
I_A01_YJS7800

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

II_E07_YJS7954

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

I_H06_YJS7889

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

III_H05_YJS8088

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

III_F11_YJS8070

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

III_D04_YJS8039

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

III_A12_YJS8011

2n 3n3n 4n

NA NA NA

DEBR0S7 DEBR0S8

DEBR0S5 DEBR0S6

DEBR0S3 DEBR0S4

DEBR0S1 DEBR0S2

0 1 2 3 4 0 1 2 3 4

2
3
4
5
6
7

2
3
4
5
6
7

2
3
4
5
6
7

2
3
4
5
6
7

Genomic position [Mb]

C
ov

er
ag

e 
[lo

g2
]

DEBR0S7 DEBR0S8

DEBR0S5 DEBR0S6

DEBR0S3 DEBR0S4

DEBR0S1 DEBR0S2

0 1 2 3 4 0 1 2 3 4

2
3
4
5
6
7

2
3
4
5
6
7

2
3
4
5
6
7

2
3
4
5
6
7

Genomic position [Mb]

C
ov

er
ag

e 
[lo

g2
]

II_E07_YJS7954I_A06_YJS7805

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

3n
I_A10_YJS7809

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Allele frequency

D
en

si
ty

I_A06_YJS7805

3n

A

B

Figure S1

C

Figure S1: Allele frequencies and genome-wide coverage.
A Estimation of ploidy in 71 strains using short read sequencing data. Shown are examples of strains from each 
subpopulation. The level of ploidy varies between 2n (diploid) and 4n (tetraploid). For three individuals, ploidy could 
not be estimated based on 24,313 genome-wide distributed variants (framed in black). B-C Genome-wide coverage to 
detect potential aneuploidies. Coverage-based analysis did not show aneuploidies (segmental, chromosomal) that 
would explain the patterns of the three strains in (A), for which ploidy level failed to be determined by allele frequency. 
Shown are the strains I_A06_YJS7805 (B), for which ploidy could be determined (see Panel A), and II_E07_YJS7954 
(C), where the usage of allelefrequencies was not sufficient to determine its ploidy.
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Figure S2: Separating sequencing reads based on intra-genomic variation to the reference genome.
A Long reads were first aligned to the reference genome B. bruxellensis (Fournier et al. 2017) and separated based 
on their variation (SNPs/kb). Respectively, reads with low genetic variation to the reference genome were clustered 
and defined as low-intra genomic variation, reads with high genetic variation to the reference genome were clustered 
and defined as high-intra genomic variation.
B Three subpopulations with high-intra genomic variation. Shown is the intra-genomic variation from strains of the 
subpopulations teq/EtOH, beer and wine 1. These strains harbour, besides low intra-genomic variation with an 
average of 2.0 SNPs/kb, a cluster of reads with high intra-genomic variation (average 24.4 SNPs/kb) to the reference 
genome.
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Figure S3

Figure S3: Phasing the polyploid wine 2 subpopulation with low intra-genomic variation.
A Separation of haplotypes. The program nPhase (Abou Saada et al. 2021) separated the chromosomes into 
haplotypes, which in most cases, resolves the chromosomes into two more haplotigs at a given region.
B-C Intra-genomic variation. The separation of regions underlying two (B) or three (or more; C) haplotypes correspond 
to different levels of intra-genomic variation. Regions with two haplotypes have on average intra-genomic variation of 
0.09%, while this increases to 0.54% regions with three haplotypes.   
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Figure S4: Coverage analysis and ploidy determination using long read sequencing data.
A Example of chromosome 1 (DEBR0S1) of a beer strain where long reads were aligned to the reference genome 
of B. bruxellensis (Fournier et al. 2017). First, reads have been separated based on the number of SNPs/kb, 
respectively into clusters of low or high intra-genomic variation to the reference genome (see: Material & Methods), 
and then compared to the total coverage at a given site. 
B With the coverage of the reads bearing low or high intra-genomic variation to the reference genome (A), the 
ploidy was estimated for strains from the three subpopulations teq/EtOH, beer and wine 1. The reads containing 
high intra-genomic variation contributed on average to a third of the total coverage at each site, reflecting a triploid 
state (3n) for these strains. Ploidy was converted from ratios (see Material & Methods).
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Figure S5: Competitive mapping for comparative genomic analysis (see also Figure 2S). 
In order to perform a comparative analysis on the different genomic copies, first independent de novo assemblies 
were constructed from reads with low or high intra-genomic variation to the reference genome (Fournier et al. 
2017). De novo assemblies from three strains of the different subpopulations were then concatenated and used as 
reference sequences for the other strains of the same subpopulation (see: Material & Methods). Short sequencing 
reads were separated based on a comparative mapping approach using the concatenated de novo genome 
assemblies. Finally, the separated short sequencing reads were aligned back to the reference genome of B. 
bruxellensis, to perform comparative analyses.
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Figure S6: De novo genome assembly statistics for four sister species of B. bruxellensis and B. 
bruxellensis. 
The assembly statistics (A-D) are in accordance with those from Roach & Borneman (2020). 
E-F Collinearity plots comparing synteny between de novo assemblies. Both assemblies, respectively performed 
using reads with high or low intra-genomic variation reveal a good synteny, albeit rearrangements with the 
reference genome B. bruxellensis (Fournier et al 2017) can be seen (MUMmer parameters: --mum -l 200).
G Collinearity plots comparing synteny between the de novo assembly from reads with high intra-genomic variation 
and B. anomala. Collinearity is disrupted by many small syntenic elements, which only appear as parameters were 
loosen (MUMmer parameters: -- mum -l20 -c 30 -b 100).
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Figure S7: De novo genome assemblies.
A Genome assemblies were prepared for the reads harbouring either low or high-intra genomic variation to the 
reference. The difference in total assembly size for the de novo assemblies of the high intra-genomic variation is 
9.08 Mb, significantly different to those based on low intra-genomic variation with 12.92 Mb (median; p value = 1.3 
× 10-10).
B The total assembly sizes of strains from different subpopulations (only high intra-genomic variation). Lowest total 
assembly length was determined for the subpopulation beer (8.84 Mb), followed by wine 1 (10.18 Mb), and teq/
EtOH (10.34 Mb). Red dotted line represents the assembly length of the B. bruxellensis reference genome 
assembly (Fournier et al. 2017; 13 Mb).



A

B

Figure S8

DEBR0S7 DEBR0S8

DEBR0S5 DEBR0S6

DEBR0S3 DEBR0S4

DEBR0S1 DEBR0S2

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0
10
20
30
40
50
60

0
10
20
30
40
50
60

0
10
20
30
40
50
60

0
10
20
30
40
50
60

Genome position [Kb]

C
ov

er
ag

e Genomic Copy
1n

2n

Alignement of 2n<>1n to B.brux; 71 MinION
 I_H12_YJS7895 orange aligned to REFIH12

High
Low

[kb]

DEBR0S7 DEBR0S8

DEBR0S5 DEBR0S6

DEBR0S3 DEBR0S4

DEBR0S1 DEBR0S2

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0
10
20
30
40
50
60

0
10
20
30
40
50
60

0
10
20
30
40
50
60

0
10
20
30
40
50
60

Genome position [Kb]

C
ov

er
ag

e Genomic Copy
1n

2n

Alignement of 2n<>1n to B.brux; 71 MinION
 III_D04_YJS8039 red aligned to REFIIID04

High
Low

[kb]

Figure S8: Reciprocal shifts in coverage underlying LOH events.
A-B Example of coverage plots, calculated using 10 kb windows along the scaffolds for two strains from the 
subpopulations beer and wine 1. Plotted are the strains IH12_YJS7895 (A; beer) and III_D04_YJS8039 (B; wine 1), 
which were initially aligned to subpopulation-specific reference genomes (concatenated de novo assemblies) to 
separate reads with low or high intra-genomic variation, and then aligned back to the reference genome B. 
bruxellensis (Fournier et al., 2017). In red (High), the reads from the high intra-genomic copy are shown, in blue 
(Low), the reads from the low intra-genomic copy. Example (A): The average coverage of the High genomic copy is 
10x (=haploid), while the Low genomic copy is 20x (=diploid). The total coverage (sum of High + Low) is 30x. This 
coverage of Low vs. High is not consistent across the genome, where shifts in coverage show that additional 
regions of a genomic copy have been acquired or were lost.
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Figure S9

Figure S9: Candidate approach to test for functional enrichment in polyploids.
A-H A set of 65 candidate genes were used to check if regions, underlying genomic modifications in the polyploid 
strains from the subpopulations teq/EtOH, beer and wine 1, are particularly enriched in genes underlying different 
functions. The subset of genes is from Colomer et al. (2020). Plots are showing the number of haplotypes 
associated with low or high intra-genomic variation in 10 kb windows.
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Figure S10: Pairwise genetic distance. 
We concatenated gene sequences (ATP6, ATP8, COX2, COX3, NAD1, NAD3, NAD4, NAD4L) to calculate pairwise 
genetic distance between 70 strains (III_G10_YJS8081 is missing since mitochondrial assembly could not be 
generated). Cluster analysis reveals that the teq/EtOH subpopulation is highly diverged to other strains.
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