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S1 A Divide-and-conquer Approach to Larger Numbers of Genomes

While VICAR is general enough so as to handle an arbitrary number of taxa, its running time could

increase super-exponentially in the number of taxa. It is important to note, though, that, in prac-

tice, this number could grow much slower, depending on the evolutionary parameters, which control

the number of distinct states generated by the simulation underlying ApproximateLikelihood.

We propose a divide-and-conquer approach to ameliorate this problem. The method first di-

vides the set of taxa into overlapping three-taxon subsets whose subtree parameters cover all the

parameters of the full species tree, and then infers the parameters of each subtree using Algorithm

2.

For the divide step, in order to cover all the continuous parameters of the full species tree Ψ, we

only need to cover all the internal edges. Using three leaves to cover an internal branch e = (u, v)

in Ψ, we need one leaf from the left child clade of v, one leaf from the right child clade of v, and one

leaf from the right child clade of u. The process is illustrated in Fig. S1. The full species tree on
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Figure S1: Divide-and-conquer inference on a four-taxon data set. The set of taxa
{A,B,C,D} is divided into two sets {A,B,C} and {A,C,D} along with their respective species
trees. Each of the two data sets are analyzed and the results are merged.

taxa A, B, C, and D has two internal branches, each of which is covered by one of the two subtrees
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shown in the figure. There are a total of six continuous parameters for the full tree: node heights

T1, T2, and T3, population sizes N12, N23, and root population size N1. Analysis of data from taxa

A, B, and C allows for inferring the parameters T2, T3 and N23. Analysis of data from taxa A, C,

and D allows for inferring the parameters T1, T2, N12, and N1.

While in this work we consider each subset independently when running Algorithm 2, a future

direction involves implementing an algorithm that is aware of the parameter overlap. For example,

when the two data sets are analyzed, the algorithm is made aware of the fact that T2 is the same

parameter in both data sets. This should scale linearly with the number of taxa, as we would need

to infer the parameters for one triplet per internal branch. The divide-and-conquer approach also

has similarities to the method of composite likelihoods (Varin, Reid, and Firth, 2011; Larribe and

Fearnhead, 2011), which has been used in previous coalHMM frameworks (Cheng and Mailund,

2020; Steinrücken et al., 2019; Schiffels and Wang, 2020), as well as other phylogenetic methods

(Liu, Yu, and Edwards, 2010). The major difference between the divide-and-conquer method and

other composite likelihood methods is that our approach performs inference on each subproblem,

while composite likelihood methods combine likelihoods for a collection of the subsets of the data

into one likelihood that can be used for full inference.

S2 Simulation Study on a Four-taxon Data Set

To test the practicability of the divide-and-conquer idea, we simulated a four-taxon sequence data

set on the species tree whose topology is (((A,B),C),D). The demographic parameters are TAB =

100,000, TABC = 160,000, TABCD = 450,000. All branches have population size 40,000. The recom-

bination rate is r = 1.5× 10−7/site/generation. The mutation rate is 1.25× 10−6/site/generation.

The length of the sequence is 200,000 bp. We first ran a full inference on all taxa, and then ran a

divide-and-conquer inference to compare the results.

S2.1 Full Inference on Four Taxa

The configuration of the coalHMM likelihood kernel for the full inference is nb = 2 and -r = 1000.

Black box variational inference was set to run for 200 iterations with 50 samples per iteration. We
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used an improper uniform prior U(0, inf) on node heights, and a gamma prior on population sizes

with a shape parameter of 2 and a scale parameter of 25,000. The inference took 83.09 hours. 7.62

hours were used to build the coalHMM, and 75.46 hours were used to compute likelihood by the

Forward algorithm. It is worth pointing out that, due to the increased number of taxa, the number

of hidden states of the coalHMM is significantly increased, resulting in a very long running time for

the Forward algorithm, which is quadratic in the number of hidden states. This is a major reason

why coalHMM methods are limited to a few taxa. The inference results are shown in Table S1.

The true values of most of the parameters are within the 95% credible intervals of the estimates,

Table S1: Result of full inference on the four-taxon data set. The means and standard
deviations of the parameter estimates as well as the true parameter values are shown.

Parameter Mean Standard Deviation True Value

TAB 81770 12730 100000
TABC 145883 11568 160000
TABCD 422377 16254 450000
NAB 51343 6135 40000
NABC 37788 3430 40000
NABCD 55340 6623 40000

but the results are not very accurate. The reason is that we used two sub-branches per branch,

which, based on our results for three taxa, is suboptimal for accuracy, but inference with only two

sub-branches took over 80 hours on a Macbook Pro with 2.4 GHz Intel Core i5 CPU. Results using

more sub-branches may be more accurate but we stuck with two sub-branches to limit running

time.

S2.2 Divide-and-conquer Inference

We tried the divide-and-conquer approach on this data set to reduce the running time and improve

the accuracy. As shown in Fig. S1, two three-taxon inferences were run to cover all the parameters

of the four-taxon tree. The ((A,B),C) subtree covers TAB, TABC , and NAB, while the ((A,C),D)

subtree covers TABC , TABCD, NABC , and NABCD. The parameter TABC is covered by both data

sets. The root population size of the ((A,B),C) subtree is inferred but omitted when reporting the

results, because it is not clear whether the value should be compared with NABC or NABCD.
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To infer parameters of the ((A,B),C) tree, we used nb = 2 and -r = 1000 for building the

coalHMM. Black box variational inference settings and prior settings are the same as the full

inference. The inference took 5.20 hours. 3.01 hours were used to build the coalHMM, and 2.19

hours were used to compute the likelihood by the Forward algorithm. The parameter estimate

results are shown in Table S2.

Table S2: Inference results on the ((A,B),C) tree.

Parameter Mean Standard Deviation True Value

TAB 99026 12903 100000
TABC 160495 13154 160000
NAB 39223 7056 40000

To infer parameters of the ((A,C),D) tree, we used nb = 4 and -r = 1000 for building the

coalHMM. We used two more sub-branches for each branch since the ((A,C),D) tree has a longer

internal branch resulting from not sampling taxon B. This illustrates the flexibility of the divide-and-

conquer approach where coalHMM settings can be adjusted according to the specifics of different

sub-instances of the problem, saving computational resources overall. The inference took 26.92

hours. 5.41 hours were used to build the coalHMM, and 21.50 hours were used to compute the

likelihood by the Forward algorithm. The results are shown in Table S3.

Table S3: Inference results on the ((A,C),D) tree.

Parameter Mean Standard Deviation True Value

TABC 149776 11254 160000
TABCD 445402 14242 450000
NABC 43288 4515 40000
NABCD 42950 4531 40000

As the results in both tables demonstrate, all the parameters are recovered with good accuracy in

both subtrees, a significant improvement on the direct full inference in Table S1. Another improve-

ment is the running time. While the full inference took 83.09 hours, the two subtree inferences only

took 5.20 and 26.92 hours, respectively. Since the two subtree inferences are independent, they can

be run in parallel. Hence the divide-and-conquer method reduces the running time of the inference

from over 80 hours to a little bit over 25 hours, while achieving a higher accuracy on all parameters.

While the results are in preliminary form and still take a long time to run, the divide-and-conquer
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technique shows promising progress towards large-scale population history inference.

S3 Impact of Parameters on Running Times

We now study the impact of nb, -r, and other hyper-parameters on running time. Almost all the

time taken by the inference attributes to Algorithm 1. The algorithm has two time-consuming sub-

procedures: building the coalHMM by simulation, and calculating the likelihood by the Forward

algorithm. The running times of the two sub-procedures depend on the number of sub-branches,

the length of the simulation, and the scale of the species tree. Fig. S2 shows the relationship

between time taken by the Forward algorithm and the number of sub-branches for refining the

species tree, while keeping all other variables fixed, when evaluating the approximate likelihood of

one model. Clearly, the number of sub-branches has a huge impact on the running time, as the

Figure S2: Running time of the Forward algorithm. The actual running time taken by the
Forward algorithm when calculating the approximate likelihood of Scenario 3, with different nb
parameter values in Algorithm 1.

Forward algorithm time significantly increases with the number of sub-branches. The reason is that

the number of hidden states of the resulting coalHMM is a high-degree polynomial in the number

of sub-branches, which results in a large increase to the Forward algorithm running time since it

is quadratic in the HMM size. Fig. S3 shows the relationship between the HMM building time,
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the Forward algorithm running time, and the length of simulation used to build coalHMM, while

keeping all other variables fixed.

Figure S3: Running times of building the HMM and the Forward algorithm. The actual
running times taken by building the HMM by simulation (blue bars) and running the Forward
algorithm (orange bars) when calculating the approximate likelihood of Scenario 3, with different
-r parameter values (the l parameter in Algorithm 1).

We observe that the time taken for building the HMM grows with the simulation length, while

the Forward algorithm running time remains roughly unchanged since the number of hidden states

of the coalHMM does not depend on the simulation length. Note that the HMM building time grows

super-linearly with the simulation length, which has to do with the complexity of the underlying

simulator, in our case msprime. Since the transition matrix of the HMM only depends on the

number of transitions between pairs of adjacent sites, simulating multiple independent short regions

instead of a long sequence might achieve a near linear growth in simulation time. We implemented

an option to simulate several regions of short length whose sum of lengths add up to the total

simulation length when building the coalHMM. Fig. S4 shows a comparison of the time taken by

simulating a long region versus several short regions, with each short region of length 5,000 sites,

for the same scenario as Fig. S3.

We observe a significant reduction in HMM building time when simulating multiple independent

short regions, and the msprime simulation time indeed scales linearly with simulation length. The
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Figure S4: Comparison of simulating a long region versus multiple short regions. The
HMM building times taken by simulating a long sequence versus multiple short sequences whose
lengths add up to the long sequence length. The left bars at each x axis point are the times taken
to build the HMM when simulating one long region. The right bars are the times taken to build
the HMM when simulating multiple independent short regions (of length 5,000). The orange parts
and the green parts are the time taken solely by invoking msprime for the two cases, and the blue
parts are the time taken by VICAR code to parse the simulation output and actually build one
HMM.

time taken by VICAR code to parse the simulation output (i.e., summarize the coalescent histories)

and to build one HMM remains unchanged. We inferred the continuous parameters on scenario

3 using both long region simulation and short region simulation for building the coalHMM, and

achieved the same level of accuracy, which indicates that simulating independent short regions

when building the HMM for likelihood computation does not affect the accuracy of inference.

Fig. S5 shows the relationship between the HMM building running time, the Forward algorithm

running time, and the branch length of the species tree on which the approximate likelihood is being

evaluated. As before, the time taken for building the HMM grows, though not exponentially, with

the simulation length, while the Forward algorithm running time remains unchanged. These results

highlight the need for developing scalable simulators under the coalescent with recombination, which
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Figure S5: Running times of building the HMM and the Forward algorithm. The actual
running times taken by building the HMM by simulation (blue bars) and running the Forward
algorithm (orange bars) when calculating the approximate likelihood of Scenarios 1, 2, and 3.

we identify as a future research direction.
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