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Figure S1. Description of single-cell datasets and scATAC-seq filtering.

(A) Information for scRNA-seq and scATAC-seq datasets for adult mouse and fetal human.
The same class of cells (e.g., endothelial cells) but from different tissues were considered
distinct cell types. Cell types with insufficient (less than 5,000) scATAC-seq cuts were
removed because of unreliable tRNA quantification. After filtering, theoretical translation
efficiency (tTE) was calculated only for cell types that were present in both scRNA-seq and
scATAC-seq datasets. (B) Histograms showing the number of cuts to tRNA genes per cell,
for the mouse and human scATAC-seq datasets. Left: mouse, right: human.
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Figure S2. Correlation of tRNA quantifications across mouse brain datasets.
Spearman’s rank (p) and Pearson (r) correlation coefficients of anticodon isoacceptor usage
(blue) and amino acid isotype supply (black) across five datasets are shown: 3 scATAC-seq
datasets (aggregated in pseudobulk), a bulk ATAC-seq dataset, a Pol III ChIP-seq dataset,
and an RNA-based QuantM-tRNA-seq dataset. All datasets were generated using adult
mouse brain tissue. Scales, representing fraction of total usage, are indicated on the bottom
left and top right corners.
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Figure S3. Enrichment of alanine anticodons in mouse brain cells.
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(A-C) Bar plots show Ala anticodon usage across cell types. (A) Ala-AGC is enriched in
neurons. Glial cells have similar Ala-AGC usage to other cell types. (B) Ala-UGC and (C)
Ala-CGC are enriched in both neurons and glial cells, when compared to other cell types.
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Figure S4. Bulk mouse embryonic ATAC-seq dataset shows brain-specific clustering
and enrichment of alanine supply.

(A) Heatmaps illustrates the Euclidean distance in anticodon usage across tissue samples
from a bulk ATAC-seq dataset across early mouse development (Gorkin et al. 2020). (B)
PCA plot separates anticodon usage across tissues. Brain sample cluster (consisting of
forebrain, midbrain, hindbrain, and neural tube) is marked. (C-D) Volcano plots display
differences in (C) anticodon usage and (D) amino acid supply between brain and other
samples (-logio adjusted p-values and log> fold change (FC) determined using DESeq?2).
Vertical lines indicate a fold change greater than 25%.
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Figure S5. Bulk adult mouse Pol III ChIP-seq dataset shows enrichment of alanine
supply in brain.

(A) Heatmaps display the Euclidean distance in anticodon usage of Pol III ChIP-seq samples
of mouse liver and brain across development (Schmitt et al. 2014). (B) PCA plot separate
anticodon usage across brain (highlighted, left) and liver tissues. (C-D) Volcano plots reveal
significant differences in (C) anticodon usage and (D) amino acid supply between brain and
liver samples (-logio adjusted p-values and log> fold change (FC) as determined using
DESeq2). Vertical lines indicate a fold change greater than 25%.
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Figure S6. Bulk adult mouse QuantM-tRNA-seq dataset shows brain-specific clustering
and enrichment of alanine supply.

(A) Heatmaps show the Euclidean distance in anticodon usage across tissue samples of adult
mouse using a bulk QuantM-tRNA-seq dataset (Pinkard et al. 2020). Bar (right) highlights
the brain-specific cluster. (B) PCA plot separates anticodon usage across tissues. The
separately clustering brain samples are highlighted. (C-D) Volcano plots show (C) anticodon
usage and (D) amino acid supply between brain-specific cluster and other samples (-logio
adjusted p-values and log, fold change (FC) as determined using DESeq?2). Vertical lines
indicate a fold change greater than 25%.
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Figure S7. Brain neurons cluster separately in individual tRNA gene usage.

(A) Heatmaps illustrate the Euclidean distance in individual tRNA gene usage across cell
types. Bars (right) emphasize neuronal cell type. (B) PCA plot separates tRNA gene usage
across cell types. The brain neuron specific cluster is indicated. Left: mouse, right: human.
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Figure S8. Alanine is the only AA with a statistically significant enrichment in AA
supply-to-demand in both mouse and human.
(A) Violin plots show ratios of AA supply-to-demand when comparing brain neurons (red) to
all other cell types (green) for the 20 classical AAs. (B) Bar plot displays the p-value (Mann-
Whitney U test) indicating significant differences in AA supply-to-demand ratio for each AA
between neurons and other cell types. The vertical line corresponds to p-value of -logi0(0.05).
Bars are colored by fold change in mean AA supply-to-demand ratio in brain neurons

compared to other cell types. Left: mouse, right: human.
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Figure S9. Dividing six box amino acids into two anticodon-codon sets results in similar
conclusions
(A) Violin plots display theoretical translation efficiencies (tTEs) and tTE p-values between
brain neurons (red) and other cell types (green). (B) Violin plots show ratios of AA supply-
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to-demand when comparing brain neurons to all other cell types for the 23 groups. Six box
amino acids (Arg, Leu, Ser) were divided into two groups based on the anticodons that can
complementarily base pair with them, yielding 23 groups instead of 20. Specifically, NCG
anticodons can base pair with CGN codons (referred here as Arg-1), while YCT anticodons
can base pair with AGR codons (Arg-2). NAG anticodons can base pair with CTN codons
(Leu-1) and YAA anticodons can base pair with TTR codons (Leu-2). NGA anticodons can
base pair with TCN codons (Ser-1) and RCT anticodons can base pair with AGY codons
(Ser-2). N=A,C,G,U;R=A,G; Y =C, U. (C) Bar plot illustrates the p-value (Mann-
Whitney U test) for the difference in AA supply-to-demand ratio for each AA between brain
neurons. The vertical line corresponds to p-value -logi0(0.05). Bars are colored by fold
change in mean AA supply-to-demand ratio in brain neurons compared to other cell types.
Left: mouse, right: human. Asterisks display degree of significance *p<0.05, **p<0.01
(Mann-Whitney U test).
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