes within HPO. Barplot represents the number of phenotypes shared by each 401 
of the ~10 million gene pairs formed by 4,484 genes from HPO.  We found that 60.9% of the 402 
pairs shared either no phenotype (29.31%) or a single phenotype (31.54%) with each other. 403 
These proportions serve as expected baselines for the binomial tests to compare and identify the 404 
significance of the number of phenotypes shared between the significant gene pairs identified by 405 
RareComb. 406 

29.31%

31.54%

12.29%

7.16%

4.86%

3.49%
2.56%

1.89%
1.44% 1.1% 0.85% 0.66% 0.52% 0.42% 0.33% 0.26% 0.21% 0.17% 0.14% 0.11%

0.68%

0

10

20

30

0 5 10 15 19
Number of shared phenotypes

Pr
op

or
tio

n 
of

 a
ll 

po
ss

ib
le

 g
en

e 
pa

irs
 in

 H
PO

Fraction of all possible gene pairs in human phenotype ontology (HPO) database sharing 'x' number of phenotypes

>19



 21 

 407 
Supplemental Figure S13: Generalizable nature of RareComb illustrated using specific 408 
examples for pairs and triplets. The principles of probability theory were used to derive the 409 
probability of co-occurring events expected under the assumption of independence for the 410 
constituent events. This principle was used to calculate significance of mutated gene pairs, and 411 
triplets, and can be extended to identify other higher-order combinations. 412 
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 413 
Supplemental Figure S14: A primer to the apriori algorithm and association rule mining. 414 
(A) Diagram showing the search progression of the apriori algorithm. The apriori algorithm 415 
implemented in the R package ‘arules’ takes Boolean input data and searches for the frequency 416 
of simultaneous events efficiently by continually pruning the search space during each step of its 417 
progression, allowing it to enumerate the frequencies of combinations in a reasonable amount of 418 
time. (B) A typical application of the apriori algorithm is for association rule mining to identify 419 
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interesting relationships among highly frequent events. Parameters such as length, support and 420 
confidence are used to both constrain the algorithm and to prioritize significant associations. 421 
 422 

 423 
Supplemental Figure S15: Power analysis of binomial tests to compare expected versus 424 
observed frequencies of co-occurring events. The panels along the X-axis show the minimum 425 
number of samples required for binomial tests to meet statistical powers of 80, 90 and 95% 426 
respectively, while the panels along the Y-axis show the sample size requirements at 1% and 5% 427 
statistical significance thresholds. Values along the X-axis represent the expected frequency of 428 
co-occurring events (0.1%, 0.2% and 0.3%) in cases, and line colors correspond to three specific 429 
frequencies (0.5%, 1% and 2%) in which co-occurring events are observed in cases. The results 430 
demonstrate that higher sample sizes are needed when comparisons must be sensitive enough to 431 
detect minor differences between expected and observed frequencies of co-occurring events, 432 
whereas relatively smaller sample sizes may be sufficient to achieve higher statistical power 433 
when such (i.e., exp. vs obs.) frequency differences are larger. Similarly, as expected, larger 434 
sample sizes are warranted for binomial tests to achieve high statistical power and to meet more 435 
stringent statistical significance thresholds. 436 
 437 
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 438 
Supplemental Figure S16: Power analysis for 2-sample 2-proportion test to compare the 439 
frequencies of co-occurring events in cases and controls. The panels along the X-axis show 440 
three specific frequencies of co-occurring events (0, 3, and 5) observed in 1,000 controls 441 
samples, while the panels along the Y-axis show the sample size requirements at 1% and 5% 442 
statistical significance thresholds. Values along the X-axis represent the statistical power 443 
achieved, and Y-axis denotes the sample size needed to achieve the corresponding power. Each 444 
line color represents four specific frequencies of simultaneous events (5, 10, 15 and 20 out of 445 
1,000 samples) in cases. For example, to establish statistical difference between a co-occurring 446 
event that occurs 10/1,000 times in cases (green) and 3/1,000 times in controls (middle panel 447 
along the X-axis), it would take 19,174 samples to achieve a statistical power of 80% at 5% 448 
significance threshold (bottom panel along the Y-axis). The colors missing in some of the panels 449 
show that the sample size requirements are higher for such configurations to fit into this graph. 450 
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 451 
 452 
Supplemental Figure S17: Power analysis for 2-sample 2-proportion test for different 453 
sample sizes of case and control groups. The panels along the X and Y axes represent different 454 
sample sizes for cases and controls respectively. The values along the x-axis represent the 455 
frequency of co-occurring variants in cases and the color of lines correspond to the frequency of 456 
co-occurring variants in controls. For a given sample size for cases, the statistical power 457 
achieved increases with the increase in the number of control samples (along the y-axis panels). 458 
For example, if a particular combination is only observed 5 times in 500 samples in both cases 459 
and controls, statistical power available to establish difference in proportions is just 1%, but the 460 
power increases to 64% when the combination is observed 5 times in 5,000 controls. 461 
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 462 
Supplemental Figure S18: Performance of RareComb. Time taken by the pipeline to identify 463 
significant pairs and triplets using input files of various width and length is shown. The panels 464 
along the Y-axis represent the time taken to generate pairs versus triplets, and the Y-axis 465 
represent the time taken, in minutes, by RareComb to generate results. The values along the X-466 
axis indicate the number of genes in the input file, and the line colors represent the sample size 467 
within the input files. As expected, an increase in the number of predictors is accompanied by the 468 
increase in the time taken by the method to generate pairs and triplets. Similarly, for pairs, the 469 
time taken increases with the increase in sample size. However, due to stochasticity in the input 470 
data and the complex relationship between the size of data under analysis and the minimum 471 
frequency threshold provided to the apriori algorithm, the method generated triplets faster with 472 
50,000 samples compared to 10,000 samples. Notably, the method can generate results for pairs 473 
within 15 minutes and for triplets within three hours.  474 
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Supplemental Tables 475 

 476 
Supplemental Table S1 (Excel File): List of 148 gene pairs identified by RareComb as 477 
significant when using variants common between SPARK and SSC cohorts to compare 1,215 478 
probands diagnosed with intellectual disability (ID) with 4,974 probands without ID. 479 
 480 
Supplemental Table S2 (Excel File): Enrichment for specific variant types within 148 481 
significant gene pairs in probands with Intellectual Disability (ID). Only missense, stop-loss, and 482 
stop-gain mutations were part of all analyses. 483 
 484 
Supplemental Table S3 (Excel File): List of 90 gene pairs with at least a single carrier in the 485 
SSC cohort along with the IQ of carriers of mutations in either vs. both genes of each gene pair. 486 
The p-values are from the one-sample Wilcoxon test. 487 
 488 
Supplemental Table S4 (Excel File): List of 115 gene pairs identified by RareComb as 489 
significant using a conservative approach that considers all combinations that meet the frequency 490 
threshold in cases for multiple-testing correction, when comparing 1,215 probands diagnosed 491 
with intellectual disability (ID) with 4,974 probands without ID. 492 
 493 
Supplemental Table S5 (Excel File): List of 199 gene pairs identified by RareComb as 494 
significant when considering both male and female probands, to compare 1,590 probands 495 
diagnosed with intellectual disability (ID) with 6,127 probands without ID, using variants 496 
common between SPARK and SSC cohorts. 497 
 498 
Supplemental Table S6 (Excel File): List of 570 high quality gene triplets (statistical power at 499 
5% > 90) identified by RareComb as significant when using variants common between SPARK 500 
and SSC cohorts to compare 1,215 probands diagnosed with intellectual disability (ID) with 501 
4,974 probands without ID. 502 
 503 

Supplemental Table S7 (Excel File): List of 110 gene pairs identified by RareComb as 504 
significant when comparing 7,596 Autism probands with 11,740 unaffected parents. 505 

 506 
Supplemental Table S8 (Excel File): List of 52 gene pairs identified by RareComb as 507 
significant when using ALL SPARK variants to compare 1,215 probands diagnosed with 508 
intellectual disability (ID) and 4,974 probands without ID. 509 
 510 
Supplemental Table S9 (Excel File): List of 230 high quality gene triplets (statistical power at 511 
1% > 90) identified by RareComb as significant when using ALL SPARK variants to compare 512 
1,215 probands diagnosed with intellectual disability (ID) with 4,974 probands without ID. 513 
 514 
Supplemental Table S10 (Excel File): List of 19 gene pairs identified by RareComb as 515 
significant when using ALL SPARK variants from FEMALE probands to compare 375 probands 516 
diagnosed with intellectual disability (ID) and 1,528 probands without ID. 517 
 518 
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Supplemental Table S11 (Excel File): Enrichment and depletion of HPO phenotypes for the 95 519 
genes forming 52 significant gene pairs when analyzing ALL variants from the SPARK cohort 520 
for the intellectual disability (ID) phenotype. 521 
 522 

Supplemental Table S12 (Excel File): Summary of the number and fraction of gene pairs 523 
among all the possible pairs of genes within HPO database. 524 

 525 

Supplemental Table S13 (Excel File): List of combinations with four constituent elements 526 
identified as significant by RareComb when assessing comorbid phenotypes. 527 

 528 

Supplemental Table S14 (Excel File): List of combinations with five constituent elements 529 
identified as significant by RareComb when assessing comorbid phenotypes. 530 


