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Supplementary Notes 

CNN model 
The CNN model (Fig. 1A) consists of five convolutional layers and two fully-connected 

layers arranged sequentially. The details of this model are: 

1. 1-dimensional (1D) convolutional layer with 480 kernels, each having a window size of nine 

and a step size of one. 

2. Maxpooling layer with a window size of nine and a step size of three. 

3. Dropout layer with a dropout proportion of 0.2.  

4. 1D convolutional layer 480 kernels, each having a window size of four and a step size of 

one. 

5. Maxpooling layer with a window size of four and a step size of two.  

6. Dropout layer with a dropout proportion of 0.2.  

7. 1D convolutional layer with 240 kernels, each having a window size of four and a step size 

of one. 

8. Maxpooling layer with a window size of four and a step size of three. 

9. Dropout layer with a dropout proportion of 0.2.  

10. 1D convolutional layer with 320 kernels, each having a window size of four and a step size 

of one. 

11. Maxpooling layer with a window size of four and a step size of three.  

12. Dropout layer with the dropout proportion of 0.2.  

13. 1D convolutional layer with 320 kernels, each having a window size of four and a step size 

of one. 

14. Maxpooling layer with a window size of four and a step size of three. 

15. Fully connected layer of 180 neurons with the sigmoid activation function.  

16. Fully connected output layer of 3 neurons with the SoftMax activation function. 

 
We used the Rectified Linear Unit (ReLU) activation function in the convolutional layers. In 

the convolutional and fully connected layers, the penalty coefficients of L1 and L2 

regularizations were 10!" and 5 × 10!", respectively, and the max weight constraint of the 

parameters in a kernel or neuron was 0.9.  
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On average, our training datasets consist of 6% enhancers, 9% silencers, and 85% 

background samples across the tested cell types. Imbalance among sample classes is a naturally 

inherent issue in genome-wide predictions of silencers/enhancers as only a small fraction of 

human noncoding DNA consists of gene regulatory elements (Singh et al. 2018). Although the 

class imbalance ratio in training datasets is moderate for large-data Deep Learning (Johnson and 

Khoshgoftaar 2019), we evaluated the possible influence of class imbalance on the reported 

results. The original cost function, in which all samples were penalized equally, was compared 

with the weighted-class cost function, in which heavy penalty parameters were assigned to 

minor-class samples (i.e., enhancer and silencer samples). We utilized the function 

“class_weight” from the Python library scikit-learn (Pedregosa et al. 2011) to estimate class 

weights. Across the tested cell types, the weighted-class CNN models demonstrate similar 

performance on test samples as the corresponding original CNN models, with the differences in 

AUC ROC and AUC PRC scores having the average of -0.0004 and the standard deviation of 

0.039 (Fig. S18A). On the experimentally validated K562 silencer sets, the original model CNN 

delivers a slightly better performance than the weighted-class CNN model (Fig. S18B). 

Furthermore, on average, 87% of enhancers and 69% of silencers predicted by the original CNN 

models were also labelled as the corresponding class by the weighted-class CNNs (using the 

output of FDR = 0.1 on test samples as prediction cutoffs). Finally, the weighted-class CNN-

SASs of raQTLs are highly correlated with the original CNN-SASs (𝑟 = 0.81, 𝑝 = 0, Fig. 

S18C). To sum up, the presented results consistently demonstrate a strong match in the output 

between the weighted-class and original CNN models, with a slightly better performance of the 

original CNN model on the experiment-validated silencers. Therefore, the original CNN models 

were built and utilized by this study, in a manner similar to previously published studies (Zhou 

and Troyanskaya 2015; Kim et al. 2016).  

Data for training CNN models 
We downloaded DNase-seq peaks (1) from the Roadmap Epigenomics Project 

(http://egg2.wustl.edu/roadmap) and unified all peaks of 1,000 bp (𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ± 500	𝑏𝑝). To 

define the function of these DNase-seq peaks, we overlapped them with ChIP-seq peaks of 

histone marks, including H3K27ac, H3K27me3, H3K4me1, and H3K4me3. A DNase-seq peak 

was considered to carry a histone mark when its central section (𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ± 200	𝑏𝑝)	



5 
 

overlapped with the ChIP-seq peaks reported for the same cell type. The DNase-seq peaks 

containing H3K27ac but no H3K27me3 signals were considered as enhancer candidates. The 

silencer training samples came from two sources: 1) the DNase-seq peaks carrying H3K27me3 

but neither H3K27ac nor H3K4me1/3 peaks; 2) the H3K27me3 ChIP-seq peaks carrying no 

DNase-seq or H3K27ac or H3K4me1/3 signals. H3K27me3 ChIP-seq peaks were also extended 

into the lengths of 1,000 bp. The primary T cells and embryonic stem cells studied here are the 

cell types E034 and E003 in the Roadmap Epigenomics Project, respectively.  

Gene expression data and gene annotations 
We downloaded gene expression data from the Roadmap Epigenomics Project (Roadmap 

Epigenomics Consortium 2015) at http://egg2.wustl.edu/roadmap/data/byDataType/rna/ 

expression. Gene expression, measured as the Reads Per Kilobase of transcript per Million 

mapped reads (RPKM), was normalized so that the expression level genes had a median of zero 

and a standard deviation of one across cell lines. A positive/negative normalized level of 

expression was thus indicative of a gene being highly or lowly expressed in the corresponding 

cell line. The gene annotations we used were downloaded from the GENCODE project (Frankish 

et al. 2019).  

Genomic mappability  
We downloaded genomic mappability scores (GMSs) from the ENCODE project 

(wgEncodeDukeMapabilityUniqueness20bp.bigWig) (Boyle et al. 2008). Bases having GMSs of 

1 were considered as certainly mapped. Given a sequence, the fraction of certainly mappable 

bases was calculated. A sequence was considered as high GMS when its GMS fraction was 

greater than 50%.  

CNN-based silencing odds ratio of mutations 
We first derived the probability function of (𝑦𝑠 − 𝑦𝑒) using test samples. Here, 𝑦𝑠 and 𝑦𝑒 

are the silencing and activating capability of a given sequence, respectively. With the Fitter 

Python library (https://github.com/cokelaer/fitter/pull/37), we adjusted different univariate 

distributions (including normal, exponential, T, gamma, beta, log-normal, double Weibull, 

generalized extreme value, and Pareto distribution) to fit the distribution of  (𝑦𝑠 − 𝑦𝑒) values.  A 

T distribution function is the best fit to the distribution of (𝑦𝑠 − 𝑦𝑒) values (Fig. S12A where 
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only top-5 best fitting functions are shown). With the derived function, we then evaluated the 

odds ratio of silencing capability of a sequence 𝑥	as  

𝑂𝑅_𝑠𝑖𝑙𝑒𝑛𝑐𝑖𝑛𝑔(𝑥) = 𝑙𝑜𝑔2 #$	(')
)!#$	(')

, 

where 𝑃𝑟	(𝑥) is the probability of (𝑦𝑠 − 𝑦𝑒) of 𝑥 being greater than that of a random sequence 

(i.e., the significant level of silencing effect of 𝑥). The silencer alteration caused by a mutation 

was therefore measured as   

CNN-SAS-OR = 𝑂𝑅_𝑠𝑖𝑙𝑒𝑛𝑐𝑖𝑛𝑔(𝑟𝑒𝑓	𝑎𝑙𝑙𝑒𝑙𝑒) − 𝑂𝑅_𝑠𝑖𝑙𝑒𝑛𝑐𝑖𝑛𝑔(𝑎𝑙𝑡	𝑎𝑙𝑙𝑒𝑙𝑒).  

CNN-SAS-OR is highly correlated with CNN-SAS (𝑟 = 0.6, 𝑝 = 0, Fig. S12B). The correlation 

of CNN-SAS-OR scores with raQTL scores on raQTLs is 𝑟 = −0.24	(𝑝 = 10!)"*, Fig. S12C), 

which is a close approximation to  𝑟 = −0.28	of CNN-SAS scores (𝑝 = 10!+,+, Fig. 3A).  

TFBS prediction in TF ChIP-seq peaks 
From the Encyclopedia of DNA elements project (https://www.encodeproject.org/), we 

downloaded TF ChIP-seq peaks reported for GM12878 lymphoblastoid cell line and H1 hESC 

cell lines. Here the peaks reported for GM12878 were used to approximate the binding events in 

T cells. The average length of the TF ChIP-seq peaks is around 300bp.  

 To decode and compare the binding compositions of DFREs for different functions, we 

predicted TFBSs within TF ChIP-seq peaks for each TF. Given a TF and the ChIP-seq peaks 

reported for this TF, we first derived the de novo motifs of the ChIP-seq peak sequences of the 

tested TF by using MEME CHIP (with the default setting) and HOMER findMotifsGenome.pl 

scripts (with the setting of -len 8,12,16 -size -100,100 -S 3). Among all de novo motifs, we then 

retained the one that was significantly enriched and had the highest abundance in the tested 

ChIP-seq peak sequences. The background sequences to derive the de novo motif were all 

sequences carrying the DNase-seq peaks or TF ChIP-seq peaks reported for the tested cell type. 

The mappings of the retained motif in TF ChIP-seq peaks were predicted as TFBSs of the tested 

TF. We applied this pipeline to each TF to predict its TFBSs.  

TFBS prediction using a CNN model 
The contribution of a nucleotide to silencer activity is evaluated as the average of the CNN 

output changes caused by all possible mutations on that nucleotide, i.e., 𝑑𝑠-,/. 

𝑑𝑠-,/ =
)
0
∑ H𝑦𝑠-12,/ − 𝑦𝑠-134,/I −

)
0
∑ H𝑦𝑒-12,/ − 𝑦𝑒-134,/I215,6,7,8215,6,7,8  (1) 
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where 𝑖 and 𝑗 are the 𝑖𝑡ℎ position in the silencer 𝑗. 𝑊𝑇 represents the wild-type genotype, while 

𝑦𝑠 is the prediction of the CNN model on the probability of being a silencer. To smooth the 

curves of 𝑑𝑠-,/ and consider that the positions within binding sites have varied contribution to 

binding affinity, we used a 9 bp-wide window to screen the sequences with a sliding step of 1bp. 

In each window, the average of non-negative 𝑑𝑠-,/s (i.e., 𝑤𝑑𝑠-,/) was calculated. We retained the 

windows where the 𝑤𝑑𝑠-,/ values had significance 𝑝 < 0.1 according to the empirical 

distributions of all windows in the silencers. The loose significance setting of 𝑝 < 0.1 aimed to 

capture the marginal areas of binding sites. After merging the overlapping windows having a 

significant 𝑤𝑑𝑠-,/, we obtained the segments enriched with high 𝑤𝑑𝑠-,/s. Those regions, sensitive 

to the sequence mutations, were imputed as TFBSs. To identify the enhancer TFBSs, we used the 

average decrease of enhancer activity of all possible mutations, i.e., −𝑑𝑠-,/ in eq. (1).  

To evaluate the TFBS predictions, we assessed the coincidence of these TFBSs with TF 

ChIP-seq peaks reported in the corresponding cell types. A TFBS was regarded as coinciding 

with a TF ChIP-seq peak when 80% of its sequence overlapped a TF ChIP-seq peak. To address 

the limited resource for T cells, we used GM12878 TF ChIP-seq data to approximate the binding 

events in T cells. To mitigate the problem that long ChIP-seq peaks result in the inflated 

estimation about “coinciding”, ChIP-seq peaks longer than 200bp were tailored into 200bp-long 

segments centering at the peak midpoints. As demonstrated in Fig. S17A, 49% of the predicted 

TFBSs in H1 hESCs coincide with TF ChIP-seq peaks profiled for H1 hESCs, which is 2 times 

that of randomly scattered TFBSs in the DFREs. In T cells, 43% of the predicted TFBSs coincide 

with TF ChIP-seq peaks for GM12878 (which was used as a proxy of T cells in this analysis), 

which is 1.4 times that of the randomly scattered TFBSs in the DFREs.  

Also, we inspected the enrichment of published binding motifs in the predicted TFBSs, with 

the expectation that the predicted TFBSs are enriched for the binding motifs of the TFs essential 

for the tested biological context. The silencer TFBSs in the DFREs are enriched for the binding 

motifs of TCF4, SNAI1/2, and REST, among other repressors. On the other hand, the enhancer 

TFBSs in the DFREs show a high density of the binding motifs of hESC-specific TFs, such as 

POU5F1, NANOG, and SOX6. These results indirectly validated the CNN-based TFBS 

predictions. We downloaded sequence motifs associated with H3K27me3 (Ngo et al. 2019) and 

found that 81 used in our study match H3K27me3-associated motifs (using TOMTOM with 

default parameters). The motifs that are enriched in either DFREs, SLrs, or enhancers are 
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included in Fig. S17B to demonstrate the sequence features of DFREs (and SLrs). Five of these 

motifs are H3K27me3-associated, which correspond to the TF motifs of SP110, MAX, USF1, 

SREBF2, and EHF. 
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Supplementary Figures 

Supplementary Figure 1 
 

 

 
 
Figure S1. ROCs and PRCs of the HPC, HepG2, and K562 CNN models on test sequences. 
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Supplementary Figure 2 
 

 
 
Figure S2.  TF ChIP-seq peak enrichment fold (𝑙𝑜𝑔+) in different silencer sets reported for 
K562. CNN represents the silencers predicted by our CNN model. Background is all sequences 
harboring DNase-seq peaks or H3K27me3 ChIP-seq peaks detected in K562. 
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Supplementary Figure 3 
 

 
Figure S3. Comparative analysis of predicted enhancers (EN, orange) and the H3K27ac ChIP-
seq peaks not predicted as enhancers (nonEN H3K27ac, grey) in terms of (a) H3K27ac signal 
intensity and (b) overlap with evolutionarily conserved elements across six examined cell types. 
In all these cell types, the predicted enhancers consistently carry stronger H3K27ac 
modifications (Student’s t-test 𝑝 < 10!)*) and a larger overlap with conserved elements than 
nonEN H3K27ac counterparts (Student’s t-test 𝑝 < 10!)*). ∗∗ −𝑝 < 10!)*.  
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Supplementary Figure 4 
 

 
Figure S4. Fraction (%) of false positive silencer predictions (blue) matching candidate 
enhancers across six cell lines based on test sample data. False positive silencer predictions 
represent the sequences that carry no H3K27me3 signals but are predicted as silencers by the 
CNN model. The all (grey) represents all test sequences having no overlap with H3K27me3 
ChIP-seq peaks.  
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Supplementary Figure 5 
 

 
Figure S5. Distribution of normalized expressions of genes associated with different types of 
regulatory elements in different human cell types.  
  



14 
 

Supplementary Figure 6 
 

 
Figure S6. Fraction of certainly mappable nucleotides in genomic sequences. SL (red) and EN 
(orange) are predicted silencers and enhancers in the corresponding cell type, respectively.  
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Supplementary Figure 7 
 

 
Figure S7. GWAS SNP densities of high-mappability sequences. SL (red) and EN (orange) 
denote high-mappability putative silencers and enhancers. H3K27me3/-H3K27ac (grey) denote 
high-mappability sequences with a H3K27me3 ChIP-seq peak but no H3K27ac ChIP-seq peaks. 
∗∗ 	 − 	𝑝 < 10!)*. White asterisks represent significant enrichment of GWAS SNPs as compared 
to H3K27me3/-H3K27ac, and black asterisks are significant enrichment in high-mappability 
ENs as compared to the SL counterparts.  
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Supplementary Figure 8 
 

 
Figure S8. H3K27me3 modification intensity in DFREs (red) and SLrs (grey) in T cells.  
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Supplementary Figure 9 
 
 

 
Figure S9. Fraction of the SNPs with derived allele frequency (DAF) >0.9. ∗∗ −	𝑝 < 10!,, the 
enrichment significance levels as compared to the DFREs.  EN represents the enhancers in T 
cells and background represents the sequences randomly selected from the human genome 
having the GC and repetitive element contents matching the silencers. 
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Supplementary Figure 10 
 

 
 
Figure S10. Biological processes that were significantly associated with the T cell DFREs. The 
results are from GREAT by using all T cell silencers (i.e., SLs) as background.  
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Supplementary Figure 11 
 

 

 
 

Figure S11. Examples of DFREs with Hi-C links to neighboring genes in both cell types. 
DFREs next to (A) TFD52 and (B) PABPC1. The bar plots are the expression levels of the 
corresponding genes in the two cell types.  The figures were generated using the Integrative 
Genomics Viewer (Robinson et al. 2011). 
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Supplementary Figure 12 
 

 

 
Figure S12. Comparison between CNN-SAS and CNN-SAS-OR scores. (A) Probability 
functions to fit the distribution of 𝑦𝑠 − 𝑦𝑒. (B) High correlation between CNN-SAS and CNN-
SAS-OR scores.  (C) Correlation between CNN-SAS-OR and raQTL scores.  
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Supplementary Figure 13 
 

 
Figure S13. Distribution of CNN-SASs on the raQTL mutations (blue) in the HepG2 cell line. 
Control represents the non-raQTL mutations. Non-raQTL mutations were published along with 
raQTLs and have insignificant scores (grey).  
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Supplementary Figure 14 
 

 
Figure S14. Correlation between CNN-SASs and eQTL scores detected in whole blood. 
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Supplementary Figure 15 
 

 
Figure S15. CNN-SAS scores of all possible single nucleotide silencer mutations in T cells. The 
solid line represents the estimate of a probability density function of the CNN-SASs, which was 
fitted by using seaborn kdeplot (Waskom 2021) with default parameters.  
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Supplementary Figure 16 
 

 
 

 
Figure S16. Comparisons between DFREs and CTCF-defined insulators. Fraction of elements 
located at the boundaries of TADs in (A) T cells and (B) hESCs. Fraction of elements located 
within the loci of the 1,000 lowest and highest expressed genes in (C) T cells and (D) hESCs. 
Backgrounds in (C) and (D) are the whole human genome. Fraction of elements contacting with 
the 1,000 lowest and highest expressed genes in (E) T cells and (F) hESCs. Backgrounds in (E) 
and (F) are all genomic regions carrying a DNase-seq peak or an H3K27me3 ChIP-seq peak.   
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Supplementary Figure 17 
 

 
 

 
Figure S17. CNN-predicted TFBSs significantly coincides with TF ChIP-seq peaks in T cells 
and H1 hESCs. (A) Fraction of CNN-predicted TFBSs coinciding with TF ChIP-seq peaks. The 
red asterisks represent the CNN-predicted TFBSs (the numbers above are the significance 𝑝 
values). The gray violin plots are the background distributions estimated with the TFBSs 
randomly shuffled within DFRE sequences. TF ChIP-seq data in GM12878 were used to 
approximate the binding events in T cells, which potentially leads to the lower overlap between 
CNN-predicted TFBSs and TF ChIP-seq peaks in T cell than in H1 hESC. (B) TF motif 
enrichment in DFREs, ENs, and SLrs. Red dots mark the H3K27me3-associated motifs as 
presented in (Ngo et al. 2019). (C) TF motifs enriched in enhancer CNN-predicted TFBSs. Red 
dots mark the H3K27me3-associated motifs. (D) Distribution of silencer and enhancer TFBSs 
within DFREs. (E) Overlap between silencer and enhancer TFBSs within the DFREs. (F) 
Distance between silencer TFBSs to their nearest enhancer TFBSs. The background was 
generated through randomly shuffling CNN-predicted TFBSs. 
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Supplementary Figure 18 

 
 

 
 
Figure S18. Comparison of the CNN models built using the original cost function (namely, 
CNN) with the models built using a weighted-class cost function (namely, CNNWC) in terms of 
classification performance (i.e., AUC ROC and AUC PRC) on (A) test samples and (B) 
experimentally validated silencers as well as in terms of (C) CNN-SASs on raQTLs. 
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Supplementary Table 1 
 
Table S1. Predicted silencers and enhancers  
A big table is given in a separate file supplemental_Table_S1.xlsx.zip 

Supplementary Table 2 
 
Table S2. GWAS traits associated with the T cell DFREs.  

GWAS trait 
#SNPs enrichment fold enrichment p value 

DFRE SLr ENr DFRE SLr DFRE SLr 

1 
hepatitis B infection, Susceptibility 

to viral and mycobacterial 
infections 

22 50 12 16.901 2.404 8.48E-20 6.08E-08 

2 Granulomatosis with Polyangiitis 24 49 16 13.828 1.767 1.70E-19 0.000267 
3 hepatitis B infection 25 237 23 10.021 5.946 4.96E-17 4.12E-100 
4 airway imaging measurement 17 43 18 8.707 1.379 3.90E-11 0.039 
5 chronic hepatitis B infection 27 245 29 8.5831 4.875 1.22E-16 3.34E-86 
6 sensory perception of smell 15 107 21 6.585 2.94 2.11E-08 2.05E-21 
7 chemerin measurement 21 24 30 6.453 0.461 5.11E-11 2.15E-05 
8 acute graft vs. host disease 24 74 36 6.146 1.186 6.07E-12 0.145 
9 Sjogren syndrome 25 119 38 6.065 1.807 2.96E-12 3.53E-09 
10 oropharynx cancer 17 55 26 6.028 1.221 8.96E-09 0.136 
11 hypothyroidism 17 150 32 4.898 2.705 1.66E-07 8.85E-26 
12 response to vaccine 35 318 77 4.19 2.383 5.44E-12 7.08E-42 
13 response to anticoagulant 23 93 56 3.786 0.958 1.24E-07 0.7224 

14 
HIV-1 infection, response to 
efavirenz, virologic response 

measurement 
11 101 27 3.756 2.159 0.000239 5.05E-12 

15 susceptibility to mumps 
measurement 16 74 40 3.688 1.068 1.31E-05 0.548 

16 Tuberculosis 17 106 44 3.562 1.39 1.11E-05 0.0013 
17 Ischemic stroke 16 109 46 3.207 1.367 6.74E-05 0.0018 
18 Graves’ disease 15 148 44 3.143 1.941 0.000138 2.97E-13 
19 interleukin 18 measurement 5 124 15 3.073 4.77 0.025205 1.20E-43 
20 lipoprotein A measurement 20 147 61 3.023 1.391 2.06E-05 0.00014 
21 optic disc area measurement 17 140 52 3.014 1.554 8.53E-05 1.12E-06 

22 susceptibility to shingles 
measurement 20 103 63 2.927 0.943 3.21E-05 0.5984 

23 QRS amplitude, QRS complex 17 111 55 2.85 1.165 0.000163 0.112 

24 pursuit maintenance gain 
measurement 23 255 75 2.827 1.962 1.47E-05 2.77E-22 

25 vitamin D measurement 12 117 41 2.698 1.647 0.00218 5.39E-07 
26 myocardial infarction 19 175 67 2.614 1.507 0.00021 3.07E-07 
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27 smoking status measurement, lung 
carcinoma 35 202 127 2.54 0.918 1.20E-06 0.2379 

28 alcohol dependence 19 222 70 2.502 1.83 0.00035 2.44E-16 

29 smoking behavior, unipolar 
depression 16 105 59 2.5 1.027 0.000991 0.7666 

30 venous thromboembolism 20 228 76 2.426 1.731 0.000368 3.19E-14 
31 Takayasu arteritis 16 213 61 2.418 2.015 0.001386 5.00E-20 
32 fibrinogen measurement 23 236 93 2.28 1.464 0.000375 3.19E-08 
33 HIV-1 infection 14 158 64 2.017 1.424 0.012977 2.28E-05 
34 hip bone mineral density 18 118 85 1.952 0.801 0.007736 0.01497 
35 metabolite measurement 22 186 105 1.931 1.022 0.00425 0.73872 
36 monocyte percentage of leukocytes 52 552 250 1.918 1.274 1.88E-05 4.18E-08 
37 Vitiligo 21 172 103 1.88 0.964 0.00657 0.6534 
38 coronary heart disease 27 251 133 1.871 1.089 0.00329 0.17678 
39 optic cup area measurement 13 156 65 1.844 1.385 0.0353 0.00011 
40 optic disc size measurement 17 105 89 1.761 0.681 0.0336 3.27E-05 
41 allergic rhinitis 14 167 74 1.744 1.302 0.0485 0.00106 

42 attention deficit hyperactivity 
disorder 22 226 117 1.733 1.115 0.0157 0.10607 

43 leukocyte count 48 515 256 1.729 1.161 0.00041 0.00089 
44 alcohol use disorder measurement 32 175 173 1.705 0.584 0.00511 8.27E-15 

45 lymphocyte percentage of 
leukocytes 55 404 299 1.695 0.78 0.00028 2.13E-07 

46 neutrophil count, eosinophil count 29 318 158 1.692 1.161 0.00742 0.00855 
47 primary biliary cirrhosis 45 266 246 1.686 0.624 0.00127 1.02E-16 
48 basophil count, eosinophil count 43 435 237 1.673 1.059 0.0015 0.22668 
49 alcohol consumption measurement 31 224 173 1.652 0.747 0.00768 5.66E-06 
50 granulocyte count 29 324 162 1.65 1.154 0.01143 0.01116 
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