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S1 Supplemental Note: PTRs measure DNA replication and gen-
eration time

Here we adapt an argument from Bremer and Churchward (1977) to show that PTRs provide
information about DNA replication and generation time. We need two parameters

1. C: The time required to replicate the bacterial chromosome after replication begins.

2. τ : The generation time.

S1.1 PTRs under exponential growth

In microbiology, the generation time is equivalent to be the population doubling time under expo-
nential growth. Under exponential growth, and given an initial population size N0, the population
size at time t is given by

N(t) = N02
t/τ ,

the generation time τ is equivalent to the cell doubling time, and is inversely proportional to the
log population growth rate ln 2

τ .
Most bacteria have a single circular chromosome. Replication begins at a single replication

origin, and two replication forks move in either direction along the chromosome until the replication
terminus. Under the above model Bremer and Churchward (1977) showed that that the ratio of
average number of replication origins in a cell Ī to average replication terimini T̄

Ī/T̄ = 2C/τ .

Therefore

log2
(
Ī/T̄

)
=
C

τ
.

The term 1
τ is called the growth rate. Thus, under exponential growth log2(PTR) is proportional

to the growth rate.

∗These authors contributed equally to this work. Correspondence: tal.korem@columbia.edu,
itsik@cs.columbia.edu.
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S1.2 Generalization to other growth phases

We want to show this hold in general—regardless of the form of N(t). The crux of the argument
is to use the PTR to compute the rate that a population is adding genomes—the rate of DNA
synthesis. Given the rate of DNA synthesis, computing the generation time involves asking the
counterfactual question—if I were to grow a population of cells in culture with genomes being added
at a specified rate, how long would it take for the population to double in size? Solving population
doubling time also gives us generation time because of their equivalence under exponential growth.

The argument has three steps. First, we will compute the average rate of DNA synthesis using
the PTR. Second, we will fix the rate of DNA synthesis to compute how many genomes will be
added over an interval of time. Third, given the number of genomes added over an interval we can
solve for the generation time using its equivalence to population doubling time under exponential
growth. In principle, we are reducing the more complicated case of arbitrary dynamics to the
simpler case of exponential growth.

S1.2.1 PTRs are correlated with average rate of DNA synthesis

Let I(t) be the number of replication origins at time t, and let T (t) be the number of replication
termini. Once DNA replication begins, the two strands of the chromosome separate, and replication
forks proceed along both sides of the chromosome. This means T (t) gives the number of complete
genomes in the population, since once replication finishes a new completed genome, and therefore
terminus, has been added. It follows that the number of replication forks at time t is given by

2(I(t)− T (t)).

The rate of chromosome replication is essentially constant (Wang and Levin, 2009), so each fork
produces DNA at a rate of ∼ 1

2C . Therefore, the rate of DNA synthesis in the population is

1

C
(I(t)− T (t)) .

Since T (t) gives the number of complete genomes, dividing by T (t) gives the rate of DNA synthesis
per genome

1
C (I(t)− T (t))

T (t)
=

1

C
(R(t)− 1)

R(t) : =
I(t)

T (t)
=
Ī(t)

T̄ (t)
.

R(t) corresponds to the PTR. This demonstrates that R(t) is correlated with the average rate of
DNA synthesis.

S1.2.2 Counting genomes added over a fixed time

Given a particular time t0 we want to compute how many genomes will be added over an interval.
The term 1

C (R(t0) − 1) says that each genome at t0 adds R(t0) − 1 genomes over C time. Hence,
the number of genomes added over [t0, t0 + C] is equal to the current number of genomes, T (t0),
plus the number of genomes added, T (t0)(R(t0)− 1). Therefore

# genomes added over [t0, t0 + C] = T (t0) + T (t0)(R(t0)− 1) = T (t0)R(t0)

Note that the equation says nothing about genomes removed during this period.
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S1.2.3 Computing the generation time

Now we want to find the generation time. Since generation time is equivalent to population doubling
time under exponential growth, we need to compute the population doubling time given a fixed
rate of DNA synthesis. Intuitively, we are asking the question—if I transplanted this population
at time t0 from its current setting to one of unrestricted growth, what would be the population
doubling time? In other words, we want to know how long it would take for the number of genomes
to double, τ(t0), given a fixed R(t0) computed from time t0. Treating the number of genomes as
continuous, we can write our equation for exponential growth as follows:

Tt0

(
t0 +

t

C

)
= T (t0)R(t0)

t/C (1)

Note the dependence on t0: this quantity must be recomputed for each t0. Thus we can show that
the log2(PTR) is inversely proportional to generation time τ(t0):

2T (t0) = T (t0)R(t0)
τ(t0)/C =⇒ log2R(t0) =

C

τ(t0)

A consequence is that for any choice of t under exponential growth

Tt(t) = T (t0)R(t0)
t/C .

Taking the derivative of log2 Tt we get

d

dt
log2 Tt(t) =

1

C
log2R(t0).

In this specific case, R(t) corresponds to changes in population size.

S1.3 Points of departure from Bremer and Churchward (1977)

There are key conceptual differences between our argument and Bremer and Churchward (1977).
Bremer and Churchward (1977) start with an assumption of the form N(t), and derive expressions
for I(t) and T (t) using the parameters τ , C, and an additional parameter D that measures the
time between genome replication and cell division. Specifically, they assume

N(t) = N02
t/τ

I(t) = I02
t/τ

T (t) = T02
t/τ

Under exponential growth each of these quantities count the same thing but shifted in time, so

I0 = N02
(C+D)/τ

T0 = N02
D/τ

In contrast, here we do not want to assume a specific form for N(t), I(t) and T (t). In general,
we want I(t) and T (t) to arbitrary, and reflect some underlying model of dynamics. We derive an
expression for DNA synthesis under arbitrary I(t) and T (t). We solve for τ(t) by applying using
its equivalent to population doubling time under exponential growth.
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S1.4 Comparison with Lotka-Volterra dynamics

Suppose we have a community of D species. Let Ni(t) be the abundance of species i, gi be its growth
rate, and Aij be the effect of species j on species i. The generalized Lotka-Volterra equation for
population dynamics states

d

dt
Ni(t) = Ni(t)

gi +
D∑
j=1

AijNj(t)

 .

Using the identity d
dt logNi(t) = d/dt{Ni(t)}

Ni(t)
we can write.

d

dt
logNi(t) = gi +

D∑
j=1

AijNj(t).

If we set Aij to 0, the equation reduces to exponential growth. Let Ri(t0) be the PTR for species
i at some time t0, and Ci the time it takes the species to replicate its chromosome. Since PTRs
give us the derivative of log population size under exponential growth, assuming a Lotka-Volterra
model we have

gi ≈
1

Ci
logRi(t0). (2)

Hence,

d

dt
logNi(t) =

1

Ci
logRi(t0) +

N∑
j=1

AijNj(t).

Thus, logRi(t) is similar to the growth rate parameter gi of Lotka-Volterra, assuming Lotka-Volterra
accurately describes community dynamics.

However, there are 3 key differences. First, Lotka-Volterra models have a fixed growth rate
gi, so they do not model changes in growth over time. In contrast logRi(t) varies over time.
Second, logRi(t) may not be proportional to changes in abundance d

dt logNi(t) because of the
additional interaction terms Aij . Therefore, we should not expect PTRs to be predictive of changes
in abundance. Third, Lotka-Volterra models assume changes in abundance occur only due to growth
and species interactions. In contrast, PTRs are model free—measuring growth regardless of the
underlying model.

S2 Supplemental Note: Modeling the density of reads along the
genome

The results of the previous section demonstrated that log2(Ī/T̄ ) = C
τ , where Ī is the average

number of copies of the replication origin in a population, and T̄ is the average number of copies of
the replication terminus (we have dropped the explicit dependence on t for notation). Suppose we
are interested in the ratio of the average copies of an arbitrary position A along the chromosome
to the replication terminus. Let Ā be the average copies of A, and let CA be the time it takes the
replication fork to move from A to the replication terminus. Note that before the replication fork
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crosses A there is only one copy, and after the fork crosses A there are two copies. Thus, replacing
I with A and C with CA in the previous argument shows that

1

CA
(A− T )

also gives the rate of DNA synthesis. Therefore

log2(Ā/T̄ ) =
CA
τ

If we assume that chromosome replication happens at a constant rate along the genome, then CA
depends on the distance from A to the replication terminus. Let b be the shortest number of bases
between the origin and A, such that if we move from origin to the A we do not need to cross the
terminus. Let d be the number of bases from the origin to the terminus, and define f = b/d. Then
CA = C(1− f). Rearranging terms from above, we have

log2(T̄ ) = log2(Ī)− C

τ

log2(T̄ ) = log2(Ā)− CA
τ

= log2(Ā)− C(1− f)

τ

Subtracting the first equation from the second, and rearranging terms

=⇒ log2(Ā) = log2(Ī)− Cf

τ

Consequentially, the average copies of position A decays log-linearly with distance from the repli-
cation origin.

This also means that any probabilistic model of reads along the genome, coverage should decay
log-linearly away from the replication origin. Therefore, we propose the following model. Let
[0, 1] represent coordinates along a continuous approximation of a reference genome. Thus 0 is the
beginning of the reference, and 1 is the end. The model parameters are the origin position xi,
terminus position xt = (xi + 0.5) mod 1, and PTR r. We want a probability density given by

α =
log2 r

xi − xt
=

log2 p(xi)− log2 p(xt)

xi − xt
x1 = min{xi, xt}
x2 = max{xi, xt}

c(x) =

{
log2 p(xi) if x = xi

log2 p(xt) if x = xt

log2 p(x) =


−α(x− x1) + c(x1) if x ≤ x1
α(x− x1) + c(x1) if x1 < x < x2

−α(x− x2) + c(x2) if x ≥ x2

We need to compute log p(xi) and log p(xt) such that∫ 1

0
2log2 p(x) = 1.
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We can use the integral, and the constraint that log2 p(xi) − log2 p(xt) = log2 r to solve for each.
There are two cases. If xi ≤ xt, then

log2 p(xi) = log2 ln 2− log2

(
1

α

[
2αx1 + 2α(x2−x1) − 21 − 2−α(1−x2)−log2 r + 2− log2 r

])
log2 p(xt) = log2 p(xi)− log2 r

If xt < xi, then

log2 p(xt) = log2 ln 2− log2

(
1

α

[
2αx1 + 2α(x2−x1) − 21 − 2−α(1−x2)+log2 r + 2+ log2 r

])
log p2(xi) = log2 p(xt) + log2 r

S3 Supplemental Note: Variational inference for multi-mapped
reads

Suppose we have the following model for drawing the assignment of sequencing reads from a set of
G reference genomes indexed from 1...g.

1. Draw probabilities that a read originates from a reference genome:

π ∼ Dirichlet(α1, ...., αg).

2. For each read i = 1...n, pick a reference genome:

zi|π ∼ Categorical(π)

The prior for a genome αj is set to the number of reads the map unambiguously to that genome.
For notation, let zi be an indicator vector, where zij = 1 if zi is assigned to genome j. Let
xi = (xi1, xi2, ..., xig) ∈ {0, 1}g where xij = 1 if the read maps to a position in genome j, and is 0
otherwise. If read i maps to only one genome, then zi = xi. If read i maps to multiple genomes,
then zi places a restriction on xi: if zij = 1 then it must be true that xij = 1—assuming that one
of the given mappings is always correct. Thus, we can model xij as

p(xij = 1|zij) =

{
1 if zij = 1

ρij otherwise.

Now consider that once a sequencing read is observed, all valid mappings are determined. Hence
ρij = 1 if read i has a valid mapping to genome j and 0 otherwise. Therefore

p(xi|zi) =

g∏
j=1

x
zij
ij

if we define 00 = 1.
If we could compute

p(z1:n, π|x1:n)
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then we could assign reads to genomes based on the posterior. However, the normalizing constant
is

p(x1:n) =

∫
π

∑
z1:n

p(x1:n, z1:n, π) dπ (3)

which requires summing over an exponential number of combinations of z1:n. Nonetheless, we can
compute

p(zi|π, xi) =

∏
j:xij=1 π

zij
j∑

j:xij=1 πj

Additionally, since the Dirichlet distribution is a conjugate prior for the multinomial distribution

p(π|z1:n, x1:n) = p(π|z1:n) = Dirichlet

(
π;α+

n∑
i=1

zi

)

Therefore we can compute all of the complete conditionals. This means we can approximate
p(z1:n, π|x1:n) either using Gibbs sampling or mean field variational inference (Blei et al., 2017).
We chose variational inference.

Variational inference approximates an intractable posterior one by a tractable one q whose
parameters are optimized to minimize the a lower bound on the log-likelihood. Equivalently, varia-
tional inference minimizes Kullback-Leibler divergence between the true posterior and the approx-
imation. For the mean field approximation, q(z1:n, π) = q(π)

∏n
i=1 q(zi). The optimal choice for an

approximation q(zi) is given by (see Blei et al. (2017))

q(zi) ∝ exp {E−zi [log p(zi|π, xi)]}

∝ exp

 ∑
j:xij=1

zij E−zi [log πj ]


This set of equations give the natural parameters of a multinomial distribution, so q(zi) = Multinomal(zi; 1, φi)
where log φij = E−zi [log πj ] + const if xij = 1, and φij = 0 otherwise. The optimal choice for q(π)
is given by

q(π) ∝ exp {E−π [log p(π|z1:n)]}

∝ exp

{
E−π

[
n∑
i=1

log p(zi|π)

]
+ log p(π)

}

∝ exp


n∑
i=1

∑
j:xij=1

φj log πj +

g∑
j=1

(αj − 1) log πj


∝ exp


n∑
i=1

g∑
j=1

φj log πj +

g∑
j=1

(αj − 1) log πj


= Dirichlet

(
π;α+

n∑
i=1

φi

)
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The second set of equations gives the natural parameters of a Dirichlet distribution, so q(π) =
Dirichlet(π; η). Now we can compute for the final expectation:

E−zi [log πj ] = Ψ(ηj)−Ψ

 g∑
j′=1

ηj′

 .

where Ψ is the Digamma function.
The final component is computing the variational objective function. This is given by

L(z1:n, x1:n, π;φi:n, η) = Eq[log p(z1:n, x1:n, π)]−
n∑
i=1

Eq[log q(zi;φi)]− Eq[log q(π; η)]

The second two terms are the entropy of a multinomial and Dirichlet distribution respectively. The
joint model likelihood is

p(z1:n, x1:n, π) = p(π)

n∏
i=1

g∏
j=1

x
zij
ij π

zij
j

Hence

Eq[log p(z1:n, x1:n, π)] = Eq[log p(π)] +
n∑
i=1

g∑
j=1

Eq[zij ]xij + Eq[zij ]Eq[log πj ]

We now can define an inference procedure for computing the approximate posterior.

1. Initialize variational parameters φ1:n and η.

2. While L(z1:n, x1:n, π;φi:n, η) has not converged:

(a) Set q(zi) ∝ exp
{∑

j:xij=1 zij E−zi [log πj ]
}

for i = 1...n

(b) Set q(π) = Dirichlet (π;α+
∑n

i=1 φi)

The q(zi) define an approximate posterior over zi. Each read i is assigned to a genome j with the
largest posterior probability. If f(j) = φij = q(zi = j), then we assign read i to argmaxj=1...g f(j).
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