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Supplementary Notes

CNN model

The CNN model (Fig. 1A) consists of five convolutional layers and two fully-connected

layers arranged sequentially. The details of this model are:

1.

10.

11.
12.
13.

14.
15.
16.

I-dimensional (1D) convolutional layer with 480 kernels, each having a window size of nine
and a step size of one.

Maxpooling layer with a window size of nine and a step size of three.

Dropout layer with a dropout proportion of 0.2.

1D convolutional layer 480 kernels, each having a window size of four and a step size of
one.

Maxpooling layer with a window size of four and a step size of two.

Dropout layer with a dropout proportion of 0.2.

1D convolutional layer with 240 kernels, each having a window size of four and a step size
of one.

Maxpooling layer with a window size of four and a step size of three.

Dropout layer with a dropout proportion of 0.2.

1D convolutional layer with 320 kernels, each having a window size of four and a step size
of one.

Maxpooling layer with a window size of four and a step size of three.

Dropout layer with the dropout proportion of 0.2.

1D convolutional layer with 320 kernels, each having a window size of four and a step size
of one.

Maxpooling layer with a window size of four and a step size of three.

Fully connected layer of 180 neurons with the sigmoid activation function.

Fully connected output layer of 3 neurons with the SoftMax activation function.

We used the Rectified Linear Unit (ReLU) activation function in the convolutional layers. In

the convolutional and fully connected layers, the penalty coefficients of L1 and L2

regularizations were 1078 and 5 X 1078, respectively, and the max weight constraint of the

parameters in a kernel or neuron was 0.9.



On average, our training datasets consist of 6% enhancers, 9% silencers, and 85%
background samples across the tested cell types. Imbalance among sample classes is a naturally
inherent issue in genome-wide predictions of silencers/enhancers as only a small fraction of
human noncoding DNA consists of gene regulatory elements (Singh et al. 2018). Although the
class imbalance ratio in training datasets is moderate for large-data Deep Learning (Johnson and
Khoshgoftaar 2019), we evaluated the possible influence of class imbalance on the reported
results. The original cost function, in which all samples were penalized equally, was compared
with the weighted-class cost function, in which heavy penalty parameters were assigned to
minor-class samples (i.e., enhancer and silencer samples). We utilized the function
“class_weight” from the Python library scikit-learn (Pedregosa et al. 2011) to estimate class
weights. Across the tested cell types, the weighted-class CNN models demonstrate similar
performance on test samples as the corresponding original CNN models, with the differences in
AUC ROC and AUC PRC scores having the average of -0.0004 and the standard deviation of
0.039 (Fig. S18A). On the experimentally validated K562 silencer sets, the original model CNN
delivers a slightly better performance than the weighted-class CNN model (Fig. S18B).
Furthermore, on average, 87% of enhancers and 69% of silencers predicted by the original CNN
models were also labelled as the corresponding class by the weighted-class CNNs (using the
output of FDR = 0.1 on test samples as prediction cutoffs). Finally, the weighted-class CNN-
SASs of raQTLs are highly correlated with the original CNN-SASs (r = 0.81,p = 0, Fig.
S18C). To sum up, the presented results consistently demonstrate a strong match in the output
between the weighted-class and original CNN models, with a slightly better performance of the
original CNN model on the experiment-validated silencers. Therefore, the original CNN models
were built and utilized by this study, in a manner similar to previously published studies (Zhou

and Troyanskaya 2015; Kim et al. 2016).

Data for training CNN models
We downloaded DNase-seq peaks (1) from the Roadmap Epigenomics Project

(http://egg2.wustl.edu/roadmap) and unified all peaks of 1,000 bp (midpoint £+ 500 bp). To
define the function of these DNase-seq peaks, we overlapped them with ChIP-seq peaks of
histone marks, including H3K27ac, H3K27me3, H3K4mel, and H3K4me3. A DNase-seq peak

was considered to carry a histone mark when its central section (midpoint £ 200 bp)



overlapped with the ChIP-seq peaks reported for the same cell type. The DNase-seq peaks
containing H3K27ac but no H3K27me3 signals were considered as enhancer candidates. The
silencer training samples came from two sources: 1) the DNase-seq peaks carrying H3K27me3
but neither H3K27ac nor H3K4mel/3 peaks; 2) the H3K27me3 ChIP-seq peaks carrying no
DNase-seq or H3K27ac or H3K4mel/3 signals. H3K27me3 ChIP-seq peaks were also extended
into the lengths of 1,000 bp. The primary T cells and embryonic stem cells studied here are the
cell types E034 and E003 in the Roadmap Epigenomics Project, respectively.

Gene expression data and gene annotations

We downloaded gene expression data from the Roadmap Epigenomics Project (Roadmap
Epigenomics Consortium 2015) at http://egg2.wustl.edu/roadmap/data/byDataType/rna/
expression. Gene expression, measured as the Reads Per Kilobase of transcript per Million
mapped reads (RPKM), was normalized so that the expression level genes had a median of zero
and a standard deviation of one across cell lines. A positive/negative normalized level of
expression was thus indicative of a gene being highly or lowly expressed in the corresponding
cell line. The gene annotations we used were downloaded from the GENCODE project (Frankish

etal. 2019).

Genomic mappability
We downloaded genomic mappability scores (GMSs) from the ENCODE project

(wgEncodeDukeMapabilityUniqueness20bp.bigWig) (Boyle et al. 2008). Bases having GMSs of
1 were considered as certainly mapped. Given a sequence, the fraction of certainly mappable
bases was calculated. A sequence was considered as high GMS when its GMS fraction was

greater than 50%.

CNN-based silencing odds ratio of mutations
We first derived the probability function of (ys — ye) using test samples. Here, ys and ye

are the silencing and activating capability of a given sequence, respectively. With the Fitter
Python library (https://github.com/cokelaer/fitter/pull/37), we adjusted different univariate
distributions (including normal, exponential, T, gamma, beta, log-normal, double Weibull,
generalized extreme value, and Pareto distribution) to fit the distribution of (ys — ye) values. A

T distribution function is the best fit to the distribution of (ys — ye) values (Fig. SI2A where



only top-5 best fitting functions are shown). With the derived function, we then evaluated the

odds ratio of silencing capability of a sequence x as

Pr (x)
1-Pr (x)’

OR_silencing(x) = log?2

where Pr (x) is the probability of (ys — ye) of x being greater than that of a random sequence
(i.e., the significant level of silencing effect of x). The silencer alteration caused by a mutation
was therefore measured as

CNN-SAS-OR = OR_silencing(ref allele) — OR_silencing(alt allele).
CNN-SAS-OR is highly correlated with CNN-SAS (r = 0.6,p = 0, Fig. S12B). The correlation
of CNN-SAS-OR scores with raQTL scores on raQTLs is 7 = —0.24 (p = 10718% Fig. S12C),
which is a close approximation to 7 = —0.28 of CNN-SAS scores (p = 107252, Fig. 3A).

TFBS prediction in TF ChIP-seq peaks
From the Encyclopedia of DNA elements project (https://www.encodeproject.org/), we

downloaded TF ChIP-seq peaks reported for GM 12878 lymphoblastoid cell line and H1 hESC
cell lines. Here the peaks reported for GM 12878 were used to approximate the binding events in
T cells. The average length of the TF ChIP-seq peaks is around 300bp.

To decode and compare the binding compositions of DFREs for different functions, we
predicted TFBSs within TF ChIP-seq peaks for each TF. Given a TF and the ChIP-seq peaks
reported for this TF, we first derived the de novo motifs of the ChIP-seq peak sequences of the
tested TF by using MEME CHIP (with the default setting) and HOMER findMotifsGenome.pl
scripts (with the setting of -len 8,12,16 -size -100,100 -S 3). Among all de novo motifs, we then
retained the one that was significantly enriched and had the highest abundance in the tested
ChIP-seq peak sequences. The background sequences to derive the de novo motif were all
sequences carrying the DNase-seq peaks or TF ChIP-seq peaks reported for the tested cell type.
The mappings of the retained motif in TF ChIP-seq peaks were predicted as TFBSs of the tested
TF. We applied this pipeline to each TF to predict its TFBSs.

TFBS prediction using a CNN model

The contribution of a nucleotide to silencer activity is evaluated as the average of the CNN

output changes caused by all possible mutations on that nucleotide, i.e., ds; ;.

1 1
dsi,j = ng=a,c,g,t(y5i=k,j - ysi=WT,j) - §2k=a,c,g,t(yei=k,j - yei=WT,j) (1)



where i and j are the ith position in the silencer j. WT represents the wild-type genotype, while
ys is the prediction of the CNN model on the probability of being a silencer. To smooth the
curves of ds; ; and consider that the positions within binding sites have varied contribution to
binding affinity, we used a 9 bp-wide window to screen the sequences with a sliding step of 1bp.
In each window, the average of non-negative ds; ;s (i.e., wds; ;) was calculated. We retained the
windows where the wds; ; values had significance p < 0.1 according to the empirical

distributions of all windows in the silencers. The loose significance setting of p < 0.1 aimed to
capture the marginal areas of binding sites. After merging the overlapping windows having a
significant wds; ;, we obtained the segments enriched with high wds; ;s. Those regions, sensitive
to the sequence mutations, were imputed as TFBSs. To identify the enhancer TFBSs, we used the
average decrease of enhancer activity of all possible mutations, i.e., —ds; ; in eq. (1).

To evaluate the TFBS predictions, we assessed the coincidence of these TFBSs with TF
ChIP-seq peaks reported in the corresponding cell types. A TFBS was regarded as coinciding
with a TF ChIP-seq peak when 80% of its sequence overlapped a TF ChIP-seq peak. To address
the limited resource for T cells, we used GM 12878 TF ChIP-seq data to approximate the binding
events in T cells. To mitigate the problem that long ChIP-seq peaks result in the inflated
estimation about “coinciding”, ChIP-seq peaks longer than 200bp were tailored into 200bp-long
segments centering at the peak midpoints. As demonstrated in Fig. S17A, 49% of the predicted
TFBSs in HI hESCs coincide with TF ChIP-seq peaks profiled for H1 hESCs, which is 2 times
that of randomly scattered TFBSs in the DFREs. In T cells, 43% of the predicted TFBSs coincide
with TF ChIP-seq peaks for GM 12878 (which was used as a proxy of T cells in this analysis),
which is 1.4 times that of the randomly scattered TFBSs in the DFREs.

Also, we inspected the enrichment of published binding motifs in the predicted TFBSs, with
the expectation that the predicted TFBSs are enriched for the binding motifs of the TFs essential
for the tested biological context. The silencer TFBSs in the DFRESs are enriched for the binding
motifs of TCF4, SNAI1/2, and REST, among other repressors. On the other hand, the enhancer
TFBSs in the DFREs show a high density of the binding motifs of hESC-specific TFs, such as
POUSF1, NANOG, and SOX6. These results indirectly validated the CNN-based TFBS
predictions. We downloaded sequence motifs associated with H3K27me3 (Ngo et al. 2019) and
found that 81 used in our study match H3K27me3-associated motifs (using TOMTOM with

default parameters). The motifs that are enriched in either DFREs, SLrs, or enhancers are



included in Fig. S17B to demonstrate the sequence features of DFREs (and SLrs). Five of these
motifs are H3K27me3-associated, which correspond to the TF motifs of SP110, MAX, USF1,
SREBF2, and EHF.
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Figure S1. ROCs and PRCs of the HPC, HepG2, and K562 CNN models on test sequences.



Supplementary Figure 2
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Figure S2. TF ChIP-seq peak enrichment fold (log,) in different silencer sets reported for
harboring DNase-seq peaks or H3K27me3 ChIP-seq peaks detected in K562.
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Supplementary Figure 3
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Figure S3. Comparative analysis of predicted enhancers (EN, orange) and the H3K27ac ChIP-
seq peaks not predicted as enhancers (nonEN H3K27ac, grey) in terms of (a) H3K27ac signal
intensity and (b) overlap with evolutionarily conserved elements across six examined cell types.
In all these cell types, the predicted enhancers consistently carry stronger H3K27ac
modifications (Student’s t-test p < 1071%) and a larger overlap with conserved elements than
nonEN H3K27ac counterparts (Student’s #-test p < 10719). xx —p < 10710,
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Supplementary Figure 4
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Figure S4. Fraction (%) of false positive silencer predictions (blue) matching candidate
enhancers across six cell lines based on test sample data. False positive silencer predictions
represent the sequences that carry no H3K27me3 signals but are predicted as silencers by the
CNN model. The all (grey) represents all test sequences having no overlap with H3K27me3
ChIP-seq peaks.
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Supplementary Figure 5
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Supplementary Figure 6
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Supplementary Figure 7
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Supplementary Figure 8
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Figure S8. H3K27me3 modification intensity in DFREs (red) and SLrs (grey) in T cells.

16



Supplementary Figure 9
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Figure S9. Fraction of the SNPs with derived allele frequency (DAF) >0.9. *x —p < 1075, the
enrichment significance levels as compared to the DFREs. EN represents the enhancers in T
cells and background represents the sequences randomly selected from the human genome
having the GC and repetitive element contents matching the silencers.
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Figure S11. Examples of DFREs with Hi-C links to neighboring genes in both cell types.
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corresponding genes in the two cell types. The figures were generated using the Integrative
Genomics Viewer (Robinson et al. 2011).
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Supplementary Figure 12
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Figure S12. Comparison between CNN-SAS and CNN-SAS-OR scores. (A) Probability
functions to fit the distribution of ys — ye. (B) High correlation between CNN-SAS and CNN-
SAS-OR scores. (C) Correlation between CNN-SAS-OR and raQTL scores.



Supplementary Figure 13
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Figure S13. Distribution of CNN-SASs on the raQTL mutations (blue) in the HepG2 cell line.
Control represents the non-raQTL mutations. Non-raQTL mutations were published along with
raQTLs and have insignificant scores (grey).
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Supplementary Figure 14
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Figure S14. Correlation between CNN-SASs and eQTL scores detected in whole blood.
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Supplementary Figure 15

30
2
wn
g 20
10
0.2 201 0 0.1 0.2

CNN-SAS
Figure S15. CNN-SAS scores of all possible single nucleotide silencer mutations in T cells. The

solid line represents the estimate of a probability density function of the CNN-SASs, which was
fitted by using seaborn kdeplot (Waskom 2021) with default parameters.
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Supplementary Figure 16
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Figure S16. Comparisons between DFREs and CTCF-defined insulators. Fraction of elements
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within the loci of the 1,000 lowest and highest expressed genes in (C) T cells and (D) hESCs.
Backgrounds in (C) and (D) are the whole human genome. Fraction of elements contacting with
the 1,000 lowest and highest expressed genes in (E) T cells and (F) hESCs. Backgrounds in (E)
and (F) are all genomic regions carrying a DNase-seq peak or an H3K27me3 ChIP-seq peak.
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Supplementary Figure 17
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Figure S17. CNN-predicted TFBSs significantly coincides with TF ChIP-seq peaks in T cells
and H1 hESCs. (A) Fraction of CNN-predicted TFBSs coinciding with TF ChIP-seq peaks. The
red asterisks represent the CNN-predicted TFBSs (the numbers above are the significance p
values). The gray violin plots are the background distributions estimated with the TFBSs
randomly shuffled within DFRE sequences. TF ChIP-seq data in GM 12878 were used to
approximate the binding events in T cells, which potentially leads to the lower overlap between
CNN-predicted TFBSs and TF ChIP-seq peaks in T cell than in H1 hESC. (B) TF motif
enrichment in DFREs, ENs, and SLrs. Red dots mark the H3K27me3-associated motifs as
presented in (Ngo et al. 2019). (C) TF motifs enriched in enhancer CNN-predicted TFBSs. Red
dots mark the H3K27me3-associated motifs. (D) Distribution of silencer and enhancer TFBSs
within DFREs. (E) Overlap between silencer and enhancer TFBSs within the DFREs. (F)
Distance between silencer TFBSs to their nearest enhancer TFBSs. The background was
generated through randomly shuffling CNN-predicted TFBSs.
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Supplementary Figure 18
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Figure S18. Comparison of the CNN models built using the original cost function (namely,
CNN) with the models built using a weighted-class cost function (namely, CNNWC) in terms of
classification performance (i.e., AUC ROC and AUC PRC) on (A) test samples and (B)
experimentally validated silencers as well as in terms of (C) CNN-SASs on raQTLs.
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Supplementary Table 1

Table S1. Predicted silencers and enhancers
A big table is given in a separate file supplemental Table S1.xlsx.zip

Supplementary Table 2

Table S2. GWAS traits associated with the T cell DFREs.

#SNPs enrichment fold enrichment p value
GWAS trait
DFRE SLr ENr | DFRE SLr DFRE SLr
hepatitis B infection, Susceptibility
1 to viral and mycobacterial 22 50 12 16.901 2.404 8.48E-20 6.08E-08
infections
2 Granulomatosis with Polyangiitis 24 49 16 13.828 1.767 1.70E-19 0.000267
3 hepatitis B infection 25 237 23 10.021 5.946 4.96E-17 4.12E-100
4 airway imaging measurement 17 43 18 8.707 1.379 3.90E-11 0.039
5 chronic hepatitis B infection 27 245 29 8.5831 4.875 1.22E-16 3.34E-86
6 sensory perception of smell 15 107 21 6.585 2.94 2.11E-08 2.05E-21
7 chemerin measurement 21 24 30 6.453 0.461 5.11E-11 2.15E-05
8 acute graft vs. host disease 24 74 36 6.146 1.186 6.07E-12 0.145
9 Sjogren syndrome 25 119 38 6.065 1.807 2.96E-12 3.53E-09
10 oropharynx cancer 17 55 26 6.028 1.221 8.96E-09 0.136
11 hypothyroidism 17 150 32 4.898 2.705 1.66E-07 8.85E-26
12 response to vaccine 35 318 77 4.19 2.383 5.44E-12 7.08E-42
13 response to anticoagulant 23 93 56 3.786 0.958 1.24E-07 0.7224
HIV-1 infection, response to
14 efavirenz, virologic response 11 101 27 3.756 2.159 0.000239 5.05E-12
measurement
15 susceptibility tomumps | ¢ g4 4o | 3688 1.068 | 1.31E-05 0.548
measurement
16 Tuberculosis 17 106 44 3.562 1.39 1.11E-05 0.0013
17 Ischemic stroke 16 109 46 3.207 1.367 6.74E-05 0.0018
18 Graves’ disease 15 148 44 3.143 1.941 0.000138 2.97E-13
19 interleukin 18 measurement 5 124 15 3.073 4.77 0.025205 1.20E-43
20 lipoprotein A measurement 20 147 61 3.023 1.391 2.06E-05 0.00014
21 optic disc area measurement 17 140 52 3.014 1.554 8.53E-05 1.12E-06
2 susceptibility to shingles | 55 1363 9027 0043 | 3.21E-05 0.5984
measurement
23 QRS amplitude, QRS complex 17 111 55 2.85 1.165 0.000163 0.112
24 pursuit mainfenance gain | »3 - p55 75 | 2827 1962 | 1.47E-05 2.77B-22
measurement
25 vitamin D measurement 12 117 41 2.698 1.647 0.00218 5.39E-07
26 myocardial infarction 19 175 67 2.614 1.507 0.00021 3.07E-07
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p7 | smokingstatus measurement, ing | 35555 37 | 254 0918 | 1.20E-06 0.2379
carcinoma
28 alcohol dependence 19 222 70 2.502 1.83 0.00035 2.44E-16
29 smoking behaVi";; ;‘?éf;?; 16 105 59 25 1.027 0.000991 0.7666
30 venous thromboembolism 20 228 76 2.426 1.731 0.000368 3.19E-14
31 Takayasu arteritis 16 213 61 2.418 2.015 0.001386 5.00E-20
32 fibrinogen measurement 23 236 93 2.28 1.464 0.000375 3.19E-08
33 HIV-1 infection 14 158 64 2.017 1.424 0.012977 2.28E-05
34 hip bone mineral density 18 118 85 1.952 0.801 0.007736 0.01497
35 metabolite measurement 22 186 105 1.931 1.022 0.00425 0.73872
36 | monocyte percentage of leukocytes 52 552 250 1.918 1.274 1.88E-05 4.18E-08
37 Vitiligo 21 172 103 1.88 0.964 0.00657 0.6534
38 coronary heart disease 27 251 133 1.871 1.089 0.00329 0.17678
39 optic cup area measurement 13 156 65 1.844 1.385 0.0353 0.00011
40 optic disc size measurement 17 105 89 1.761 0.681 0.0336 3.27E-05
41 allergic rhinitis 14 167 74 1.744 1.302 0.0485 0.00106
4 attention deficithyperactivity | 5y 56 417 | 1733 L1115 0.0157 0.10607
disorder
43 leukocyte count 48 515 256 1.729 1.161 0.00041 0.00089
44 | alcohol use disorder measurement 32 175 173 1.705 0.584 0.00511 8.27E-15
45 lymphocyte perl‘;rlfgfi tgsf 55 404 299 | 1.695  0.78 0.00028 2.13E-07
46 | neutrophil count, eosinophil count 29 318 158 1.692 1.161 0.00742 0.00855
47 primary biliary cirrhosis 45 266 246 1.686 0.624 0.00127 1.02E-16
48 basophil count, eosinophil count 43 435 237 1.673 1.059 0.0015 0.22668
49 | alcohol consumption measurement 31 224 173 1.652 0.747 0.00768 5.66E-06
50 granulocyte count 29 324 162 1.65 1.154 0.01143 0.01116
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