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SUPPLEMENTAL METHODS

Supplemental Table S1

GENE SYMBOL

DEVELOPMENT RELEVANCE

LITERATURE REFERENCE

Stat5b IGF signaling (Hertzano et al. 2007)

Rbpj Notch signaling mediator (Basch et al. 2011)

Sox4 SOXC TF (Gnedeva and Hudspeth 2015)

Bachl TGF signaling in SCs (Cheng et al. 2019)
Apoptosis; damage independent

Nfatc4 (Zhang et al. 2019)
expression

Irf3 Constitutively expressed immune gene (Cai etal. 2014)

Srebf2 TGFp signaling in SCs (Cheng et al. 2019)

Hmga?2 Stemness (Golden et al. 2015)

Klif4 Yamanaka factor (Lopez-Juarez et al. 2019)

Atf3 Expression in response to noise (Maeda et al. 2020)

Esrl Estrogen signaling (Simonoska et al. 2009)

Ews5 FGF signaling (Ebeid and Huh 2020)

Isl] Prosensory development (Radde-Gallwitz et al. 2004)

Hey? FGF signaling (Doetzlhofer et al. 2009)

Nrda3 SC development (Maass et al. 2016)

Gata3 Prosensory development (Luo et al. 2013)

Rora SC development (Maass et al. 2016)




Jun SC development (Sanz et al. 1999)
Hifla Expression in response to noise (Chung et al. 2004)
Tcf712 WNT signaling (Huang et al. 2011)
Rest Development (Wilkerson et al. 2019)
Rel SC development (Scheffer et al. 2015)
Zbtb7a Expression in response to noise (Yang et al. 2015)
Arntl Embryonic development (Perl et al. 2018)

Mifl GATA3 target (Alvarado et al. 2009)

Supplemental Key Resources Table

REAGENT or RESOURCE | SOURCE IDENTIFIER
Antibodies

Cat # 25-6790;
MYOSINVIIA Proteus Biosciences, 25-6790

RRID:AB 2314840

Cat# sc-17320;
SOX2 Santa Cruz

RRID:AB 2286684

Cat# 13838-1-AP;
TCF4 Proteintech

RRID:AB 2199812

GLIS3 Polyclonal Antibody | Thermo Scientific

Cat# PA5-41677,

RRID:AB 2606554




Cat # 21535-1-AP;

FOXO4 Proteintech
RRID:AB 10732960
ZNF238 Polyclonal Cat# PA5100372;
Thermo Fisher Scientific
Antibody RRID:AB 2849885

Chemicals, Peptides, and Recombinant Proteins

Tamoxifen Sigma Cat# T5648
DAPI Sigma Cat# 10236276001
O.C.T compound Fisher Scientific Cat# 4585
SYTOX Red Dead Cell

Thermo Fisher Scientific Cat# S34859
Stain
Accutase Innovative Cell Technologies Cat# AT104
Thermolysin from Geobacill

Sigma Cat# P1512
us stearothermophilus
16% PFA Electron Microscopy Sciences Cat# 15710
Triton-X Sigma Cat# 1086431000
Corn Oil Sigma Cat# C8267
1XPhosphate Buffered

Thermo Fisher Scientific Cat# 200120027
Saline
Bovine Serum Albumin Thermo Fisher Scientific Cat# BP9700100




Critical Commercial Assays

Chromium Next GEM Chip

G Single Cell Kit

10x Genomics

Cat# PN-1000120

Chromium Next GEM

Single Cell 3' Kit v3.1

10x Genomics

Cat# PN-1000268

Library Construction Kit

10x Genomics

Cat# PN-1000190

Dual Index Kit TT Set A

10x Genomics

Cat# PN-1000215

10x Chromium and Next

GEM accessory kit

10x Genomics

Cat# PN-100202

Chromium Next GEM Chip

H Single Cell Kit

10x Genomics

Cat# PN-1000162

Chromium Next GEM
Single Cell ATAC Library

and gel bead kit v 1.1

10x Genomics

Cat# PN-000175

Single Index kit N Set4 A

10x Genomics

Cat# PN-1000212

RNAScope Multiplex

Fluorescent Reagent Kit

Advanced Cell Diagnostic

Cat# 323110

mm-Pkhdlll

Advanced Cell Diagnostic

Cat# 44001-C3

Deposited Data




Single-cell RNA-seq from

GEO under accession number

This paper
mouse cochlea at P2 GSE157398
Single-cell ATAC-seq from GEO under accession number
This paper
mouse cochlea at P2 GSE157398
Experimental Models: Organisms/Strains
IMSR Cat# JAX:013593,
ATOHI1-GFP Jackson Laboratory
RRID:IMSR JAX:013593
IMSR Cat# JAX:025809,
FGFR3-iCre Jackson Laboratory

RRID:IMSR_JAX:025809

Ail4-tdTomato

Jackson Laboratory

IMSR Cat# JAX:007914,

RRID:IMSR_JAX:007914

Software and Algorithms

CellRanger (v. 3.0.0)

10x Genomics

https://support.10xgenomics.com/

single-cell-gene-

expression/software/pipelines/late

st/installation

CellRangerATAC (v. 1.1.0)

10x Genomics

https://support.10xgenomics.com/

atac/software/pipelines/latest/insta

llation

SAMtools (v. 1.5)

(Li et al. 2009)

http://www.htslib.org/;




RRID:SCR_002105

BEDTools (v. 2.29.1)

(Quinlan and Hall 2010)

https://bedtools.readthedocs.io/en/

latest/; RRID:SCR_006646

MACS?2 (v.2.1.2)

(Zhang et al. 2008)

https://github.com/macs3-

project/MACS;

RRID:SCR_013291

ataqv (v. 1.0.0)

(Orchard et al. 2020)

https://github.com/ParkerLab/ataq

v

FIMO (v. 5.1.0)

(Grant et al. 2011)

http://meme-suite.org/tools/fimo

HINT-ATAC (v. 0.12.3)

(Lietal. 2019)

https://www.regulatory-

genomics.org/

LiftOver

(Kent et al. 2002)

https://genome.ucsc.edu/cgi-

bin/hgLiftOver;

RRID:SCR_018160

Integrative Genomics

Viewer (v. 2.4.2)

(Robinson et al. 2011)

http://software.broadinstitute.org/

software/igv/;

RRID:SCR _011793

SnapTools (v. 1.4.8)

(Fang et al. 2019)

https://github.com/r3fang/SnapTo

ols; RRID:SCR_018097

bedGraphToBigWig (v. 4)

(Kent et al. 2010)

http://hgdownload.soe.ucsc.edu/a




dmin/exe/linux.x86_64.v369/

diffTF (v. 1.6)

(Berest et al. 2019)

https://git.embl.de/grp-

zaugg/diffTF

DAVID (v. 6.8)

(Huang et al. 2009)

https://david.ncifcrf.gov/;

SCR 001881
R (v.3.5.1) R core https://www.r-project.org/
http://www.bioconductor.org/;
Bioconductor (Huber et al. 2015)

RRID: SCR 006442

Seurat (v. 3.1.2)

(Stuart et al. 2019)

https://satijalab.org/seurat/install.

html; RRID:SCR_007322

LIGER (v. 0.5.0)

(Welch et al. 2019)

https://github.com/welch-

lab/liger; RRID:SCR_018100

SnapATAC (v. 1.0.0)

(Fang et al. 2019)

https://github.com/r3fang/SnapTo

ols; RRID:SCR_018097

chromVAR (v. 1.4.1)

(Schep et al. 2017)

http://www.bioconductor.org/pac

kages/release/bioc/html/chromVA

R.html

GENIES3 (v. 1.6.0)

(Huynh-Thu et al. 2010; Aibar et

al. 2017)

https://bioconductor.org/packages

[release/bioc/html/GENIE3.html;

RRID:SCR_000217




AUCell (v. 1.4.1)

(Aibar et al. 2017)

http://www.bioconductor.org/pac

kages/release/bioc/html/AUCell.h

tml; RRID:SCR_017247

Cicero (v. 1.0.14)

(Pliner et al. 2018)

https://cole-trapnell-

lab.github.io/cicero-release/

CellTrails (v. 1.0.0)

(Ellwanger et al. 2018)

https://bioconductor.riken.jp/pack

ages/3.8/bioc/html/CellTrails.html

Slingshot (v. 1.8.0)

(Street et al. 2018)

https://www.bioconductor.org/pac

kages/release/bioc/html/slingshot.

html; RRID:SCR_017012

Monocle (v. 2.10.1)

(Trapnell et al. 2014; Qiu et al.

2017a; Qiu et al. 2017b)

http://cole-trapnell-

lab.github.io/monocle-

release/docs/; RRID:SCR 016339

ChIPseeker (v. 1.18.0)

(Yu et al. 2015)

https://bioconductor.riken.jp/pack

ages/release/bioc/html/ChIPseeke

r.html

GenomicRanges (v. 1.34.0)

(Lawrence et al. 2013)

https://bioconductor.riken.jp/pack

ages/release/bioc/html/GenomicR

anges.html; RRID:SCR 000025

TxDb.Mmusculus.UCSC.m

m10.knownGene (v. 3.4.4)

(Bioconductor Core Team 2018)

https://bioconductor.riken.jp/pack

ages/release/data/annotation/html/

TxDb.Mmusculus.UCSC.mm10.k




nownGene.html

org.Mm.eg.db (v. 3.7.0)

(Carlson 2018)

https://bioconductor.riken.jp/pack

ages/release/data/annotation/html/

org.Mm.eg.db.html

https://hocomoco10.autosome.ru/;

confocal microscope

HOCOMOCO v10 database | (Kulakovskiy et al. 2013)
RRID:SCR_005409
http://jaspar.genereg.net/;
ASPAR 2020 dat
JAS 020 database (Fornes et al. 2020) RRID:SCR 003030
Other
MoFlo Astrios Cell Sorter Beckman Coulter RRID:SCR 018893
Leica SP8 LIGHTNING
Leica

RRID:SCR_018169

10x Chromium and Next

GEM accessory kit

10x Genomics

Cat# 1000202

Supplemental Methods

Experimental Model

All animal maintenance and experimental procedures were performed in accordance with NIH guidelines

and were approved by the Institute Animal Care and Use Committee at the University of Michigan

(protocol: PRO00008096, JW).
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All mice were maintained on a mixed genetic background. FGFR3-iCre (Young et al. 2010) were crossed
with Ail4-tdTomato (Madisen et al. 2010) and ATOHI1-GFP (Rose et al. 2009). In order to induce
FGFR3-iCre activity, PO pups were given intraperitoneal injections of tamoxifen (Sigma, T5648-1G) at
200 mg/kg, diluted in corn oil (Sigma, C8267). Cochlear samples were isolated at P2 from FGFR3-

iCre;Ai14-tdTomato;ATOH1-GFP-mice.
Single Cell Isolation and Flow Sorting

At P2 the cochlear ducts of FGFR3-iCre;Ail4-tdTomato;ATOH1-GFP pups were microdissected and
divided into apical and basal samples. Tissues were then dissociated with enzymatic (accutase and
thermolysin) and mechanical dissociation and passed through a strainer in order to create a single-cell
suspension, as previously described (Durruthy-Durruthy et al. 2014). In order to enrich for HCs and
PC/DCs before sequencing, cells were purified with FACS using a MoFlo Astrios (Beckman Coulter,
University of Michigan Flow Cytometry Core). The FACS gating strategy was designed to isolate and
pool together cells expressing, tdTomato", tdTomato/GFP", and GFP" from either the apical or basal
samples before being subjected to standard 10x Genomics preparations for scRNA-seq or scATAC-seq

experiments.
RNAScope and Immunofluorescence Combined Staining

Cochlear samples from P2 neonatal mice were fixed in 4% paraformaldehyde (Electron Microscopy
Sciences, 15710) diluted in 1XPBS (Thermo, 20012017) for 3 hours at room temperature, washed in

1XPBS (Thermo), subjected to a sucrose gradient, then embedded in O.C.T. Compound (Fisher, 4585) for

cryosectioning. 18 um sections were utilized for RNAScope and immunofluorescent experiments.

For RNAScope, sections were incubated in RNase/DNase Free Water (Invitrogen, AM9932) for 5
minutes, dehydrated using an ethanol gradient (50%, 70%, 90%, 100%), and subjected to RNAScope

staining using the Advanced Cell Diagnostics (ACD) RNAScope Multiplex Fluorescent Reagent Kit v2
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(ACD, 323110) with the following modifications. Antigen retrieval was performed at 65°C for 5 minutes

and no blocking steps were performed following development of fluorophores.

RNAScope samples were then prepared for immunofluorescence staining by washing in 0.1% Triton-X
(Sigma, 1086431000) in 1XPBS (Thermo), primary antibodies were applied in 0.05% Triton-X in 1XPBS
overnight at 4°C. Then, secondary antibodies were applied in 0.05% Triton-X in 1XPBS for 60 minutes
followed by DAPI (Sigma, 10235676001) nuclear staining for 10 minutes. All washes between primary
and secondary antibody application were performed with 1XPBS (Thermo). The following primary
antibodies were used: MYOSINVIIA (Proteus Biosciences, 25-6790) and SOX2 (Santa Cruz, sc-17320).
The RNAScope probe was designed by and ordered from ACD, mm-Pkhd1l1 (44001-C3). All fluorescent

images were acquired using a laser scanning confocal microscope (Leica, SPS).

Immunofluorescence Staining

Cochlear samples from P2 neonatal mice were fixed in 4% paraformaldehyde (Electron Microscopy
Sciences) diluted in 1XPBS (Thermo) for 2 hours on ice, washed in 1XPBS (Thermo), subjected to a
sucrose gradient, then embedded in O.C.T. Compound (Fisher) for cryosectioning at 18 pum thickness.
Sections were blocked in 1% bovine serum albumin (BSA, Thermo Scientific, BP9700100) in 0.2%
Triton-X/1XPBS for 60 minutes at room temperature and primary antibodies were applied overnight at
4°C in 0.5% BSA/0.2% Triton-X/1XPBS. The following primary antibodies were used: MYOSINVIIA
(Proteus Biosciences), SOX2 (Santa Cruz, sc-17320), TCF4 (Proteintech Group, 50560760), GLIS3
(Thermo Scientific, PIPA541677), FOX04 (Proteintech Group,501733469), and ZBTB18 (Invitrogen,
PA5100372). Secondary antibodies were applied in 0.5% BSA/0.2% Triton-X/1XPBS for 90 minutes at
room temperature followed by DAPI (Sigma) nuclear staining. All washes following primary and
secondary antibody application were performed with 0.2% Triton-X/1XPBS. All fluorescent images were

acquired using a laser scanning confocal microscope (Leica, SP8).

10x Genomics Pipeline
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Single-cell processing and next-generation sequencing was carried out in the Advanced Genomics Core at
the University of Michigan. Sequencing was performed on the 10x Chromium and Next GEM accessory
kit (10x Genomics, 1000202) using Chromium Next GEM Chip G Single Cell Kit (10x Genomics,
1000120) for scRNA-seq and Chromium Next GEM Chip H Single Cell Kit (10x Genomics, 1000162)
for scATAC-seq. The following kits were utilized for library preparation: Chromium Next GEM Single
Cell 3' Kit v3.1 (10x Genomics, 1000268), Library Construction Kit (10x Genomics, 1000190), and Dual
Index Kit TT Set A (10x Genomics, 1000215) for scRNA-seq, and Chromium Next GEM Single Cell
ATAC Library and gel bead kit v 1.1 (10x Genomics, 1000175) and Single Index Kit N Set 4 A (10x

Genomics, 1000212) for scRNA-seq.

scATAC-seq Analysis

We started with preprocessing the data using SnapTools (Fang et al. 2019) (snaptools snap-pre --min-
flen=50 --min-cov=100 --max-num=20000 --keep-single=FALSE --overwrite=True). Then we binned the
whole genome into Skb fixed windows and estimated the read coverage for each bin to generate a cell-by-
bin matrix (snaptools snap-add-bmat --bin-size-list 5000). Bins that overlapped with ENCODE-defined
blacklist regions were removed and bins within unwanted chromosomes, like ChrUn, Chr_random, and
chrM, were filtered out as well. To select high-quality cells, we kept cells with a logio UMI count between
3 and 5 and with a promoter ratio ranging from 0.2 to 0.8. After stringent quality control, 1,210 single
cells were subject to further analysis. First, we binarized the cell-by-bin matrix. We then followed the
pipeline to run the dimensionality reduction method, Diffusion maps, and selected the first 15 significant
components (eigs.dim=15). The 15 significant components were used to construct the k-nearest neighbor
graph and the Leiden algorithm was leveraged for clustering with resolution 0.2 (resolution=0.2). Finally,
6 clusters from the scATAC-seq dataset were identified and visualized by projecting meta-data, like read

depth and library ID, using UMAP.

Upon clustering, cells from each cluster were aggregated to generate an ensemble track for peak calling.

Peak calling was performed for each cluster separately using runMACS function in SnapATAC with
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following parameters: --nomode! --shift 100 --ext 200 --qval 5e-2 -B --SPMR. Two output files for each
cluster were generated: a narrawPeak file including identified peaks; a bedGraph (.bdg) file was
converted into BigWig format (.bw) using bedGraphToBigWig downloaded from UCSC Genome
Browser for visualization. Next, all peaks were merged across clusters and a cell-by-peak matrix was
created for differential analysis. Differentially accessible regions (DARs) for 6 clusters were determined
using findDAR function in the SnapATAC with following parameters: cluster.neg = NULL,
cluster.neg.method="knn", test. method="exactTest", bcv=0.1). In total, we identified 67,415 DARs under
the adjusted P-value with Bonferroni correction of 0.05. Additionally, we annotated the DARs to the

nearest gene by employing the annotatePeak function in ChlPseeker R package.

Quality Control of scATAC-seq Dataset

We used ataqv (Orchard et al. 2020), an ATAC-seq QC and visualization tool, to measure and estimate
quality of the scATAC-seq data. Once 6 clusters were identified from scATAC-seq dataset, we
aggregated the cells from the same cluster and treated each cluster as a small bulk ATAC-seq dataset. We
included mm10 blacklist and mm10 TSS reference files and ran ataqv for each cluster separately with the
following parameters: --ignore-read-groups, --tss-extension 2000bp. To visualize the TSS enrichment
based on the transposition activity around TSS, we generated a 100bp window to aggregate the signals
and took an average. Next, we applied a natural spline method to interpolate data points. Similarly, we
created a 20bp window and applied the natural spline method to visualize the fragment length

distribution.

scRNA-seq Analysis

The scRNA-seq dataset was analyzed using Seurat v3 pipeline (Stuart et al. 2019). We selected the cells
with the number of features ranging from 600 to 8,000, and the maximum allowed fraction of
mitochondrial genes per cell was 10%. Overall, 695 cells passed the quality control for further analysis.
After the preprocessing step, log normalization was performed, and the top 2000 highly variable genes

were identified using method vs¢ with default settings. We scaled the datasets to avoid the domination of
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highly expressed genes and used it as input for PCA to reduce dimensions. The first 10 principal
components were chosen to construct the shared nearest neighbor graph with 20 nearest neighbors
(k.param=20). Leiden algorithm was performed to identify clusters with resolution 0.5 (resolution=0.5)
and 11 clusters were resolved. We leveraged UMARP to visualize the scRNA-seq clustering results and

meta-data information, like read depth and library ID.

To determine cell identities for each cluster, we first identified differentially expressed genes (DEGs) for
each cluster using FindAllMarkers function in the Seurat package with following parameters: only.pos =
TRUE, min.pct = 0.25, logfc.threshold = (.25, test.use = "wilcox". In total, we determined 5,772 DEGs
for 11 clusters under the adjusted P-value with Bonferroni correction of 0.05. Next, we annotated cell

identities by comparing cluster specific DEGs with published canonical marker genes.
Cell Type Identification in scATAC-seq Clusters using Jaccard Index Similarity Matrix

We generated a Jaccard index similarity matrix by calculating normalized overlaps between DEGs and
annotated DARs from scRNA-seq and scATAC-seq data. Specifically, we performed the calculation for

each comparison between pairs of scRNA-seq and scATAC-seq clusters:

|A; N Bj|

A B;) = =12, ..11j=12..6
J(4:,B;) 14, UB;| J

where 4; is the DEGs of cluster i (i = 1,2, ...,11) from scRNA-seq, and B; is the annotated DARs of
cluster j (j = 1,2, ...,6) from scATAC-seq. J (Al-, Bj) is the Jaccard index by calculating the number of
intersected genes between A; and B; over the total number of unique genes of A; and B;. The values were

centered and scaled in scATAC-seq clusters. Based on the Jaccard index similarity matrix, we annotated

the scATAC-seq clusters with the most similar cell identities from scRNA-seq data.
LIGER Multi-omics Integration

We applied LIGER (Welch et al. 2019) to jointly define cell identities by leveraging scRNA-seq and

scATAC-seq datasets. Briefly, LIGER delineates shared and dataset-specific features to integrate single-
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cell multi-omics data using integrative non-negative matrix factorization. In order to run LIGER, we first
annotated the fragments to the gene level in SnapATAC and generated gene-by-cell matrix for scATAC-
seq. We took gene-by-cell raw counts from scRNA-seq as another input. Next, we extracted differentially
expressed genes across cell types, identified from Seurat package from scRNA-seq, as variable genes in
LIGER. Then, joint matrix factorization algorithm was performed on the normalized and scaled scRNA-
seq and scATAC-seq data with defined 20 latent variables (k = 20). We conducted quantile
normalization, Louvain clustering, and dimensionality reduction and visualization using UMAP
(distance="cosine", n_neighbors=30, min_dist=0.3). To validate the similarity-based approach, we
projected the cell identities as determined from Jaccard index similarity matrix onto the co-embedding

UMAP.

TF Motif Activity Estimation

We applied chromVAR (Schep et al. 2017) to infer TF-associated accessibility and to characterize
potential TFs regulating cell differentiation and function from scATAC-seq dataset. Briefly, chromVAR
aggregates peaks that share a common feature (e.g. TF motif) and corrects bias in terms of technical
confounders (e.g. GC content, average accessibility) based on background peak sets. The accessibility of
a TF motif was determined by calculating standardized z-scores. To prepare for chromVAR, the mouse
HOCOMOCO v10 database was applied and peaks with less than 3 fragments overlapped
(min_fragments _per peak = 3) were filtered. We ran the pipeline using the default settings. A TF-by-cell

matrix of z-scores was generated for further analysis.

To validate the clustering consistency of the scATAC-seq dataset between SnapATAC and chromVAR
methods, we applied the dimensionality reduction and visualization method, UMAP, to the TF-by-cell

matrix generated from chromVAR. SnapATAC cluster IDs were projected onto the z-score-based UMAP.

Transcription Factor Classification into Activators and Repressors
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We developed an integrative approach to classify the mode of action of developmental TFs into activators
and repressors by comparing two populations that share a common progenitor using multi-omics single-
cell datasets. In the first step, we conducted Student #-tests with Bonferroni correction (P-adjust < 0.05)
and identified differentially expressed TF genes and differential TF motifs from scRNA-seq and
scATAC-seq datasets, respectively. Additionally, the Wilcoxon sum rank test and median value
comparison were also provided for consideration. Classification was based on the relation between the TF

gene expression level and TF motif accessibility for each individual TF.

The same pipeline was employed to identify TFs regulating HC vs PC/DC differentiation and IHC vs
OHC differentiation. For the IHC/OHC comparison, Wilcoxon sum rank tests with Bonferroni correction
(P-adjusted < 0.05) were conducted because of the biased sample size and violation of normality

assumption.

To validate our classification approach, we adopted previously published algorithm, diffTF (Berest et al.
2019), and compared the overlaps between the two methods. diffTF, a bulk-based approach, compares
two groups with multiple biological replicates using Pearson correlation by leveraging matching RNA-
seq and ATAC-seq datasets. To apply diffTF, we divided individual cells into 4 groups based on the cell
order ranks from 1D spatial reconstruction map for scRNA-seq and scATAC-seq data, separately, to
satisfy the matching datasets. Then we created 4 “pseudo” bulk replicates, for RNA-seq and ATAC-seq
separately, by aggregating cells from the same group. Next, we ran diffTF using the mouse HOCOMOC
v10 database with the following parameters: nPermutations: 100, nBootstraps: 0, nCGBins: 10,

RNASeqlntegration: true, pairedEnd: true, peakType: “narrow”, minOverlap: 2.

Transcription Factor Footprint Identification

Footprints are generated by TFs bound to DNA, preventing the Tn5 transposase from cutting DNA in
nucleosome-free regions. HINT-ATAC (Li et al. 2019), an HMM-based algorithm, was employed to
identify TF binding sites with footprints for HC- and PC/DC-populations. In preparation for running

HINT-ATAC, peak files and indexed bam files for HCs and PC/DC were generated by aggregating cells
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from the same clusters. We started with calling footprints for HCs and PC/DCs separately by running the
function rgt-hint footprinting with the following parameters: --atac-seq --paired-end --organism=mm10.
Next, TF-associated footprints for each cluster were identified by detecting motifs from the mouse
HOCOMOCO v10 database overlapping with predicted footprints using the rgt-motifanalysis matching
function. Finally, we generated average scATAC-seq profiles around binding sites of each TF for the two
clusters separately by running the rg¢-hint differential function with the following parameters: --
organism=mml10 --bc --nc 2. We applied the same analytical workflow and predicted footprints among 4

different states of HCs identified by CellTrails.

Gene Regulatory Network Inference

A gene regulatory network (GRN) is a directed graph, which is made up of nodes (e.g. genes, TFs) with
directed links between them. Inferring regulatory relationships between TFs and putative downstream
target genes is essential for understanding cell differentiation and development. Up to date, numerous
algorithms exist to reconstruct GRNs. However, there are few methods integrating gene expression and
chromatin accessibility profiles at single-cell resolution. We followed SCENIC algorithm (Aibar et al.
2017) and developed a 3-step pipeline to reconstruct GRNs. We took HCs and PC/DCs as an example to

reconstruct the regulatory landscape.

The first step is to identify co-expression modules from scRNA-seq data using GENIE3 (Huynh-Thu et
al. 2010). Briefly, GENIE3 decomposes the network into a lot of regressions. For each regression, the
gene expression level of a target gene is predicted from the expression patterns of the TFs using tree-
based methods such as Random Forest or Extra-Trees. We applied GENIE3 to identify co-expression
modules for HCs and PC/DCs. For running GENIE3, we selected 1,846 genes, including DEGs for both
cell types and TF genes identified from the mouse HOCOMOCO v10 database, and generated a gene-by-
cell matrix as input for the GENIE3 algorithm. We calculated the Spearman correlation between each pair
of genes. Next, we ran GENIE3 to determine co-expression modules and integrated the correlations with

the following parameters: treeMethod = "RF", threshold = 0.005. The threshold parameter filtered out the
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TF/target gene links with a weight below 0.005. In total, GENIE3 yielded 103,041 TF/target gene links

for further analysis.

The second step is to identify direct target genes of TFs, which includes setting up a quality control for
GENIE3 by scanning putative TF binding sites within accessible regions and removing the links lacking
TF binding sites. Specifically, we performed an analysis of TF binding using FIMO (Grant et al. 2011)
for HCs and PC/DCs with default settings and the mouse HOCOMOCO v10 database. The TF-target
gene links which lacking putative TF binding sites within an upstream and downstream 50kb window of
the target gene TSS were filtered out. Next, we defined TF regulons, groups of genes regulated by TFs, by
considering all possible interacted genes associated with the respective TFs. Furthermore, we filtered out
regulons in which the number of downstream target genes was less than 10 or greater than 900 to keep the
methods robust. Based on previous classifications, activator and repressor regulons were determined
separately. Additionally, since GENIE3 does not consider autoregulation, we complemented the regulons
with autoregulated genes by checking whether the TF binding sites are within in the 100kb window of the

TSS of the same TF gene.

The third step is to calculate regulon enrichment scores for each individual cell using AUCell (Aibar et al.
2017). Briefly, AUCell, a ranking-based method, uses the “Area Under the Curve” (AUC) of the recovery
curve to determine the enrichment of regulons for individual cells. We first ranked all genes for each cell
using the function AUCell buildRanking with default settings. Next, AUC for each regulon in each cell
was calculated using AUCell_calcAUC function, and only the top 1% of the genes in the ranking were
used. Additionally, hierarchical clustering was conducted for both regulons and cells and was added in the

heatmap.

We followed the 3-step pipeline to identify TFs controlling IHC and OHC differentiation by predicting
the GRN. We selected IHC-specific genes, OHC-specific genes, and TF genes from the mouse
HOCOMOCO v10 database. GENIE3 was applied to identify co-expression modules with parameters:

treeMethod = "RF", threshold = 0.001. In step 2, we performed FIMO motif scanning algorithm for HC
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peaks only. We filtered out regulons in which the number of downstream target genes was less than 10 or
greater than 200. To calculate regulon enrichment scores for IHCs and OHCs, we used exactly the same

settings as the previous analysis.

1D Spatial Reconstruction of HCs

We resolved the anatomical positions of HCs at the single-cell level from scRNA-seq and scATAC-seq
data by following the conceptual idea previously published for the reconstruction of the mouse organ of
Corti from single-cell qPCR data (Waldhaus et al. 2015). First, we identified 427 DEGs (P < 0.005) and
127 DARs (P < 0.001) between apical and basal compartments from scRNA-seq and scATAC-seq data,
respectively. While loosening the threshold would include more DARs, a lot of false positive DARs
would likely be included. To deal with the problem, we ran permutation test 100 iterations. Specifically,
we permutated the cells 100 times while keeping the original apical/basal cell ratio. For each iteration,
peaks were called for permutated apical and basal cells, separately, and DARs were determined using the
function findDAR from SnapATAC. We used the boxplot to show the number of DARs identified for 100

iterations under different cutoffs.

The hypothesis is that using spatially differential features (e.g. DEGs and DARSs) can resolve the
anatomical position of individual cells. Next, we projected the individual cells onto a 2D PCA coordinate
system and calculated the centroid locations for apical and basal cells, separately. 2D PCA space was
rotated based on the apex-to-base centroid-centroid-vector with the apex facing up. Finally, HCs were
placed according to their rank order of PC1, indicating each individual cell’s relative position along the

tonotopic axis for both sScRNA-seq and scATAC-sec data.

Prediction of cis-regulatory Interactions

We applied Cicero (Pliner et al. 2018) to calculate peak-to-peak coaccessibility from scATAC-seq data
for HC and PC/DC cluster, separately. Briefly, Cicero aggregates accessibility profiles for individual cells

from the same cluster and calculated a regularized correlation score for each pair of peaks within a 500kb
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window using a Graphical Lasso model. We started with projecting the cell-by-peak matrix, identified
from SnapATAC, into a lower-dimensional space by using the function reduceDimension with
num_dim=6. Next, we ran Cicero for accessible regions to compute coaccessibility scores using the
default parameters. We then zoomed in a few genomic loci, related to genes Sox9, S100b, and Zbtb18, and
visualized the cis-regulatory interactions within these loci in different clusters with a lenient cutoff
(coaccess_cutoff=0). Additionally, putative TF binding sites scanned from FIMO (Grant et al. 2011) were

added to the Cicero map to validate the predicted TF-target gene interactions.

IHC and OHC Identification using scRNA-seq Data

We identified IHC and OHC subpopulations, with respect to the scRNA-seq data, based on 7 previously
published marker genes (Waldhaus et al. 2015). The 7 genes included Fgf10, Fgf8, and S100al as IHC
specific genes, and Slc26a5, Fgfr3, Cdhl, and Ocm as OHC specific genes. We used these 7 marker genes
as features to run UMAP with default parameters. Two subpopulations were identified and differential

analysis was conducted between the two subclusters using Wilcoxon sum rank test (P < 0.01).

HC Chromatin Accessibility Trajectory Inference

We applied CellTrails (Ellwanger et al. 2018) to reconstruct HC developmental trajectory using z-scores
from scATAC-seq data. Celltrails employs spectral embedding technique to find a low-dimensional
manifold that represents the spatiotemporal relation of cells. To infer the HC differentiation trajectory at
epigenomic level, we first prepared a TF-by-cell z-score matrix with 426 TF motifs identified from the
mouse HOCOMOCO v10 database and 420 HCs. Next, we applied spectral embedding function
embedSample with default parameters to find a low-dimensional representation and we determined 7
latent variables for further analysis. Hierarchical clustering with a post-hoc test was conducted to
determine states using the function findStates with following parameters: min_size=0.1, min_feat=>5,
max_pval=Ile-4, min_fc=2. Then we aligned individual cells to the trajectory using fitTrajectory function
with default parameters. In summary, we identified 4 states which formed a Y-shape, indicating the

bifurcation of HC differentiation. To further investigate the 4 different states, we projected the meta-data
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information, such as library ID and DAR-based cell rank order, onto the trajectory, and visualized the

gradual changes of z-scores along the trajectory.

Additionally, we applied Slingshot (Street et al. 2018) to reconstruct and validate trajectory prediction
using z-scores from scATAC-seq data. Briefly, Slingshot infers the global lineage structure by
constructing a cluster-based minimum spanning tree and constructs smooth lineages by fitting
similtaneous principle curves. We used the prepared TF-by-cell z-score matrix as input for Slingshot and
started by conducting dimensionality reduction using PCA and only the first two PCs were subject to
further analysis. Next, we identified clusters using Gaussian mixture model from Mclust function in the
mclust package and three clusters were determined automatically based on the Bayesian information
criterion. To reconstruct the trajectory, we run getLineages (start.clus="l', end.clus=c('2','3')) function
to identify global lineage structure and getCurves function with default settings to construct smooth
curves and order cells. To validate consistency between Slingshot and CellTrails algorithms, we projected
the CellTrails states onto the Slingshot trajectory map. Also, we conducted trajectory analysis using
Monocle (Trapnell et al. 2014; Qiu et al. 2017a; Qiu et al. 2017b). Monocle, an unsupervised algorithm,
reconstructs the trajectory by constructing minimum spanning tree. Similar to CellTrails and Slingshot,
HC TF-by-cell z-score matrix was used to run Monocle. We generated a newCellDataSet object with
Guassian distribution because the data were already transformed to be normally distributed. Then we
conducted dimensionality reduction by running reduceDimension function with the following parameters:
max_components = 4,reduction_method = 'DDRTree',\norm_method = "none",scaling = T. Next, we
ordered cells using orderCells function with default settings. To validate consistency between Monocle

and CellTrails algorithms, we projected the CellTrails states onto the Monocle trajectory map.

Bulk RNA-seq Analysis

To confirm differential expression for the seven TFs highlighted in the volcano plot (Fig. 6A), we
leveraged two previously published bulk RNA-seq data sets. Averaged gene expression values for

perinatal HCs (Wiwatpanit et al. 2018) were determined and P-values indicated accordingly. Same
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processing for adult HCs (Li et al. 2018) was performed. To identify differentially expressed genes, we

conducted one-side Student #-test for each indivudial gene.
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Supplemental Figure S1. Sorting of Apical and Basal Compartment Cells and Quality Control of

scRNA-seq and scATAC-seq data. Related to Figure 1. (A) Microdissected cochlear ducts were

divided into apical and basal compartments, then processed separately for independent scRNA-seq and

scATAC-seq library preparations. Gates were identical between apex and base samples. (B) UMAP plot

of unique fragment counts per cell in logio scale of sScATAC-seq dataset. (C) scATAC-seq fragment

accumulation relative to TSS position using ataqv. (D) Genomic region composition of DARs for each
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cluster from scATAC-seq data. (E) Fragment length distribution for each scATAC-seq cluster. (F) UMAP

plot of unique read counts per cell in log)o scale of scRNA-seq dataset.
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Supplemental Figure S2. scRNA-seq Cell Type Identification and Representation of Previously

Published Organ of Corti Regulatory Elements. Related to Figure 1. (A) Dot plot of candidate gene

26



expression levels for each scRNA-seq cluster. The dot size represents percentage of cells expressing a
given transcript for the clusters. (B) UMAP plot of LIGER single-cell multi-omics integration analysis,
color coded by dataset modality. (C) UMAP plot of LIGER alignment color coded by cell identity from
the Jaccard index similarity approach. (D) Enrichment of chromatin accessibility and expression level of
candidate genes corresponding to their clusters. Accumulated scATAC-seq fragments at the individual
gene locus (left column) and normalized gene expression levels in violin plots (right column) for 6
scATAC-seq clusters. Gapdh, a housekeeping gene, revealed a ubiquitous accessibility and expression
across 6 clusters. Remaining genes are expressed in organ of Corti cell types. Arrowheads at the bottom
of the plot indicate regions of previously published organ of Corti specific regulatory elements

(Wilkerson et al. 2019).
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Supplemental Figure S3. diffTF-based Activator/Repressor Classification and Footprint Validation.
Related to Figure 2. (A) Transcriptional activators (shown in green) and repressors (shown in red)
identified in diffTF algorithm (Berest et al. 2019) by generating 4 “pseudo” bulk ATAC-seq and RNA-

seq datasets shown in Pearson correlation. Circles are HC specific TFs, and the triangles are PC/DC



specific TFs. (B-D) Venn diagram comparing TF classification presented in Wang et a/. with diffTF
results. (B) All TFs including activators and repressors, (C) activators only, and (D) repressors only. (E-
G) TF footprints calculated from scATAC-seq data using HINT-ATAC with JASPAR 2020 consensus
sequence. (E) LHX3 footprint. Yellow line represents the HC cluster, and orange line represents the
PC/DC cluster. Bottom row: mouse JASPAR 2020 consensus sequence for the LHX3 motif. (F-G)
Analogous data representation for two SOX2 motifs. GFI1 and TGIF1 motifs were not curated in

JASPAR 2020 and therefore not included in the analysis.
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Supplemental Figure S4. HC and PC/DC Regulon Identification and Validation. Related to Figure

3. (A) Venn diagram of quantitative comparison between SOX2 ChlP-seq data (Kwan et al. 2015) and
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scATAC-seq/scRNA-seq based approach. Shown are numbers of SOX2 downstream target genes
identified in two biological replicates from ChIP-seq data and the SOX2 regulon identified in this study.
(B) GO term analysis of putative downstream target genes from HC specific regulons using DAVID. (C)
GO term analysis of putative downstream target genes from PC/DC specific regulons using DAVID. (D-
E) Coaccessibility analysis of Sox9 and S7005b loci in the HC cluster using Cicero. (D) In HCs, the peaks
associated with Sox9 TSS are not coaccessible with any of the sites. No putative TF binding sites for
SOX9 and GFI1 were annotated based on FIMO motif scanning. Top row: Genome annotation from
UCSC Known Genes. Second row: Coaccessibility plot of connections between accessible regions with
the TSS. Third row: Accessible regions aligned within the locus. Forth row: putative TF binding sites of
SOX9 and GFI1 relative to the accessible regions. TSS position is indicated with a dashed line. (E)

Analogous data representation for the S700b locus.
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Supplemental Figure S5. Permutation Testing of DAR Identification between Apex and Base.
Related to Figure 4. (A-B) Number of identified DARSs plotted against P-value for experimental (red
line) vs 100-iteration permutated data (black box plots). (A) P-values tested from 0.0005 to 0.9. (B) same

data visualized with P-values from 0.0005 to 0.005.
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Supplemental Figure S6. IHC and OHC Subclusters from scRNA-seq and scATAC-seq
Experiments. Related to Figure 5. (A) UMAP plot of HC cluster from scATAC-seq data with projection
of library ID. Color code: apex — red, base — blue. (B) UMAP plot of HC cluster from scATAC-seq data
with projection of TF INSM1 activity z-scores. (C) UMAP plot of CellTrails states S1-S4. (D-E)
Trajectory reconstruction of HC cluster based on scATAC-seq z-scores using (D) Slingshot and (E)

Monocle. CellTrails state ID color coded and projected onto both trajectories. (F) Trajectory
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reconstruction of HC cluster based on scATAC-seq z-scores using CellTrails. Library ID color coded and
projected onto the trajectory. Color code: apex — red, base — blue. (G-H) Dot plot of preferentially
expressed genes in (G) perinatal IHCs and OHCs (Wiwatpanit et al. 2018) and (H) adult IHCs and OHCs
(Li et al. 2018) based on bulk RNA-seq data. Differential OHC expression was confirmed for Insmi with
temporal restriction around birth. 7¢f4 was confirmed as an OHC-specific gene with differential
expression in adult HCs. Tbx2, Smad3, and Hivep2 were confirmed differentially expressed in IHC at
both time points and Foxo4 turned into a significantly differentially expressed IHC marker in adult HCs.
Glis3 was the only gene flipping preferential expression from IHCs to OHCs between perinatal and adult
samples. The gene expression values are on logarithmic scale. Black arrows highlight the 7 TFs from Fig.

6A including one-side Student #-tests P-values.
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