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A. Supplemental Methods 
 
MERINGUE analysis of Spatial Transcriptomics of the mouse olfactory bulb (MOB) 
Data was downloaded from https://www.spatialresearch.org/ for the MOB Replicate 11 sample that 
was described in the original publication (Ståhl et al. 2016). 

Beginning with 262 probe spots and 15928 genes, we filtered out spots with fewer than 100 genes 
detected and filtered out genes with fewer than 100 reads across all spots resulting in 260 probe spots and 
7365 genes. Counts were normalized to counts per million (CPM) values for downstream analysis. 

For the expression-based analysis, we performed principal components analysis (PCA) on the 
performed on the log10 transform CPM values with pseudo count of 1. To identify transcriptional clusters, 
we performed Louvain clustering on a k-nearest neighbor graph constructed from the top 5 PCs with 
k=30. We manually annotated identified clusters as different cell layers to best correspond to the original 
publication (Ståhl et al. 2016). We visualized the results using t-stochastic neighbor embedding (tSNE) on 
the top 5 PCs. 

For differential expression analysis, we use ANOVA testing to identify genes with significant 
expression variability across the annotated cell layers (adjusted p-value < 0.05).  

For the spatial analysis, we filtered out adjacency relationships beyond a Euclidean distance of 2 
(corresponding approximately 300 microns) to minimize long-range adjacency relationships towards the 
edge of the sample. We restricted to significantly (adjusted p-value < 0.05) spatially heterogeneous genes 
driven by more than 5% of spots. We grouped these significantly spatially variable genes into primary 
spatial patterns using hierarchical clustering with the ‘ward.D’ approach and deepSplit=4 parameter for 
dynamic tree cutting using the hybrid approach (Langfelder et al. 2008). For visualization, we 
interpolated expression patterns with a binSize of 50. 

For the analysis of olfactory receptor (Olfr) genes, we identified summing the counts of all Olfr 
genes detected in each spot and assessed the summed expression for spatial heterogeneity.  
 
MERINGUE analysis of aligned In Situ hybridization (ISH) of the Drosophila melanogaster embryo 
Data was downloaded from DVEX (Karaiskos et al. 2017) at https://shiny.mdc-berlin.de/DVEX/ for the 
continuous in situ expression matrix from the BDTNP (Fowlkes et al. 2008). 
 
We analyzed the in situ expression of 84 genes across the 3039 aligned stage 6 Drosophila melanogaster 
embryonic cell locations. For the spatial analysis, we used the 3D x, y, z coordinates and filtered out 
adjacency relationships beyond a 3D Euclidean distance of 10 to minimize long-range adjacency 
relationships towards the edge of the sample. We restricted to significantly (adjusted p-value < 0.05) 
spatially variable genes driven by more than 5% of locations. We grouped these significantly spatially 
variable genes into primary spatial patterns using hierarchical clustering with the ‘ward.D’ approach and 
deepSplit=2 parameter for dynamic tree cutting. For visualization, we interpolated expression to the 
whole embryo with a binSize of 50.  
 
For expression-based clustering, to recapitulate results from (Karaiskos et al. 2017), we performed 
Louvain clustering on a k-nearest neighbor graph constructed from the top 20 PCs with k=150. For 
spatially aware clustering, we apply Louvain clustering to this same k-nearest neighbor graph but with 
edge weights using the same 3D adjacency weight matrix as the spatial analysis with 𝛼 = 𝛽 = 0.01.  
 
MERINGUE analysis of multi-section Spatial Transcriptomics of breast cancer tissue 
Data was downloaded from https://www.spatialresearch.org/ for the 4 breast cancer sections that was 
described in the original publication (Ståhl et al. 2016). 

Beginning with 4 breast cancer tissue sections, we concatenated expression matrices based on 
genes detected in all tissue layers, resulting in 13360 genes across 1031 probe spots. We further filtered 
out spots with fewer than 100 genes detected and filtered out genes with fewer than 100 reads across all 



spots resulting in 6214 genes across 1029 probe spots. Counts were normalized to counts per million 
(CPM) values for downstream analysis. 

For each individual breast cancer tissue layer, we first performed spatial analysis by constructing 
an adjacency weight matrix based on probe spots within the individual layer and filtered out adjacency 
relationships beyond a Euclidean distance of 2. We restricted to significantly (adjusted p-value < 0.05) 
spatially variable genes driven by more than 5% of spots in that tissue layer.  

To identify patterns consistent across tissue layers, we manually rotated and centered spatial spot 
coordinates to enable the construction of a cross-layer adjacency weight matrix based on the k mutual 
nearest neighbors of probe spots across aligned layers with K = 3. We then identified significantly 
(adjusted p-value < 0.05) spatially variable genes driven by more than 1.25% of all spots. 
 
MERINGUE analysis of SlideSeq data of the mouse cerebellum 
Data was downloaded for Puck_180819_12 that was described in the original publication (Rodriques et 
al. 2019). 

We focus our analysis on beads within the Purkinje layer of the mouse cerebellum, which was 
annotated as AnalogizerClusterAssignmentsOriginal=6 in the original publication, resulting in 1589 
spots. We further filtered out beads with fewer than 100 genes detected and filtered out genes with fewer 
than 100 reads across all beads resulting in 191 genes across 883 beads. Counts were normalized to 
counts per million (CPM) values for downstream analysis. 

For the spatial analysis, we filtered out adjacency relationships beyond a Euclidean distance of 
250. We restricted to significantly (adjusted p-value < 0.05) spatially variable genes driven by more than 
5% of beads. 

For the inference of cell-cell communication, we focus on known receptor-ligand pairs 
(Ramilowski et al. 2015). From the adjacency matrix, we identify beads spatially adjacent to the Purkinje 
layer beads. We restrict to testing receptor and ligand pairs that are detected (> 0 expression) in at least 30 
beads in the Purkinje and neighbor beads respectively and vice versa. Observed iSCI were evaluated for 
statistical significance using adaptive permutation testing for 100, 1000, and 10000 permutations. We 
applied the Benjamini-Hochberg procedure for multiple testing correction to account for all receptor and 
ligand pairs tested. 
 
MERINGUE analysis of MERFISH data of the mouse hypothalamic preoptic region 
Data was downloaded from the original publication (Moffitt et al. 2018). 

For the spatial analysis, we focused on each cell-type and subtype as annotated in the original 
publication. Expression levels were normalized per cell by the imaged volume of each cell per the 
originally published analysis (Moffitt et al. 2018). For each individual tissue layer in each animal, we first 
performed spatial analysis on cell-types and subtypes that are present with more than 30 cells, constructed 
an adjacency weight matrix, and filtered out adjacency relationships beyond a Euclidean distance of 250 
to minimize long-range adjacency relationships towards the edge of the sample. Due to concerns of 
subtype annotation errors potentially driving spatial patterns, we require significantly spatial variable 
genes to be driven by more than 10% of cells. In this manner, if certain subtypes contain a few mis-
annotated cells that are truly from another transcriptionally and spatially distinct subtype, we would not 
mis-interpret the mis-annotation as spatial heterogeneity. Further, due to concerns of spatially patterned 
misidentification, we further require cells driving identified spatially heterogeneous genes to express the 
genes at a minimum expression magnitude calculated from the 95th percentile of blank control 
misidentification rate. In this manner, low expression from spatially patterned misidentification would not 
be mis-interpreted as spatial heterogeneity. In addition, we required patterns to be significantly consistent 
across tissue sections. To identify patterns consistent across tissue sections, for each animal, we ordered 
tissue sections by the annotated Bregma position per the original publication. We centered the x and y-
positions to approximately align tissue sections. We then constructed a cross-layer adjacency weight 
matrix based on the k mutual nearest neighbors of cells across aligned layers with k = 3. Finally, we 



considered a gene as spatially heterogeneous if it was identified to exhibit significant spatial heterogeneity 
both within individual tissue sections and across tissue sections in at least 25% of evaluated animals.  

To identify potential sexually dimorphic differences in gene expression patterns, visually 
evaluated identified spatially heterogeneous genes to identify Nos1 expressing in Inhibitory neuron I-11 
as a potential candidate. To test for statistical differences, for each animal, we quantified the fraction of 
Nos1+ I-11 neurons by comparing I-11 neurons expressing Nos1 versus all I-11 neurons. We defined I-11 
neurons expressing Nos1 as those with Nos1 detected at above the 95-percentile blank expression rate = 
0.1. We tested for differences between the fraction of Nos1+ I-11 neurons between female and male naïve 
mice for a representative tissue section with the most abundant I-11 neurons using a Student’s t-test. 
Likewise, we systematically evaluated genes for spatial heterogeneity separately for naïve male and 
female mice using the same standards above and identified Tacr1 expression in Excitatory neuron E-8 as 
being significantly spatially heterogeneous in male but not female naïve animals. We used LISA to 
quantify the scale of spatial heterogeneity for Tacr1. We tested for differences between the scale of Tacr1 
spatial heterogeneity in E-8 neurons between female and male naïve mice for a representative tissue 
section with the most abundant E-8 neurons using a Student’s t-test.  

For expression-based clustering, we focus on only inhibitory neurons in animal FN7, tissue 
section brain_pos=9. We restricted analysis to neuronal subtypes that are present with more than 100 
cells. To recapitulate results from (Moffitt et al. 2018), we performed Infomap clustering on a k-nearest 
neighbor graph constructed from the top 50 PCs with k=50. For spatially informed clustering, due to 
bilateral symmetry in the preoptic region, we constructed the adjacency matrix W on transformed x-
positions where 𝑥! = 𝑎𝑏𝑠(𝑥 − 𝑥) in order to accommodate the known symmetry about the y-axis. We 
again applied Infomap clustering to this same k-nearest neighbor graph but with edge weights using the 
adjacency matrix W on transformed x-positions with 𝛼 = 𝛽 = 1. Our spatially informed clustering 
identified additional clusters splitting Inhibitory neurons subtype I-11 and I-2. To generalize the spatially 
aware clustering to all animals, we trained a linear discriminant classifier to map from gene expression to 
the identified spatially aware clustering annotations for I-11 and I-2 separately and applied the classifier 
to I-11 and I-2 in all animals separately. This analysis was repeated for excitatory neurons. To test for 
differential activation between I-2 subtypes identified by spatially informed clustering, we evaluated the 
fraction of activated neurons for each I-2 subtype. We define activated neurons as those with cFos 
expression > 0.1.  

For the inference of cell-cell communication, we specifically focus testing for inter-cell-type 
spatial cross-correlation between Cyp19a1 with Esr1 or Ar. For each tissue layers in each animal, we 
restricted analysis to neuronal subtypes that are present with more than 100 cells. We construct an 
adjacency weight matrix based on all annotated cells within the tissue layer, excluding cells annotated as 
ambiguous from the original publication.  
 
Comparing MERINGUE to previously published spatial analysis methods 

We compare MERINGUE to previously published spatial analysis methods SpatialDE v1.1.3, 
Trendsceek v1.0.0, and SPARK v1.1.0. Trendsceek and SPARK were run from within R while SpatialDE 
was run using R’s reticulate package to interface with Python. 

To compare each method’s results on the MOB dataset, we restricted to the same filtered set of 
260 cells and 7365 genes. For MERINGUE and SpatialDE, CPM normalized expression values were 
used. For SPARK, counts were used as SPARK performs internal library size normalization. Trendsceek 
could not complete in a reasonable amount of time and was omitted from comparison. To evaluate the 
overlap between identified significantly spatially heterogenenous genes, MERINGUE results were 
filtered for genes with adjusted p-value < 0.05 driven by > 5% of spots, SpatialDE results were filtered 
for genes with a adjusted p-value threshold < 0.05, and SPARK results were filtered with an adjusted p-
value < 0.05 combined across all default evaluated kernels.  

To compare the runtime and memory usage of each method in identifying significantly 
heterogeneous genes, we used the 10X Visium dataset of the mouse coronal brain section downloaded 



from https://www.10xgenomics.com/products/spatial-gene-expression. To evaluate runtime as a function 
of spots, we downsampled the data to a constant set of 1000 genes and varied the number of spots from 
125, 250, 500, to 1000 and evaluated the runtime of each method. Likewise, to evaluate runtime as a 
function of genes, we downsampled the data to a constant set of 1000 spots and varied the number of 
genes from 125, 250, 500, to 1000 and evaluated the runtime of each method. We evaluated memory 
usage as the amount of memory allocated and then subsequently released after the running lines 
corresponding to each method, excluding the amount of memory necessary to create or store the 
positional and gene expression matrices. For Trendsceek, we limited to 100 permutations and only 
evaluated performance for the two smallest datasets due to runtime constraints. For SPARK and 
Trendsceek, we limited computation to a single core for comparison purposes. SpatialDE was omitted 
from comparison due to concerns that R-to-Python conversion differences introduced non-comparable 
runtime and memory usage.  

 
Comparing the implementation of Moran’s I in MERINGUE with spdep 

spdep (Bivand et al, 2013) also has an implementation of Moran’s I in R. We compared the 
implementation of Moran’s I in the spdep library (v1.1-7) to the implementation in MERINGUE in 
evaluating 2000 genes across 260 spots in the MOB dataset. We provide identical adjacency matrices to 
confirm that both implementations yielded equivalent I statistics (Spearman correlation R=1). We also 
evaluated 2000 genes across 260 spots in the MOB dataset to compare runtime per gene. Moran’s I in 
MERINGUE is written in C++ whereas the spdep implementation is written in native R.  
 
Evaluating robustness to changes in cellular density 

To evaluate robustness to changes in cellular density, we used the MOB dataset’s spatial 
coordinates, centering and raising 1.1 to the power of the x-coordinates in order to induce non-uniform 
spot densities. We then compared each method’s resulting -log10(adjusted p-values) or -log10(combined 
adjusted p-values) where appropriate under the uniform and non-uniform density cases. 
 
Potential limitations of MERINGUE 

MERINGUE builds on Moran’s I, which others have noted may result in inflated P-values, which 
could lead to false positives (Sun et al. 2020). However, we find MERINGUE’s additional filtering 
criterions using LISA to restrict to spatial patterns driven by a certain proportion of cells can minimize 
false positives (Supplemental Fig. 2C). Furthermore, conservative P-value corrections scores can help 
minimize such false positives.  

MERINGUE requires that gene expression magnitudes within an individual spatially resolved 
transcriptomics dataset have been either collected in a single batch or have been corrected for batch 
effects. Therefore, expression-level batch correction may be applied prior to analysis with MERINGUE to 
ensure that identified spatial patterns are not driven by batch (Johnson et al. 2007).  



B. Supplementary Figures 
 
 

 
 

Supplemental Figure S1. Challenges imposed by non-homogenous cell-densities in spatial analysis. 
We simulate cells in space for illustrative purposes. Each point is a cell. Red indicates high expression, 
while blue indicates low expression of a simulated gene. A. An example of random gene expression with 
non-uniform cell density. Cells are denser in the top right corner. Gaussian randomly distributed gene 
expression is simulated across cells. Although gene expression is randomly distributed across all cells, 
higher gene expression is observed by chance in the denser region. Methods that fail to take into 
consideration differences in cell density may mistake such density-confounded random gene expression 
as spatial heterogeneity due to density aggregation. B. An example of patterned gene expression 
confounded by cell density.  
  



 
 

Supplemental Figure S2. Parameter and design justifications. A. Stability of Voronoi-based neighbor 
inference compared to k-nearest-neighbors-based neighbor inference. We simulate cells in space for 
illustrative purposes. Each point is a cell. Red lines connect the cells if they are inferred to be neighbors. 
k-nearest neighbor approach for inferring neighbors for k=3 (left) and k=6 (middle). Cells are considered 
neighbors if they are within the 3 spatially closest cells based on Euclidean distance. Voronoi-based 
approach for inferring neighbors is parameter free (right). Cells are considered neighbors if their Voronoi-
tessellation share an edge. B. Correspondence between moment-based and permutation-based p-values in 
assessing significance of the Moran’s I statistic. Each point is a gene. Red line denotes linear fit. P-values 
from the moment-based and permutation-based approach to assessing the significance of the Moran’s I 
statistic is highly correlated on both the linear (left) and log scale (right), though log-scale p-values from 
the permutation-based approach for assessing the significance of the Moran’s I statistic plateaus at 4 due 
to limitations of permutation as only 104 permutations were generated. C. Histogram of the percentage of 
probe spots driving spatial patterns for randomly permuted gene expression. Red line denotes 5% 
threshold.  
  



 
 
Supplemental Figure S3. Additional analysis of Spatial Transcriptomics (ST) data of the mouse 
olfactory bulb (MOB). A. Expression-based clustering analysis. Each point is a spot colored based on 
previously published annotations. The 2D tSNE embedding shows these spots to be transcriptionally 
distinct. B. Additional examples of significantly spatially heterogeneous genes. C. Additional examples 
of identified primary spatial patterns. D. Histogram of the percentage of spots with detectable (non-zero) 
Olfr gene expression shows most Olfr genes are detected in a very low percentage of spots (left). Select 
examples of individual Olfr genes are shown (right). E. Aggregating all Olfr genes by summing up their 
expression values enables identification of significant spatial gene expression heterogeneity (Moran’s I p-
value = 0.0000283).  
  



 
Supplemental Figure S4. Analysis of SlideSeq of the mouse cerebellum. A. Neighborhood adjacency 
relationship between beads that correspond to the Purkinje layer. B. Spatial expression pattern of one 
identified significantly spatially variable gene Aldoc.  
  



 
Supplemental Figure S5. Comparison of MERINGUE to previously published methods for 
analyzing spatial transcriptomics data using ST data of the MOB. Significance of spatial 
heterogeneity in terms of -log10(adjusted p-value) across evaluated genes for A. MERINGUE versus 
SpatialDE and B. MERINGUE versus SPARK. C. Venn diagram of genes identified as significantly 
spatially heterogeneous by MERINGUE, SpatialDE, and SPARK. Runtime as a function of D. number of 
cells and E. number of genes across spatial transcriptomics analysis methods. Memory usage, defined as 
the amount of memory allocated and then subsequently released after the running lines corresponding to 
each spatial transcriptomics analysis method in R, as a function of F. number of cells and G. number of 
genes. 
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Supplemental Figure S6. Comparison of MERINGUE to previously published methods in analyzing 
spatial transcriptomics data with uniform and non-uniform spot densities. A. Density distribution of 
probe spots under the uniform (left) and simulated non-uniform (right) density case. A sample spatially 
heterogeneous gene, Doc2g, is shown. B. Significance of spatial heterogeneity in terms of -log10(adjusted 
p-value) across evaluated genes under uniform and non-uniform density by MERINGUE. The -
log10(adjusted p-value) for Doc2g is shown as a table and highlighted in the scatterplot as a red point with 
a blue square. C. Differences in the binary weight matrix derived from uniform versus non-uniform 
density. The Voronoi-based neighborhoods derived on the simulated non-uniform density spot positions 
(top) have missing adjacency relationships (middle) as well as new adjacency relationships (bottom) 
compared to neighborhoods derived on the original uniform density spot positions. D. Significance of 
spatial heterogeneity in terms of -log10(adjusted p-value) across evaluated genes under uniform and non-
uniform density by SpatialDE and SPARK. The -log10(adjusted p-value) for Doc2g is shown as a table 
and highlighted in the scatterplot as a red point with a blue square. 
  



 

 
Supplemental Figure S7. Additional analysis of aligned ISH data of the Drosophila melanogaster 
embryo. Visualization of the 14 identified spatial patterns.  
  



 
Supplemental Figure S8. Analysis of Spatial Transcriptomics data of consecutive histological 
sections of a breast cancer biopsy. A. To accommodate multi-layer tissue data, a binary weight matrix 
can be constructed by identifying mutual nearest neighbors in space between adjacent tissue layers. B. 
Examples of genes with significant spatially heterogeneous expression within and across sections. C. 
Examples of genes that exhibit significant spatially heterogeneous expression e within sections but not 
across sections.  
  



 

 
 

Supplemental Figure S9. Additional examples of aspects of spatial heterogeneity in the preoptic 
region.  
  



 
Supplemental Figure S10. Consistency of spatial patterns in the preoptic region across female and 
male animals. A different female (FN4) and male animal (MN5) are shown. Visual inspection shows 
general correspondence in spatial gene expression patterns despite minor mechanical tissue distortions 
and rotations.  
  



  

 
 

Supplemental Figure S11. Simulation of spatially informed clustering. A. 3 spatially distinct cell 
populations are simulated and visualized. Each point is a cell plotted in space. Cells are colored based on 
their simulated population. B. Gene expression profile of simulated cells. We simulate the population A 
(blue) cells to be transcriptionally distinct but the population B (orange) and C (green) cells to be 
transcriptionally similar. Heatmap of simulated gene expression across cell-types (left). Each row is a cell 
with column colors corresponding to the simulated cell-types. Red denotes high expression while blue 
denotes low expression. Dimensionality reduction and 2D visualization via a UMAP embedding (middle) 
and spatial embedding (right). Each point is a cell, colored by gene expression corresponding to the 
heatmap. C. Results of regular transcriptional clustering. Two transcriptionally distinct clusters are 
identified. Each cell in the UMAP embedding (left) and spatial embedding (right) are colored by the 
identified clusters from transcriptional clustering analysis. D. Results of spatially informed clustering. 
Three transcriptionally and spatially distinct clusters are identified. Each cell in the UMAP embedding 
(left) and spatial embedding (right) are colored by the identified clusters from spatially informed 
clustering analysis. 

  



 
Supplemental Figure S12. Transcriptional characterization of spatially informed clusters in the 
preoptic region. A. UMAP embedding with spatially informed clusters C5 and C10 that corresponding to 
the original Inhibitory I-11 neuronal population highlighted (left). Significantly differentially expressed 
genes (Wilcoxon p-value < 0.05) between C5 and C10 visualized as a heatmap (right). B. (left) UMAP 
embedding with spatially informed clusters C3 and C8 that corresponding to the original Inhibitory I-2 
neuronal population highlighted. Significantly differentially expressed genes (Wilcoxon p-value < 0.05) 
between C3 and C8 visualized as a heatmap (right). C. Expression of Cplx3 (top) and Dgkk (bottom), two 
sample differentially expressed genes between C3 and C8, in I-2 neurons. Each point is a cell in space. I-2 
neurons are colored based on their gene expression. Regions corresponding to the BNST and SDN 
regions are highlighted with blue and red dashed lines respectively. I-2 cells within the SDN appear to 
have higher Cplx3 expression relative to I-2 cells within the BNST and conversely for Dgkk. D. Tuning 
regular transcriptional clustering to detect finer subtypes. I-2 and I-11, highlighted with black dashed 
lines, do indeed become split, though additional subtypes, highlighted with red dashed lines, appear to 
become oversplit.   
  



 
Supplemental Figure S13. Simulation of inter-cell-type spatial cross correlation. A. Three simulated 
cell-types in space represented as different shapes (left). We focus on communications between cell-type 
A (blue squares) and cell-type B (red circles). Lines are drawn between cells if they are neighbors in 
space and are represent both our cell-types of interest. B. The corresponding adjacency weight matrix W 
to (A). W has a value of 1 is two cells are neighbors and represent both our cell-types of interest. W has a 
value of 0 if two cells are not neighbors or are neighbors with the same cell-type. C. Simulated expression 
of a receptor and corresponding ligand. Receptor expression is depicted on the x-axis and ligand 
expression on the y-axis. Cell-type A cells express the ligand highly but not the receptor while cell-type B 
cells express the receptor highly but not the ligand. Correlation between the receptor and ligand gene 
expression across cells is therefore negative, as depicted by the negative correlation line in red. We 
simulate high correlation between receptor expression in cell-type B cells and ligand expression in 
spatially neighboring cell-type A cells. D. Distribution of the inter-cell-type spatial cross-correlation 
index (iSCI) for the ligand and receptor expression in (C) for randomly permuted cell labels provides a 
null distribution. The observed iSCI for the ligand and receptor expression between cell-type A and B is 
shown as a red horizontal line. The permutation p-value is derived by comparing the observed iSCI to the 
null distribution. In this case, the observed iSCI is much higher than what we expect by chance, giving it 
a significant p-value. E. Distribution of the inter-cell-type spatial cross-correlation index (iSCI) for 
random normally distributed gene expressions. The distribution of resulting p-values are uniformly 
distributed with the expected ~5% of the computed iSCI to reach significance based on a p-value < 0.05 
without multiple-testing correction, suggesting a type I error rate of 5% or a 5% probability of incorrectly 
rejecting the true null hypothesis that the genes are not spatially cross-correlated across cell-types. 



 
Supplemental Figure S14. Additional examples of putative cell-cell communication in the preoptic 
region. A. Aromatase (Cyp19a1) expression in I-13 neurons in one tissue layer in one animal with red 
indicating high expression and blue indicating low expression (left). Esr1 expression in cells neighboring 
I-13 neurons in one tissue layer in one animal with red indicating high expression and blue indicating low 
expression (right). Representative sample shown. B. Distribution of -log10(p-values) for the spatial cross-
correlation between aromatase (Cyp19a1) expression in neuronal subtypes and Ar expression in adjacent 
cells across animals. Red dotted line is the significance threshold.  
 
 
  



 

 
Supplemental Figure S15. Comparison of Moran’s I as implemented in spdep versus MERINGUE 
in evaluating 2000 genes across 260 spots in the MOB dataset. A. Correlation in I statistics between 
spdep and MERINGUE’s implementations of Moran’s I (Spearman correlation R=1). B. Distribution of 
runtimes for evaluating each gene using spdep and MERINGUE’s implementations of Moran’s I. 
MERINGUE on average took 1.54 seconds to complete while spdep took 26.94 seconds per gene.  
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