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Supplemental Methods
Yeast strains and growth

Epitope tags were introduced into BY4741 to generate strains TBY 100 and RMYDS2,
and into YFR1321 to generate RMYDS10, by PCR amplification from strains containing the
tagged protein and selectable marker, followed by transformation and selection (Hill et al. 1991;
Longtine et al. 1998); strains were verified by PCR and ChIP. Cultures were grown in yeast
peptone dextrose (YPD) medium (1% bacto-yeast extract, 2% bacto-peptone extract, 2%
glucose). For Rapl ChIP in wild type and rapI-ts yeast (Li et al. 2011), cultures were shifted to
37°C for 1 hr before cross-linking and ChIP and processed as described previously (Paul et al.

2015a).



ChIP-seq

ChIP was performed as described previously (Knoll et al. 2018). For IP, 600 puL of whole
cell extract (WCE) prepared from a 50 ml culture was incubated overnight at 4°C with 10ug of
monoclonal RNA Poll antibody (Biolegend, USA), 2pug of anti-myc antibody (Sigma), or 2 pg of
anti-Rap1 antibody (Santa Cruz, USA). Sixty microliters of WCE was used as Input control.
Immunoprecipitated DNA was purified using 40 pL of protein A or G beads (Amersham/GE)
with gentle agitation at 4°C for 90 min, and cleanup and purification performed as described
previously (Knoll et al. 2018).

Libraries were prepared for sequencing using the NEBNext Ultra II library preparation
kit (New England Biolabs, USA) according to manufacturer's protocol and barcoded using
NEXTflex barcodes (BIOO Scientific, Austin, TX, USA) or NEBNext Multiplex Oligos for
[llumina. Purification and the size selection step were performed on barcoded libraries by
isolating fragment sizes between 200 and 500 bp by using AMPureXP beads (Beckman Coulter,
USA); size selection was confirmed by Bioanalyzer. Sequencing was performed at the Illumina
NextSeq platform at the Wadsworth Center, New York State Department of Health (Albany, NY,
USA) or, for Rapl ChIP-seq, at the Carolina Center for the Genome Sciences, University of
North Carolina at Chapel Hill. Data from biological replicate experiments were analyzed
separately with the exception of Figure 4C and Supplemental Figure S6, in which, because of
low signal to noise in individual experiments, data was combined from four replicates for Med15
occupancy in wild type yeast (BY4741) and three replicates for ~imoIA yeast. Correlation
analysis (determined using the Galaxy server) of ChIP-seq experiments examining Med15

occupancy supports good reproducibility between replicates (Supplemental Figure S15).



ChIP-seq analysis

Unfiltered sequencing reads were aligned to the S. cerevisiae reference genome (Saccer3)
using bwa (Seoighe and Wolfe 1999). Up to 1 mismatch was allowed for each aligned read.
Reads mapping to multiple sites were retained to allow evaluation of associations with non-
unique sequences (Seoighe and Wolfe 1999). Calculation of coverage, as shown in heat maps
and line graphs, was preceded by library size normalization, and was performed with the
“chipseq” and “GenomicRanges” packages in BioConductor (Gentleman et al. 2004).
Alternatively, reads were aligned and analysis conducted using the Galaxy platform (Goecks et
al. 2010) and Excel. For metagene analysis, including heat maps, we subtracted reads from an
input control (strain YFR1321, the parent strain to kin28-AA yeast (KHW127), grown in the
absence of rapamycin); use of a different input control (Knoll et al. 2018) yielded
indistinguishable results. For Rap1, reads from the rap -2 ts mutant, which has greatly reduced
binding at 37°C (Drazinic et al. 1996; Ganapathi et al. 2011), were subtracted from the wild type
strain also grown at 37°C for one hour. For line graphs, baselines were rescaled to adjust for
different background levels. Heat maps and line graphs shown in the figures were from
representative experiments with replicates shown as supplemental figures in most cases.
Experiments comparing 4moIA and BY4741 yeast (Figure 4C and Supplemental Figure S6B-C)
yielded low signal; for these experiments, data from three BY4741 replicates and four ~imolA
replicates were combined to produce the resulting line graphs and heat maps.

Pol II occupancy was determined as read depth over ORFs, normalized for length, and

Mediator occupancy was determined as normalized read depth over the 300 bp upstream of TSS



using BedCov in SamTools (Li et al. 2009). Clustering analysis (Supplemental Fig. S1) was
performed using Cluster and Treeview (Eisen et al. 1998). The 1000 genes having highest Pol 11
occupancy were obtained using BedCov from SamTools to obtain read depth over coding
sequences using Pol IT ChIP-seq data (strain BY4741 grown at 30°C in YPD medium) (Paul et
al. 2015b; Knoll et al. 2018). Genes designated as SAGA-dominated and TFIID-dominated were
obtained from (Huisinga and Pugh 2004), and genes designated as containing or not containing a
consensus TATA element, and being Tafl-enriched or Taf1-depleted, were obtained from (Rhee
and Pugh 2012). Targets of Hsfl were defined as those genes that are not activated by heat shock
if Hsfl is depleted (Pincus et al. 2018; Tye et al. 2019), Msn2/4 targets were defined in (Solis et
al. 2016), and CdCI2 induced genes labeled “Momose” in the figures were those identified in
Table 3 of (Momose and Iwahashi 2001). RP genes were divided into Abfl-binding genes (nine
genes; we also included RPL15B, which is a “Category III” gene according to (Knight et al.
2014), and appears to bind Abfl and Rap! poorly if at all) and Rap1-binding genes that do or do
not bind Hmol according to (Knight et al. 2014). Hmol occupancies were calculated over a
region of 1 kb upstream of gene ORFs using BedCov from SamTools (Li et al. 2009) applied to
data from (Knight et al. 2014). The various gene sets used are listed in Table S2. Occupancy
profiles were normalized for read depth and generated using the Integrative Genomics Viewer
(Robinson et al. 2011). Gene Ontology analysis was performed using the Generic Gene Ontology

Term Finder (https://go.princeton.edu/cgi-bin/GOTermFinder/GOTermFinder) (Boyle et al.

2004). Hypergeometric test p-values were calculated using the online calculator at

http://www.alewand.de/stattab/tabdiske.htm, and p-values for distributions shown in box plots

were_calculated using the Wilcoxon rank sum test. Box plots depict the second and third quartiles

as boxes, and the first and fourth quartiles as whiskers; median values are depicted as horizontal



lines separating second and third quartiles, and outliers are represented as points above and
below the whiskers.

Previously published ChIP-seq data used in this work was accessed at the NCBI
BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession number

PRINA413080 (Knoll et al. 2018) and PRINA261651 (Knight et al. 2014).
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Supplemental Fig S1. Pol II recruitment following heat shock. (A) Heat maps and line graphs depicting normalized Pol II occupancy in
rapamycin-treated YFR1321 cells (the parent strain for anchor-away strains) before and after 15 min heat shock at 42 Hsf1 targets and
213 Msn2-4 targets (see Methods and Supplemental Table S2) and 137 RP genes. (B) K-means clustering (K=6) was performed for the
ratio of Pol II occupancy (normalized for gene length) before and after heat shock, in YFR1321 and BY4741, using the 1000 genes
having highest Pol II occupancy (normalized for ORF length) under non-heat-shock conditions plus the 300 genes having highest
occupancy after heat shock (1179 ORFs, due to overlap between the two sets). Enrichment for TFs in individual clusters, as shown,
derived from CERES (Morris et al., 2010). (C) Effect of Med17 depletion by anchor-away on Pol II occupancy. Box and whisker plots
depicting ratios of Pol II occupancy (normalized for gene length) in the parent strain, YFR 1321, relative to the med17-AA strain
(YFR1544), both treated with rapamycin, with and without heat shock, as indicated. Left panel depicts replicate experiments examining
the 886 genes with highest Pol II occupancy in the absence of heat shock (three outliers with ratios >8 in replicate 1 were removed for
clarity) and 294 genes having highest occupancy after heat shock. Right panel depicts the 294 genes having highest Pol II occupancy after
heat shock, divided into Hsf1 targets (34 genes), Msn2-4 targets (48 genes), and other genes (212 genes).
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Supplemental Fig S2. Effect of heat shock on Mediator association. (A-B) Biological replicate experiment for Figure 2A. (A) Heat maps and
line graphs depicting normalized occupancy of the Mediator tail module subunit, Med15, in kin284A yeast treated with rapamycin and the
parent strain YFR1321, also treated with rapamycin, before and after 15 min heat shock, at Hsf1 targets, Msn2-4 targets, and RP genes. (B)
Box and whisker plots showing the ratios of Med15 occupancy with and without Kin28 depletion for the ~300 genes showing highest Med15
occupancy in Kin28-depleted cells without or with heat shock; ratios are also shown for RP genes, Hsfl targets, and Msn2-4 targets in heat-
shocked cells. (C) Box and whisker plots showing the ratios of Med15 occupancy with and without Kin28 depletion for the ~300 genes
showing highest occupancy by Pol II or Med15, as indicated, without or with heat shock. Data same as used for Supplemental Fig S1. (D)
Line graphs depicting occupancy of Med15 in kin28-4A yeast normalized to the parent strain, both treated with rapamycin, in each of two
replicate experiments without and with heat shock. Occupancy was determined for the ~300 genes most highly occupied by Pol II after heat
shock (HS15 graphs), and the 641 most highly occupied genes in the absence of heat shock (noHS graphs); the latter number was chosen
based on having the same lower cutoff for occupancy as for the heat shock cohort.
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Supplemental Fig S3. Browser scans showing Med15 occupancy in kin28A4A yeast and the parent strain, both
treated with rapamycin, with and without heat shock. Scale, in reads per million mapped reads, is indicated for
each scan. (A) TPS1 and TSLI are Msn2/4 targets and are expressed at low levels in the absence of heat shock and
induced 5-10 fold upon heat shock based on Pol II occupancy; (B) 7541 is expressed in the absence of heat shock
and shows 2-fold increased Pol II occupancy on heat shock, and is not a target of Hsfl or Msn2/4; and (C) YDJ1 is

a target of Hsfl and is expressed both with and without heat shock with little change in Pol II occupancy. Note that
RPSI8B and RPS174 in (B) are strongly repressed upon heat shock.
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Supplemental Fig S4. Comparison of Mediator occupancy in epitope-
tagged strains derived from wild type yeast (BY4741; strains TBY 100
and RMYDS?2) and after Kin28 depletion (kin2844 yeast treated with
rapamycin; strains TBY 128 and EKY 18), with and without heat shock,
at Hsfl targets, Msn2-4 targets, and RP genes. Left, Med15 (tail
module) occupancy; right, Med18 (head module) occupancy.
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Supplemental Fig S5. Pol I and Mediator occupancy at subsets of RP genes. Heat maps and line graphs are shown for (A) Pol II and (B)
Med15 (tail) in YFR1321, the parent strain for kin28-4A yeast, treated with rapamycin, at 69 RP genes binding Hmo1, 60 RP genes
binding Rapl, Ith1, and Fhll but not Hmol, and 10 genes binding Abf1 (RPS22B is included in the non-Hmo1-binding gene set, according
to (Knight et al., 2014), but binds Abf1 and so is also included in that set). Hmol binding (bottom, part (A) from ChIP-seq data from
Knight et al., 2014.) (C) Line graphs depicting occupancy in YFR1321 of Med15 and Rap1 at Hmo1-binding and Hmo1-non-binding RP
genes that do not bind Abf1.
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Supplemental Fig S6. Mediator association at high and low Hmo1-binding UAS genes repressed by heat shock in wild type and hmo1A4 yeast. (A)
Hmo1 occupancy (reads summed over 1 kb upstream of ORF) at UAS genes from (Knight et al., 2014). Genes are ordered from highest to lowest
Hmo1 occupancy and are designated as high and low Hmo1-binding as indicated, as are RP genes. (B) Heat maps and line graphs showing Med15
occupancy at five UAS genes down-regulated by heat shock and having high Hmo1 occupancy and at 105 down-regulated UAS genes having low
Hmo1 occupancy in kin28AA yeast and the parent strain, both treated with rapamycin, before and after 15 min HS. (C) Heat maps and line graphs
showing Med15 occupancy at five UAS genes down-regulated by heat shock and having high Hmo1 occupancy and at 105 down-regulated UAS genes
having low Hmo1 occupancy in BY4741 and hmo14 yeast after 15 min HS.
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Supplemental Fig S7. Mediator and Pol II occupancy at non-RP, Rap1-binding genes before and
after heat shock. Browser scans are shown for Pol II in YFR1321, the parent strain for kin28A4A4
yeast, and for Med15 in kin28A4A yeast, both treated with rapamycin; and for Rapl in BY4741 yeast
at the five non-RP, Rap1-binding genes exhibiting highest normalized Pol II occupancy in wild type,
unstressed yeast. Scale, in reads per million mapped reads, is indicated for each scan.
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Supplemental Fig S8. Persistent Mediator occupancy at non-RP genes. Heat maps and line graphs for
Pol IT and Med15 (tail module) at 39 genes showing down-regulated Pol II occupancy by at least 4X
(“Pol IT down”) upon heat shock and 97 genes showing increased or unchanged Pol II occupancy
(“Pol IT not down”), with both sets derived from the 500 genes exhibiting greatest Med 15 occupancy
in kin28AA yeast treated with rapamycin in the absence of heat shock. Pol II occupancy is shown in
YFR1321, the parent strain for kin28A4A yeast, and Med15 occupancy is shown for YFR1321 and
kin28A4A yeast, in both cases before and after heat shock.
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Supplemental Fig S9. Effect of depleting PIC components on Mediator association with gene promoters.
Replicate experiment for Figure 5B. Heat maps and line graphs showing normalized occupancy of Med15
(tail) and Med18 (head) at the ~300 genes with highest Pol II occupancy after heat shock, Hsf1 targets, and
RP genes after depletion of Kin28 alone or together with Taf1, TBP, or Rpb3, as indicated, without or with 15
min heat shock, as indicated. The Med18 ChIP sample in kin28-tbp-AA yeast done in parallel with the other
Med18 ChIP samples in the figure failed, so a later replicate was used; this replicate differed in its baseline
(note the difference in the heat map), and so the baseline for the line graph of Med18 in kin28-tbp-AA yeast
treated with rapamycin was adjusted to conform with the other samples.
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Supplemental Fig S10. Effect of depleting PIC components on Mediator association with gene promoters of (A) TATA-
containing and TATA-less promoters, and (B) Hsf1 targets divided into SAGA-dominated and TFIID-dominated promoters
(Table S2). (A) Heat maps and line graphs showing normalized occupancy of Med15 (tail) and Med18 (head) at TATA-
containing promoters (111 genes) and TATA-less promoters (83 genes) from the 300 genes with highest Pol II occupancy
after 15 min of heat shock. (B) Heat maps and line graphs for Med15 occupancy at 13 SAGA-dominated and 25 TFIID-

dominated Hsfl1 targets (Table S2). Occupancy is shown after depletion of Kin28 alone with or without heat shock, and
after depletion of Kin28 and Tafl, TBP, or Rpb3 followed by 15 min of heat shock.
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Supplemental Fig S11. Mediator association at subsets of RP genes after CdCl, exposure. Heat maps and line
graphs showing normalized occupancy of Med15 and Med18 in kin284A yeast treated with rapamycin, with and
without CdCl, exposure, at RP genes divided into Hmo1-binding, non-Hmo1-binding, and Abfl binding genes
(Table S2).
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Supplemental Fig S12. Browser scans showing Med15 occupancy in kin28AA yeast, Rapl occupancy in
BY4741 wild type yeast, and Hmol occupancy in W303 wild type yeast at representative Rap1-binding RP
genes. Data for unstressed and heat shock conditions, and for Rapl and Hmol, are the same as Figure 4. Scale,
in reads per million mapped reads, is indicated for each scan.
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Supplemental Fig S13. Effect on Pol II and Mediator occupancy of CdCl, exposure at UAS genes. Heat maps
and line graphs showing normalized occupancy of Pol II at UAS genes, separated into genes showing Pol 11
occupancy reduced by at least 2-fold upon CdCl, exposure and excluding RP genes (“Down”, 40 genes) or
having Pol II occupancy between 80% and 125% seen in untreated cells (“Not down”, 286 genes). Pol II
occupancy was determined in the anchor away parent strain YFR1321 with or without CdCl, exposure, and
Med15 (tail module) and Med18 (head module) occupancies were measured in kin28-AA yeast treated with
rapamycin with or without CdCl, exposure.



Mediator

Heat shock or A =

;\\ other stress ¥ ,r'Q’\)%\

% — N — 4

enes \ A oo >\ N E % ‘
g N’ \ \\ 2y oD
= & ,/\ TATA -~}
-" Heat shock or
& S other stress et
Repressed @@
<
genes b

N Ak

—~——

Supplemental Fig S14. Cartoon of Mediator recruitment and transcriptional activation. Under
normal growth conditions (top), Mediator is recruited via its tail module by an activator bound to a
UAS, and in turn recruits components of the PIC, with TBP being required for Mediator transit from
UAS to the proximal promoter, which may or may not possess a consensus TATA element.
Association of Mediator with the proximal promoter is normally transient, being rapidly lost upon
Kin28-dependent promoter escape by Pol II, but is stabilized by depletion or inactivation of Kin28.
Heat shock or other stress (such as CdCl, exposure) prevents PIC assembly and transit of Mediator
to the proximal promoter of repressed genes through an unknown mechanism.



Supplemental Fig S15. Spearman
correlation coefficients for 15 ChIP-
seq experiments examining
occupancy of Med15. Correlation
coefficients were determined for
reads mapping to the region 300 bp
upstream of the ORF for the 300
promoters most highly occupied by
Pol I after 15 min of heat shock.
"Parent” refers to YFR1321, the
parent strain for the kin28AA strain,
both of which were treated with
rapamycin (see Methods). HS
indicates 15 min of heat shock;
samples not labeled “HS” were not
subject to heat shock.
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