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SUPPLEMENTAL METHODS 

Supplemental Table S1 

GENE SYMBOL DEVELOPMENT RELEVANCE  LITERATURE REFERENCE  

Stat5b IGF signaling (Hertzano et al. 2007) 

Rbpj Notch signaling mediator (Basch et al. 2011) 

Sox4 SOXC TF (Gnedeva and Hudspeth 2015) 

Bach1 TGFβ signaling in SCs (Cheng et al. 2019) 

Nfatc4 
Apoptosis; damage independent 

expression 
(Zhang et al. 2019) 

Irf3 Constitutively expressed immune gene (Cai et al. 2014) 

Srebf2 TGFβ signaling in SCs (Cheng et al. 2019) 

Hmga2 Stemness  (Golden et al. 2015) 

Klf4 Yamanaka factor (Lopez-Juarez et al. 2019) 

Atf3 Expression in response to noise (Maeda et al. 2020) 

Esr1 Estrogen signaling (Simonoska et al. 2009) 

Etv5 FGF signaling (Ebeid and Huh 2020) 

Isl1 Prosensory development (Radde-Gallwitz et al. 2004) 

Hey2 FGF signaling (Doetzlhofer et al. 2009) 

Nr4a3 SC development (Maass et al. 2016) 

Gata3 Prosensory development (Luo et al. 2013) 

Rora SC development (Maass et al. 2016) 
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Jun SC development (Sanz et al. 1999) 

Hif1a Expression in response to noise (Chung et al. 2004) 

Tcf7l2 WNT signaling (Huang et al. 2011) 

Rest Development (Wilkerson et al. 2019) 

Rel SC development (Scheffer et al. 2015) 

Zbtb7a Expression in response to noise (Yang et al. 2015) 

Arntl Embryonic development (Perl et al. 2018) 

Mtf1 GATA3 target (Alvarado et al. 2009) 

 

Supplemental Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

MYOSINVIIA Proteus Biosciences, 25-6790 
Cat # 25-6790; 

RRID:AB_2314840 

SOX2 Santa Cruz 
Cat# sc-17320; 

RRID:AB_2286684 

TCF4 Proteintech 
Cat# 13838-1-AP; 

RRID:AB_2199812 

GLIS3 Polyclonal Antibody Thermo Scientific 
Cat# PA5-41677; 

RRID:AB_2606554 
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FOXO4 Proteintech 
Cat # 21535-1-AP; 

RRID:AB_10732960 

ZNF238 Polyclonal 

Antibody 
Thermo Fisher Scientific 

Cat# PA5100372; 

RRID:AB_2849885 

Chemicals, Peptides, and Recombinant Proteins 

Tamoxifen Sigma Cat# T5648 

DAPI Sigma Cat# 10236276001 

O.C.T compound Fisher Scientific Cat# 4585 

SYTOX Red Dead Cell 

Stain  
Thermo Fisher Scientific  Cat# S34859  

Accutase  Innovative Cell Technologies  Cat# AT104  

Thermolysin from Geobacill

us stearothermophilus  
Sigma Cat# P1512  

16% PFA Electron Microscopy Sciences Cat# 15710 

Triton-X Sigma Cat# 1086431000 

Corn Oil Sigma Cat# C8267 

1XPhosphate Buffered 

Saline 
Thermo Fisher Scientific Cat# 200120027 

Bovine Serum Albumin Thermo Fisher Scientific Cat# BP9700100 
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Critical Commercial Assays 

Chromium Next GEM Chip 

G Single Cell Kit 
10x Genomics Cat# PN-1000120 

Chromium Next GEM 

Single Cell 3' Kit v3.1 
10x Genomics Cat# PN-1000268 

Library Construction Kit 10x Genomics Cat# PN-1000190 

Dual Index Kit TT Set A 10x Genomics Cat# PN-1000215 

10x Chromium and Next 

GEM accessory kit 
10x Genomics Cat# PN-100202 

Chromium Next GEM Chip 

H Single Cell Kit 
10x Genomics Cat# PN-1000162 

Chromium Next GEM 

Single Cell ATAC Library 

and gel bead kit v 1.1 

10x Genomics Cat# PN-000175 

Single Index kit N Set4 A 10x Genomics Cat# PN-1000212 

RNAScope Multiplex 

Fluorescent Reagent Kit 
Advanced Cell Diagnostic Cat# 323110 

mm-Pkhd1l1 Advanced Cell Diagnostic Cat# 44001-C3 

Deposited Data 
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Single-cell RNA-seq from 

mouse cochlea at P2 
This paper 

GEO under accession number 

GSE157398  

Single-cell ATAC-seq from 

mouse cochlea at P2 
This paper 

GEO under accession number 

GSE157398  

Experimental Models: Organisms/Strains 

ATOH1-GFP Jackson Laboratory 
IMSR Cat# JAX:013593, 

RRID:IMSR_JAX:013593 

FGFR3-iCre Jackson Laboratory 
IMSR Cat# JAX:025809, 

RRID:IMSR_JAX:025809 

Ai14-tdTomato Jackson Laboratory 
IMSR Cat# JAX:007914, 

RRID:IMSR_JAX:007914 

Software and Algorithms 

CellRanger (v. 3.0.0) 10x Genomics 

https://support.10xgenomics.com/

single-cell-gene-

expression/software/pipelines/late

st/installation 

CellRangerATAC (v. 1.1.0) 10x Genomics 

https://support.10xgenomics.com/

single-cell-

atac/software/pipelines/latest/insta

llation 

SAMtools (v. 1.5) (Li et al. 2009) http://www.htslib.org/; 
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RRID:SCR_002105 

BEDTools (v. 2.29.1) (Quinlan and Hall 2010) 
https://bedtools.readthedocs.io/en/

latest/; RRID:SCR_006646 

MACS2 (v. 2.1.2) (Zhang et al. 2008) 

https://github.com/macs3-

project/MACS; 

RRID:SCR_013291 

ataqv (v. 1.0.0) (Orchard et al. 2020) 
https://github.com/ParkerLab/ataq

v 

FIMO (v. 5.1.0) (Grant et al. 2011) http://meme-suite.org/tools/fimo 

HINT-ATAC (v. 0.12.3) (Li et al. 2019) 
https://www.regulatory-

genomics.org/ 

LiftOver (Kent et al. 2002) 

https://genome.ucsc.edu/cgi-

bin/hgLiftOver; 

RRID:SCR_018160 

Integrative Genomics 

Viewer (v. 2.4.2) 
(Robinson et al. 2011) 

http://software.broadinstitute.org/

software/igv/; 

RRID:SCR_011793 

SnapTools (v. 1.4.8) (Fang et al. 2019) 
https://github.com/r3fang/SnapTo

ols; RRID:SCR_018097 

bedGraphToBigWig (v. 4) (Kent et al. 2010) http://hgdownload.soe.ucsc.edu/a
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dmin/exe/linux.x86_64.v369/ 

diffTF (v. 1.6) (Berest et al. 2019) 
https://git.embl.de/grp-

zaugg/diffTF 

DAVID (v. 6.8) (Huang et al. 2009) 
https://david.ncifcrf.gov/; 

SCR_001881 

R (v. 3.5.1) R core  https://www.r-project.org/ 

Bioconductor (Huber et al. 2015) 
http://www.bioconductor.org/; 

RRID: SCR_006442 

Seurat (v. 3.1.2) (Stuart et al. 2019) 
https://satijalab.org/seurat/install.

html; RRID:SCR_007322 

LIGER (v. 0.5.0) (Welch et al. 2019) 
https://github.com/welch-

lab/liger; RRID:SCR_018100 

SnapATAC (v. 1.0.0) (Fang et al. 2019) 
https://github.com/r3fang/SnapTo

ols; RRID:SCR_018097 

chromVAR (v. 1.4.1) (Schep et al. 2017) 

http://www.bioconductor.org/pac

kages/release/bioc/html/chromVA

R.html 

GENIE3 (v. 1.6.0) 
(Huynh-Thu et al. 2010; Aibar et 

al. 2017) 

https://bioconductor.org/packages

/release/bioc/html/GENIE3.html; 

RRID:SCR_000217 
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AUCell (v. 1.4.1) (Aibar et al. 2017) 

http://www.bioconductor.org/pac

kages/release/bioc/html/AUCell.h

tml; RRID:SCR_017247 

Cicero (v. 1.0.14) (Pliner et al. 2018) 
https://cole-trapnell-

lab.github.io/cicero-release/ 

CellTrails (v. 1.0.0) (Ellwanger et al. 2018) 
https://bioconductor.riken.jp/pack

ages/3.8/bioc/html/CellTrails.html 

Slingshot (v. 1.8.0) (Street et al. 2018) 

https://www.bioconductor.org/pac

kages/release/bioc/html/slingshot.

html; RRID:SCR_017012 

Monocle (v. 2.10.1) 
(Trapnell et al. 2014; Qiu et al. 

2017a; Qiu et al. 2017b) 

http://cole-trapnell-

lab.github.io/monocle-

release/docs/; RRID:SCR_016339 

ChIPseeker (v. 1.18.0) (Yu et al. 2015) 

https://bioconductor.riken.jp/pack

ages/release/bioc/html/ChIPseeke

r.html 

GenomicRanges (v. 1.34.0) (Lawrence et al. 2013) 

https://bioconductor.riken.jp/pack

ages/release/bioc/html/GenomicR

anges.html; RRID:SCR_000025 

TxDb.Mmusculus.UCSC.m

m10.knownGene (v. 3.4.4) 
(Bioconductor Core Team 2018) 

https://bioconductor.riken.jp/pack

ages/release/data/annotation/html/

TxDb.Mmusculus.UCSC.mm10.k
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nownGene.html 

org.Mm.eg.db (v. 3.7.0) (Carlson 2018) 

https://bioconductor.riken.jp/pack

ages/release/data/annotation/html/

org.Mm.eg.db.html 

HOCOMOCO v10 database (Kulakovskiy et al. 2013) 
https://hocomoco10.autosome.ru/; 

RRID:SCR_005409 

JASPAR 2020 database (Fornes et al. 2020) 
http://jaspar.genereg.net/; 

RRID:SCR_003030 

Other 

MoFlo Astrios Cell Sorter  Beckman Coulter RRID:SCR_018893 

Leica SP8 LIGHTNING 

confocal microscope 
Leica 

 

RRID:SCR_018169 

10x Chromium and Next 

GEM accessory kit  
10x Genomics Cat# 1000202 

 

Supplemental Methods 

Experimental Model 

All animal maintenance and experimental procedures were performed in accordance with NIH guidelines 

and were approved by the Institute Animal Care and Use Committee at the University of Michigan 

(protocol: PRO00008096, JW).   
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All mice were maintained on a mixed genetic background. FGFR3-iCre (Young et al. 2010) were crossed 

with Ai14-tdTomato (Madisen et al. 2010) and ATOH1-GFP (Rose et al. 2009). In order to induce 

FGFR3-iCre activity, P0 pups were given intraperitoneal injections of tamoxifen (Sigma, T5648-1G) at 

200 mg/kg, diluted in corn oil (Sigma, C8267). Cochlear samples were isolated at P2 from FGFR3-

iCre;Ai14-tdTomato;ATOH1-GFP-mice.    

Single Cell Isolation and Flow Sorting 

At P2 the cochlear ducts of FGFR3-iCre;Ai14-tdTomato;ATOH1-GFP pups were microdissected and 

divided into apical and basal samples. Tissues were then dissociated with enzymatic (accutase and 

thermolysin) and mechanical dissociation and passed through a strainer in order to create a single-cell 

suspension, as previously described (Durruthy-Durruthy et al. 2014). In order to enrich for HCs and 

PC/DCs before sequencing, cells were purified with FACS using a MoFlo Astrios (Beckman Coulter, 

University of Michigan Flow Cytometry Core). The FACS gating strategy was designed to isolate and 

pool together cells expressing, tdTomato+, tdTomato+/GFP+, and GFP+ from either the apical or basal 

samples before being subjected to standard 10x Genomics preparations for scRNA-seq or scATAC-seq 

experiments.   

RNAScope and Immunofluorescence Combined Staining  

Cochlear samples from P2 neonatal mice were fixed in 4% paraformaldehyde (Electron Microscopy 

Sciences, 15710) diluted in 1XPBS (Thermo, 20012017) for 3 hours at room temperature, washed in 

1XPBS (Thermo), subjected to a sucrose gradient, then embedded in O.C.T. Compound (Fisher, 4585) for 

cryosectioning. 18 µm sections were utilized for RNAScope and immunofluorescent experiments.   

For RNAScope, sections were incubated in RNase/DNase Free Water (Invitrogen, AM9932) for 5 

minutes, dehydrated using an ethanol gradient (50%, 70%, 90%, 100%), and subjected to RNAScope 

staining using the Advanced Cell Diagnostics (ACD) RNAScope Multiplex Fluorescent Reagent Kit v2 
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(ACD, 323110) with the following modifications. Antigen retrieval was performed at 65°C for 5 minutes 

and no blocking steps were performed following development of fluorophores.   

RNAScope samples were then prepared for immunofluorescence staining by washing in 0.1% Triton-X 

(Sigma, 1086431000) in 1XPBS (Thermo), primary antibodies were applied in 0.05% Triton-X in 1XPBS 

overnight at 4°C. Then, secondary antibodies were applied in 0.05% Triton-X in 1XPBS for 60 minutes 

followed by DAPI (Sigma, 10235676001) nuclear staining for 10 minutes. All washes between primary 

and secondary antibody application were performed with 1XPBS (Thermo). The following primary 

antibodies were used: MYOSINVIIA (Proteus Biosciences, 25-6790) and SOX2 (Santa Cruz, sc-17320). 

The RNAScope probe was designed by and ordered from ACD, mm-Pkhd1l1 (44001-C3). All fluorescent 

images were acquired using a laser scanning confocal microscope (Leica, SP8). 

Immunofluorescence Staining 

Cochlear samples from P2 neonatal mice were fixed in 4% paraformaldehyde (Electron Microscopy 

Sciences) diluted in 1XPBS (Thermo) for 2 hours on ice, washed in 1XPBS (Thermo), subjected to a 

sucrose gradient, then embedded in O.C.T. Compound (Fisher) for cryosectioning at 18 µm thickness.  

Sections were blocked in 1% bovine serum albumin (BSA, Thermo Scientific, BP9700100) in 0.2% 

Triton-X/1XPBS for 60 minutes at room temperature and primary antibodies were applied overnight at 

4°C in 0.5% BSA/0.2% Triton-X/1XPBS. The following primary antibodies were used: MYOSINVIIA 

(Proteus Biosciences), SOX2 (Santa Cruz, sc-17320), TCF4 (Proteintech Group, 50560760), GLIS3 

(Thermo Scientific, PIPA541677), FOXO4 (Proteintech Group,501733469), and ZBTB18 (Invitrogen, 

PA5100372). Secondary antibodies were applied in 0.5% BSA/0.2% Triton-X/1XPBS for 90 minutes at 

room temperature followed by DAPI (Sigma) nuclear staining. All washes following primary and 

secondary antibody application were performed with 0.2% Triton-X/1XPBS. All fluorescent images were 

acquired using a laser scanning confocal microscope (Leica, SP8). 

10x Genomics Pipeline 
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Single-cell processing and next-generation sequencing was carried out in the Advanced Genomics Core at 

the University of Michigan. Sequencing was performed on the 10x Chromium and Next GEM accessory 

kit (10x Genomics, 1000202) using Chromium Next GEM Chip G Single Cell Kit (10x Genomics, 

1000120) for scRNA-seq and Chromium Next GEM Chip H Single Cell Kit (10x Genomics, 1000162) 

for scATAC-seq. The following kits were utilized for library preparation: Chromium Next GEM Single 

Cell 3' Kit v3.1 (10x Genomics, 1000268), Library Construction Kit (10x Genomics, 1000190), and Dual 

Index Kit TT Set A (10x Genomics, 1000215) for scRNA-seq, and Chromium Next GEM Single Cell 

ATAC Library and gel bead kit v 1.1 (10x Genomics, 1000175) and Single Index Kit N Set 4 A (10x 

Genomics, 1000212) for scRNA-seq.  

scATAC-seq Analysis  

We started with preprocessing the data using SnapTools (Fang et al. 2019) (snaptools snap-pre --min-

flen=50 --min-cov=100 --max-num=20000 --keep-single=FALSE --overwrite=True). Then we binned the 

whole genome into 5kb fixed windows and estimated the read coverage for each bin to generate a cell-by-

bin matrix (snaptools snap-add-bmat --bin-size-list 5000). Bins that overlapped with ENCODE-defined 

blacklist regions were removed and bins within unwanted chromosomes, like ChrUn, Chr_random, and 

chrM, were filtered out as well. To select high-quality cells, we kept cells with a log10 UMI count between 

3 and 5 and with a promoter ratio ranging from 0.2 to 0.8. After stringent quality control, 1,210 single 

cells were subject to further analysis. First, we binarized the cell-by-bin matrix. We then followed the 

pipeline to run the dimensionality reduction method, Diffusion maps, and selected the first 15 significant 

components (eigs.dim=15). The 15 significant components were used to construct the k-nearest neighbor 

graph and the Leiden algorithm was leveraged for clustering with resolution 0.2 (resolution=0.2). Finally, 

6 clusters from the scATAC-seq dataset were identified and visualized by projecting meta-data, like read 

depth and library ID, using UMAP.  

Upon clustering, cells from each cluster were aggregated to generate an ensemble track for peak calling. 

Peak calling was performed for each cluster separately using runMACS function in SnapATAC with 
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following parameters: --nomodel --shift 100 --ext 200 --qval 5e-2 -B --SPMR. Two output files for each 

cluster were generated: a narrawPeak file including identified peaks; a bedGraph (.bdg) file was 

converted into BigWig format (.bw) using bedGraphToBigWig downloaded from UCSC Genome 

Browser for visualization. Next, all peaks were merged across clusters and a cell-by-peak matrix was 

created for differential analysis. Differentially accessible regions (DARs) for 6 clusters were determined 

using findDAR function in the SnapATAC with following parameters: cluster.neg = NULL, 

cluster.neg.method="knn", test.method="exactTest", bcv=0.1). In total, we identified 67,415 DARs under 

the adjusted P-value with Bonferroni correction of 0.05. Additionally, we annotated the DARs to the 

nearest gene by employing the annotatePeak function in ChIPseeker R package.  

Quality Control of scATAC-seq Dataset 

We used ataqv (Orchard et al. 2020), an ATAC-seq QC and visualization tool, to measure and estimate 

quality of the scATAC-seq data. Once 6 clusters were identified from scATAC-seq dataset, we 

aggregated the cells from the same cluster and treated each cluster as a small bulk ATAC-seq dataset. We 

included mm10 blacklist and mm10 TSS reference files and ran ataqv for each cluster separately with the 

following parameters:  --ignore-read-groups, --tss-extension 2000bp. To visualize the TSS enrichment 

based on the transposition activity around TSS, we generated a 100bp window to aggregate the signals 

and took an average. Next, we applied a natural spline method to interpolate data points. Similarly, we 

created a 20bp window and applied the natural spline method to visualize the fragment length 

distribution.  

scRNA-seq Analysis  

The scRNA-seq dataset was analyzed using Seurat v3 pipeline (Stuart et al. 2019). We selected the cells 

with the number of features ranging from 600 to 8,000, and the maximum allowed fraction of 

mitochondrial genes per cell was 10%. Overall, 695 cells passed the quality control for further analysis. 

After the preprocessing step, log normalization was performed, and the top 2000 highly variable genes 

were identified using method vst with default settings. We scaled the datasets to avoid the domination of 
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highly expressed genes and used it as input for PCA to reduce dimensions. The first 10 principal 

components were chosen to construct the shared nearest neighbor graph with 20 nearest neighbors 

(k.param=20). Leiden algorithm was performed to identify clusters with resolution 0.5 (resolution=0.5) 

and 11 clusters were resolved. We leveraged UMAP to visualize the scRNA-seq clustering results and 

meta-data information, like read depth and library ID.  

To determine cell identities for each cluster, we first identified differentially expressed genes (DEGs) for 

each cluster using FindAllMarkers function in the Seurat package with following parameters: only.pos = 

TRUE, min.pct = 0.25, logfc.threshold = 0.25, test.use = "wilcox". In total, we determined 5,772 DEGs 

for 11 clusters under the adjusted P-value with Bonferroni correction of 0.05. Next, we annotated cell 

identities by comparing cluster specific DEGs with published canonical marker genes. 

Cell Type Identification in scATAC-seq Clusters using Jaccard Index Similarity Matrix 

We generated a Jaccard index similarity matrix by calculating normalized overlaps between DEGs and 

annotated DARs from scRNA-seq and scATAC-seq data. Specifically, we performed the calculation for 

each comparison between pairs of scRNA-seq and scATAC-seq clusters: 

𝐽"𝐴! , 𝐵"& = 	
|𝐴! ∩ 𝐵"|
|𝐴! ∪ 𝐵"|

			𝑖 = 1,2, … ,11		𝑗 = 1,2, … ,6 

where 𝐴! is the DEGs of cluster 𝑖  (𝑖 = 1,2, … ,11) from scRNA-seq, and 𝐵" is the annotated DARs of 

cluster 𝑗 (𝑗 = 1,2, … ,6) from scATAC-seq. 𝐽"𝐴! , 𝐵"& is the Jaccard index by calculating the number of 

intersected genes between 𝐴! and 𝐵" over the total number of unique genes of 𝐴! and 𝐵". The values were 

centered and scaled in scATAC-seq clusters. Based on the Jaccard index similarity matrix, we annotated 

the scATAC-seq clusters with the most similar cell identities from scRNA-seq data.  

LIGER Multi-omics Integration 

We applied LIGER (Welch et al. 2019) to jointly define cell identities by leveraging scRNA-seq and 

scATAC-seq datasets. Briefly, LIGER delineates shared and dataset-specific features to integrate single-
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cell multi-omics data using integrative non-negative matrix factorization. In order to run LIGER, we first 

annotated the fragments to the gene level in SnapATAC and generated gene-by-cell matrix for scATAC-

seq. We took gene-by-cell raw counts from scRNA-seq as another input. Next, we extracted differentially 

expressed genes across cell types, identified from Seurat package from scRNA-seq, as variable genes in 

LIGER. Then, joint matrix factorization algorithm was performed on the normalized and scaled scRNA-

seq and scATAC-seq data with defined 20 latent variables (k = 20). We conducted quantile 

normalization, Louvain clustering, and dimensionality reduction and visualization using UMAP 

(distance="cosine", n_neighbors=30, min_dist=0.3). To validate the similarity-based approach, we 

projected the cell identities as determined from Jaccard index similarity matrix onto the co-embedding 

UMAP.  

TF Motif Activity Estimation  

We applied chromVAR (Schep et al. 2017) to infer TF-associated accessibility and to characterize 

potential TFs regulating cell differentiation and function from scATAC-seq dataset. Briefly, chromVAR 

aggregates peaks that share a common feature (e.g. TF motif) and corrects bias in terms of technical 

confounders (e.g. GC content, average accessibility) based on background peak sets. The accessibility of 

a TF motif was determined by calculating standardized z-scores. To prepare for chromVAR, the mouse 

HOCOMOCO v10 database was applied and peaks with less than 3 fragments overlapped 

(min_fragments_per_peak = 3) were filtered. We ran the pipeline using the default settings. A TF-by-cell 

matrix of z-scores was generated for further analysis. 

To validate the clustering consistency of the scATAC-seq dataset between SnapATAC and chromVAR 

methods, we applied the dimensionality reduction and visualization method, UMAP, to the TF-by-cell 

matrix generated from chromVAR. SnapATAC cluster IDs were projected onto the z-score-based UMAP.  

Transcription Factor Classification into Activators and Repressors 
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We developed an integrative approach to classify the mode of action of developmental TFs into activators 

and repressors by comparing two populations that share a common progenitor using multi-omics single-

cell datasets. In the first step, we conducted Student t-tests with Bonferroni correction (P-adjust < 0.05) 

and identified differentially expressed TF genes and differential TF motifs from scRNA-seq and 

scATAC-seq datasets, respectively. Additionally, the Wilcoxon sum rank test and median value 

comparison were also provided for consideration. Classification was based on the relation between the TF 

gene expression level and TF motif accessibility for each individual TF.  

The same pipeline was employed to identify TFs regulating HC vs PC/DC differentiation and IHC vs 

OHC differentiation. For the IHC/OHC comparison, Wilcoxon sum rank tests with Bonferroni correction 

(P-adjusted < 0.05) were conducted because of the biased sample size and violation of normality 

assumption.  

To validate our classification approach, we adopted previously published algorithm, diffTF (Berest et al. 

2019), and compared the overlaps between the two methods. diffTF, a bulk-based approach, compares 

two groups with multiple biological replicates using Pearson correlation by leveraging matching RNA-

seq and ATAC-seq datasets. To apply diffTF, we divided individual cells into 4 groups based on the cell 

order ranks from 1D spatial reconstruction map for scRNA-seq and scATAC-seq data, separately, to 

satisfy the matching datasets. Then we created 4 “pseudo” bulk replicates, for RNA-seq and ATAC-seq 

separately, by aggregating cells from the same group. Next, we ran diffTF using the mouse HOCOMOC 

v10 database with the following parameters: nPermutations: 100, nBootstraps: 0, nCGBins: 10, 

RNASeqIntegration: true, pairedEnd: true, peakType: “narrow”, minOverlap: 2.  

Transcription Factor Footprint Identification  

Footprints are generated by TFs bound to DNA, preventing the Tn5 transposase from cutting DNA in 

nucleosome-free regions. HINT-ATAC (Li et al. 2019), an HMM-based algorithm, was employed to 

identify TF binding sites with footprints for HC- and PC/DC-populations. In preparation for running 

HINT-ATAC, peak files and indexed bam files for HCs and PC/DC were generated by aggregating cells 
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from the same clusters. We started with calling footprints for HCs and PC/DCs separately by running the 

function rgt-hint footprinting with the following parameters: --atac-seq --paired-end --organism=mm10. 

Next, TF-associated footprints for each cluster were identified by detecting motifs from the mouse 

HOCOMOCO v10 database overlapping with predicted footprints using the rgt-motifanalysis matching 

function. Finally, we generated average scATAC-seq profiles around binding sites of each TF for the two 

clusters separately by running the rgt-hint differential function with the following parameters: --

organism=mm10 --bc --nc 2. We applied the same analytical workflow and predicted footprints among 4 

different states of HCs identified by CellTrails.  

Gene Regulatory Network Inference  

A gene regulatory network (GRN) is a directed graph, which is made up of nodes (e.g. genes, TFs) with 

directed links between them. Inferring regulatory relationships between TFs and putative downstream 

target genes is essential for understanding cell differentiation and development. Up to date, numerous 

algorithms exist to reconstruct GRNs. However, there are few methods integrating gene expression and 

chromatin accessibility profiles at single-cell resolution. We followed SCENIC algorithm (Aibar et al. 

2017) and developed a 3-step pipeline to reconstruct GRNs. We took HCs and PC/DCs as an example to 

reconstruct the regulatory landscape.  

The first step is to identify co-expression modules from scRNA-seq data using GENIE3 (Huynh-Thu et 

al. 2010). Briefly, GENIE3 decomposes the network into a lot of regressions. For each regression, the 

gene expression level of a target gene is predicted from the expression patterns of the TFs using tree-

based methods such as Random Forest or Extra-Trees. We applied GENIE3 to identify co-expression 

modules for HCs and PC/DCs. For running GENIE3, we selected 1,846 genes, including DEGs for both 

cell types and TF genes identified from the mouse HOCOMOCO v10 database, and generated a gene-by-

cell matrix as input for the GENIE3 algorithm. We calculated the Spearman correlation between each pair 

of genes. Next, we ran GENIE3 to determine co-expression modules and integrated the correlations with 

the following parameters: treeMethod = "RF", threshold = 0.005. The threshold parameter filtered out the 
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TF/target gene links with a weight below 0.005. In total, GENIE3 yielded 103,041 TF/target gene links 

for further analysis.  

The second step is to identify direct target genes of TFs, which includes setting up a quality control for 

GENIE3 by scanning putative TF binding sites within accessible regions and removing the links lacking 

TF binding sites. Specifically, we performed an analysis of TF binding using FIMO (Grant et al. 2011) 

for HCs and PC/DCs with default settings and the mouse HOCOMOCO v10 database. The TF-target 

gene links which lacking putative TF binding sites within an upstream and downstream 50kb window of 

the target gene TSS were filtered out. Next, we defined TF regulons, groups of genes regulated by TFs, by 

considering all possible interacted genes associated with the respective TFs. Furthermore, we filtered out 

regulons in which the number of downstream target genes was less than 10 or greater than 900 to keep the 

methods robust. Based on previous classifications, activator and repressor regulons were determined 

separately. Additionally, since GENIE3 does not consider autoregulation, we complemented the regulons 

with autoregulated genes by checking whether the TF binding sites are within in the 100kb window of the 

TSS of the same TF gene.  

The third step is to calculate regulon enrichment scores for each individual cell using AUCell (Aibar et al. 

2017). Briefly, AUCell, a ranking-based method, uses the “Area Under the Curve” (AUC) of the recovery 

curve to determine the enrichment of regulons for individual cells. We first ranked all genes for each cell 

using the function AUCell_buildRanking with default settings. Next, AUC for each regulon in each cell 

was calculated using AUCell_calcAUC function, and only the top 1% of the genes in the ranking were 

used. Additionally, hierarchical clustering was conducted for both regulons and cells and was added in the 

heatmap.  

We followed the 3-step pipeline to identify TFs controlling IHC and OHC differentiation by predicting 

the GRN. We selected IHC-specific genes, OHC-specific genes, and TF genes from the mouse 

HOCOMOCO v10 database. GENIE3 was applied to identify co-expression modules with parameters: 

treeMethod = "RF", threshold = 0.001. In step 2, we performed FIMO motif scanning algorithm for HC 
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peaks only. We filtered out regulons in which the number of downstream target genes was less than 10 or 

greater than 200. To calculate regulon enrichment scores for IHCs and OHCs, we used exactly the same 

settings as the previous analysis.  

1D Spatial Reconstruction of HCs  

We resolved the anatomical positions of HCs at the single-cell level from scRNA-seq and scATAC-seq 

data by following the conceptual idea previously published for the reconstruction of the mouse organ of 

Corti from single-cell qPCR data (Waldhaus et al. 2015). First, we identified 427 DEGs (P < 0.005) and 

127 DARs (P < 0.001) between apical and basal compartments from scRNA-seq and scATAC-seq data, 

respectively. While loosening the threshold would include more DARs, a lot of false positive DARs 

would likely be included. To deal with the problem, we ran permutation test 100 iterations. Specifically, 

we permutated the cells 100 times while keeping the original apical/basal cell ratio. For each iteration, 

peaks were called for permutated apical and basal cells, separately, and DARs were determined using the 

function findDAR from SnapATAC. We used the boxplot to show the number of DARs identified for 100 

iterations under different cutoffs.  

The hypothesis is that using spatially differential features (e.g. DEGs and DARs) can resolve the 

anatomical position of individual cells. Next, we projected the individual cells onto a 2D PCA coordinate 

system and calculated the centroid locations for apical and basal cells, separately. 2D PCA space was 

rotated based on the apex-to-base centroid-centroid-vector with the apex facing up. Finally, HCs were 

placed according to their rank order of PC1, indicating each individual cell’s relative position along the 

tonotopic axis for both scRNA-seq and scATAC-sec data. 

Prediction of cis-regulatory Interactions  

We applied Cicero (Pliner et al. 2018) to calculate peak-to-peak coaccessibility from scATAC-seq data 

for HC and PC/DC cluster, separately. Briefly, Cicero aggregates accessibility profiles for individual cells 

from the same cluster and calculated a regularized correlation score for each pair of peaks within a 500kb 
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window using a Graphical Lasso model. We started with projecting the cell-by-peak matrix, identified 

from SnapATAC, into a lower-dimensional space by using the function reduceDimension with 

num_dim=6. Next, we ran Cicero for accessible regions to compute coaccessibility scores using the 

default parameters. We then zoomed in a few genomic loci, related to genes Sox9, S100b, and Zbtb18, and 

visualized the cis-regulatory interactions within these loci in different clusters with a lenient cutoff 

(coaccess_cutoff=0). Additionally, putative TF binding sites scanned from FIMO (Grant et al. 2011) were 

added to the Cicero map to validate the predicted TF-target gene interactions.  

IHC and OHC Identification using scRNA-seq Data 

We identified IHC and OHC subpopulations, with respect to the scRNA-seq data, based on 7 previously 

published marker genes (Waldhaus et al. 2015). The 7 genes included Fgf10, Fgf8, and S100a1 as IHC 

specific genes, and Slc26a5, Fgfr3, Cdh1, and Ocm as OHC specific genes. We used these 7 marker genes 

as features to run UMAP with default parameters. Two subpopulations were identified and differential 

analysis was conducted between the two subclusters using Wilcoxon sum rank test (P < 0.01).   

HC Chromatin Accessibility Trajectory Inference  

We applied CellTrails (Ellwanger et al. 2018) to reconstruct HC developmental trajectory using z-scores 

from scATAC-seq data. Celltrails employs spectral embedding technique to find a low-dimensional 

manifold that represents the spatiotemporal relation of cells. To infer the HC differentiation trajectory at 

epigenomic level, we first prepared a TF-by-cell z-score matrix with 426 TF motifs identified from the 

mouse HOCOMOCO v10 database and 420 HCs. Next, we applied spectral embedding function 

embedSample with default parameters to find a low-dimensional representation and we determined 7 

latent variables for further analysis. Hierarchical clustering with a post-hoc test was conducted to 

determine states using the function findStates with following parameters: min_size=0.1, min_feat=5, 

max_pval=1e-4, min_fc=2. Then we aligned individual cells to the trajectory using fitTrajectory function 

with default parameters. In summary, we identified 4 states which formed a Y-shape, indicating the 

bifurcation of HC differentiation. To further investigate the 4 different states, we projected the meta-data 
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information, such as library ID and DAR-based cell rank order, onto the trajectory, and visualized the 

gradual changes of z-scores along the trajectory.  

Additionally, we applied Slingshot (Street et al. 2018) to reconstruct and validate trajectory prediction 

using z-scores from scATAC-seq data.  Briefly, Slingshot infers the global lineage structure by 

constructing a cluster-based minimum spanning tree and constructs smooth lineages by fitting 

similtaneous principle curves. We used the prepared TF-by-cell z-score matrix as input for Slingshot and 

started by conducting dimensionality reduction using PCA and only the first two PCs were subject to 

further analysis. Next, we identified clusters using Gaussian mixture model from Mclust function in the 

mclust package and three clusters were determined automatically based on the Bayesian information 

criterion. To reconstruct the trajectory, we run getLineages (start.clus= '1', end.clus=c('2' ,'3')) function 

to identify global lineage structure and getCurves function with default settings to construct smooth 

curves and order cells. To validate consistency between Slingshot and CellTrails algorithms, we projected 

the CellTrails states onto the Slingshot trajectory map. Also, we conducted trajectory analysis using 

Monocle (Trapnell et al. 2014; Qiu et al. 2017a; Qiu et al. 2017b). Monocle, an unsupervised algorithm, 

reconstructs the trajectory by constructing minimum spanning tree. Similar to CellTrails and Slingshot, 

HC TF-by-cell z-score matrix was used to run Monocle. We generated a newCellDataSet object with 

Guassian distribution because the data were already transformed to be normally distributed. Then we 

conducted dimensionality reduction by running reduceDimension function with the following parameters: 

max_components = 4,reduction_method = 'DDRTree',norm_method = "none",scaling = T. Next, we 

ordered cells using orderCells function with default settings. To validate consistency between Monocle 

and CellTrails algorithms, we projected the CellTrails states onto the Monocle trajectory map. 

Bulk RNA-seq Analysis 

To confirm differential expression for the seven TFs highlighted in the volcano plot (Fig. 6A), we 

leveraged two previously published bulk RNA-seq data sets. Averaged gene expression values for 

perinatal HCs (Wiwatpanit et al. 2018) were determined and P-values indicated accordingly. Same 
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processing for adult HCs (Li et al. 2018) was performed. To identify differentially expressed genes, we 

conducted one-side Student t-test for each indivudial gene.  
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SUPPLEMENTAL FIGURES  

  

Supplemental Figure S1. Sorting of Apical and Basal Compartment Cells and Quality Control of 

scRNA-seq and scATAC-seq data. Related to Figure 1. (A) Microdissected cochlear ducts were 

divided into apical and basal compartments, then processed separately for independent scRNA-seq and 

scATAC-seq library preparations. Gates were identical between apex and base samples. (B) UMAP plot 

of unique fragment counts per cell in log10 scale of scATAC-seq dataset. (C) scATAC-seq fragment 

accumulation relative to TSS position using ataqv. (D) Genomic region composition of DARs for each 
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cluster from scATAC-seq data. (E) Fragment length distribution for each scATAC-seq cluster. (F) UMAP 

plot of unique read counts per cell in log10 scale of scRNA-seq dataset.  
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Supplemental Figure S2. scRNA-seq Cell Type Identification and Representation of Previously 

Published Organ of Corti Regulatory Elements. Related to Figure 1. (A) Dot plot of candidate gene 
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expression levels for each scRNA-seq cluster. The dot size represents percentage of cells expressing a 

given transcript for the clusters. (B) UMAP plot of LIGER single-cell multi-omics integration analysis, 

color coded by dataset modality. (C) UMAP plot of LIGER alignment color coded by cell identity from 

the Jaccard index similarity approach. (D) Enrichment of chromatin accessibility and expression level of 

candidate genes corresponding to their clusters. Accumulated scATAC-seq fragments at the individual 

gene locus (left column) and normalized gene expression levels in violin plots (right column) for 6 

scATAC-seq clusters. Gapdh, a housekeeping gene, revealed a ubiquitous accessibility and expression 

across 6 clusters. Remaining genes are expressed in organ of Corti cell types. Arrowheads at the bottom 

of the plot indicate regions of previously published organ of Corti specific regulatory elements 

(Wilkerson et al. 2019).  
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Supplemental Figure S3. diffTF-based Activator/Repressor Classification and Footprint Validation. 

Related to Figure 2. (A) Transcriptional activators (shown in green) and repressors (shown in red) 

identified in diffTF algorithm (Berest et al. 2019) by generating 4 “pseudo” bulk ATAC-seq and RNA-

seq datasets shown in Pearson correlation. Circles are HC specific TFs, and the triangles are PC/DC 
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specific TFs. (B-D) Venn diagram comparing TF classification presented in Wang et al. with diffTF 

results. (B) All TFs including activators and repressors, (C) activators only, and (D) repressors only. (E-

G) TF footprints calculated from scATAC-seq data using HINT-ATAC with JASPAR 2020 consensus 

sequence. (E) LHX3 footprint. Yellow line represents the HC cluster, and orange line represents the 

PC/DC cluster. Bottom row: mouse JASPAR 2020 consensus sequence for the LHX3 motif. (F-G) 

Analogous data representation for two SOX2 motifs. GFI1 and TGIF1 motifs were not curated in 

JASPAR 2020 and therefore not included in the analysis.  
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Supplemental Figure S4. HC and PC/DC Regulon Identification and Validation. Related to Figure 

3. (A) Venn diagram of quantitative comparison between SOX2 ChIP-seq data (Kwan et al. 2015) and 
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scATAC-seq/scRNA-seq based approach. Shown are numbers of SOX2 downstream target genes 

identified in two biological replicates from ChIP-seq data and the SOX2 regulon identified in this study. 

(B) GO term analysis of putative downstream target genes from HC specific regulons using DAVID. (C) 

GO term analysis of putative downstream target genes from PC/DC specific regulons using DAVID. (D-

E) Coaccessibility analysis of Sox9 and S100b loci in the HC cluster using Cicero. (D) In HCs, the peaks 

associated with Sox9 TSS are not coaccessible with any of the sites. No putative TF binding sites for 

SOX9 and GFI1 were annotated based on FIMO motif scanning. Top row: Genome annotation from 

UCSC Known Genes. Second row: Coaccessibility plot of connections between accessible regions with 

the TSS. Third row: Accessible regions aligned within the locus. Forth row: putative TF binding sites of 

SOX9 and GFI1 relative to the accessible regions. TSS position is indicated with a dashed line. (E) 

Analogous data representation for the S100b locus.  
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Supplemental Figure S5. Permutation Testing of DAR Identification between Apex and Base. 

Related to Figure 4. (A-B) Number of identified DARs plotted against P-value for experimental (red 

line) vs 100-iteration permutated data (black box plots). (A) P-values tested from 0.0005 to 0.9. (B) same 

data visualized with P-values from 0.0005 to 0.005.  
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Supplemental Figure S6. IHC and OHC Subclusters from scRNA-seq and scATAC-seq 

Experiments. Related to Figure 5. (A) UMAP plot of HC cluster from scATAC-seq data with projection 

of library ID. Color code: apex – red, base – blue. (B) UMAP plot of HC cluster from scATAC-seq data 

with projection of TF INSM1 activity z-scores. (C) UMAP plot of CellTrails states S1-S4. (D-E) 

Trajectory reconstruction of HC cluster based on scATAC-seq z-scores using (D) Slingshot and (E) 

Monocle. CellTrails state ID color coded and projected onto both trajectories. (F) Trajectory 
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reconstruction of HC cluster based on scATAC-seq z-scores using CellTrails. Library ID color coded and 

projected onto the trajectory. Color code: apex – red, base – blue. (G-H) Dot plot of preferentially 

expressed genes in (G) perinatal IHCs and OHCs (Wiwatpanit et al. 2018) and (H) adult IHCs and OHCs 

(Li et al. 2018) based on bulk RNA-seq data. Differential OHC expression was confirmed for Insm1 with 

temporal restriction around birth. Tcf4 was confirmed as an OHC-specific gene with differential 

expression in adult HCs. Tbx2, Smad3, and Hivep2 were confirmed differentially expressed in IHC at 

both time points and Foxo4 turned into a significantly differentially expressed IHC marker in adult HCs. 

Glis3 was the only gene flipping preferential expression from IHCs to OHCs between perinatal and adult 

samples. The gene expression values are on logarithmic scale. Black arrows highlight the 7 TFs from Fig. 

6A including one-side Student t-tests P-values.  
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