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SUPPLEMENTARY METHODS
Collection and reorganization of human metabolic map
[bookmark: _Hlk49797527]	We reorganized the human metabolic network into different reaction types including metabolism, transporter, and biosynthesis. The reorganized network includes 22 super module classes of 169 modules. For the metabolism part, all reactions were collected from Kyoto Encyclopedia of Genes and Genomes database (KEGG). The first super module includes 121 Glucose and TCA cycle reactions. The glycolysis pathway has major out-branches including polysaccharides synthesis, pentose phosphate, serine metabolism, lactate production and acetyl-coA downstream metabolism, hence were split into seven modules. Most of the TCA cycle intermediate substrates are with branches, so the TCA cycle was split into six modules. This super module is regarded as the central metabolism pathway. The main role of this super module is for energy (ATP) production and fueling other metabolic and biosynthesis pathways with acetyl-coA. The second super module is serine metabolism, which contains 220 reactions. This pathway plays a crucial role in controlling the balance and demand of amino acid types [1]. The Pentose Phosphate pathway (PPP) forms the third super module, contains 44 reactions involved in the biosynthesis of PRPP, a precursor for nucleic acids biosynthesis [2]. The fourth super module is biosynthesis and metabolism of fatty acids, which connects the main metabolic map only via the acetyl-coA. The fatty acids biosynthesis and metabolism pathways have a series of parallel reactions chains for different types of fatty acids. This super module contains two modules of fatty acid synthesis and metabolism, totaling 148 reactions [3]. We collected all amino acid metabolic pathways from KEGG database and rebuild super modules based on the network topology. In total, we generated six super modules of amino acids metabolism, namely Aspartate, Beta-Alanine, Glutamate, and Leucine/Valine/Isoleucine metabolism pathways and Urea Cycle. The aspartate metabolism pathway has 16 enzymes catalyzing 37 reactions, B-alanine metabolism pathway includes 21 enzymes carrying 130 reactions, glutamate metabolism pathway is with 10 enzymes and 21 reactions, and 16 enzymes for urea cycle, respectively. Each of the three essential metabolite leucine, isoleucine, and valine, has a separate pathway. Two additional metabolic super modules are Propionyl-CoA metabolism for exchange of multiple coenzyme A types and spermidine metabolism related to the glutathione and S-adenosyl-L-methionine (SAM) metabolisms. 	
	Transporters enable the movement of molecules between two side of cell membranes. We collect human transporter genes and annotations from Transporter Classification Database, by using the symbol and description in this database [4, 5]. We collected 116 transporter genes of 35 metabolites presented in the metabolic and biosynthesis modules.
[bookmark: _Hlk67228356]	An essential part of metabolic map is biosynthesis pathways. KEGG database and literature [6-11] are the main information sources used for building biosynthesis modules. We collected 69 biosynthesis modules forming 10 super modules, namely biosynthesis of hyaluronic acid, glycogen, glycosaminoglycan, N-linked glycan, O-linked glycan, sialic acid, glycan, purine, pyrimidine, and steroid hormones. Overall, the biosynthesis modules include 459 genes of 269 enzymes catalyzing 869 reactions.
	We also conducted the same approach to reconstruct the mouse metabolic map and enable the capability of mouse data analysis to scFEA. Detailed statistics of the mouse metabolic map, super modules, the number of modules and genes are given in the table below.

Table 1 in Supplementary Methods. Statistics of mouse modules and genes
	SM ID
	Super Module class
	#Modules
	#Genes

	1
	Glycolysis + TCA cycle
	14
	83

	2
	Serine Metabolism
	18
	114

	3
	Pentose phosphate
	1
	28

	4
	Fatty Acids Metabolism/Synthesis
	2
	81

	5
	Aspartate Metabolism
	5
	35

	6
	Beta-Alanine Metabolism
	5
	48

	7
	Propionyl-CoA Metabolism
	2
	25

	8
	Glutamate Metabolism
	5
	13

	9
	Leucine + Valine + Isoleucine
	8
	99

	10
	Urea Cycle
	8
	30

	11
	Spermine Metabolism
	2
	7

	12
	Transporters
	35
	80

	13
	Hyaluronic acid synthesis
	5
	26

	14
	Glycogen synthesis
	1
	4

	15
	Glycosaminoglycan synthesis
	1
	14

	16
	N-linked glycan synthesis
	12
	88

	17
	O-linked glycan synthesis
	4
	17

	18
	Sialic acid synthesis
	3
	12

	19
	Glycan synthesis
	1
	5

	20
	Purine synthesis
	17
	67

	21
	Pyrimidine synthesis
	17
	49

	22
	Steroid hormone synthesis
	3
	177



Reduction and reconstruction of the metabolic map into a factor graph.
A metabolic module is defined by a number of connected metabolic reactions. Denoted  as a module  contains  reactions . Denote the flux of a reaction  as  and the flux of a module  as . 
Definition 1. Independency of reaction flux. We call two reactions  and  have independent fluxes if a perturbation in  (or  will not affect the solution space of  (or ) under flux balance condition, denoted as . Similarly, we can define the independence between a reaction  and a metabolic module , by  if , and similarly for two modules.
	Intuitively, for any connected two reactions (or modules) with a potential metabolic flow exchange, the flux of the two reactions (or modules) cannot be independent.
Definition 2. Conditional independency of reaction flux. We call two reactions  and  are conditionally independent given the flux of , here  is a set of reactions, if the  and  have independent fluxes when the fluxes of the reactions in  are fixed, denoted as . Similarly, we can define the conditional independency between one reaction and one module, or between two modules. 
	One straightforward example of conditional independency is a linear reaction chain, in which  generates the inputs of  and  generates the inputs of , i.e., . Here  under flux balance condition.
	The goal of our network reduction is to reduce the network complexity for a more efficient learning. By merging multiple connected reactions into a module, we utilize the module to represent the merged reactions. Intuitively, the first condition needs to be satisfied in the network reduction is that a merged module should have a unique and meaningful flux that could represent the fluxes of the reactions in the module, i.e. (i) the flux of the module outputs needs to have a unique solution when the flux of inputs is fixed.
Definition 3. Flux of a merged module. If a merged module  satisfies the flux of the module outputs needs to have a unique solution when the flux of inputs is fixed, we define the module flux as a vector of the flux of out its outputs, denoted as .
	In addition to the necessary condition of a unique and meaningful solution, the reduction a series of reactions into a module should not affect the uncertainty of other reactions, i.e., (ii) for any two reactions,  and , , if , then  and if , then , here  indicates not independent.
Lemma 1. A merged module satisfies (i) and (ii) if:
(1) None of the merged intermediate metabolites has more than one out-flux reactions that correspond to more than one module outputs.
(2) None of the merged intermediate metabolites has an in-flux or out-flux other than merged reactions or the module input and output.
Proof of condition (i): If none of the merged intermediate metabolites has more than one out-flux reactions that correspond to more than one module outputs and none of the merged intermediate metabolites has an in-flux or out-flux other than merged reactions or the module input and output, i.e., each intermediate metabolite does not result into different branches of outs, hence the flux of the module outputs needs to have a unique solution when the flux of inputs is fixed. On the other hand, when an intermediate metabolite has multiple out-flux reactions, if these fluxes result into more than one module outputs, we can also identify such an intermediate metabolite C that is closest to the module output, and all the intermediate metabolites between this metabolite to the module outputs are either (a) has more than one out-flux reactions that correspond to one module outputs or (b) only has one out-flux, hence the solution of the out-flux reactions of C is not unique given fixed module inputs. If the merged intermediate metabolite has an in-flux or out-flux other than merged reactions or the module input and output, under flux balance condition, the module output is unfixed due to this in-flux or out-flux is unfixed, hence the outflux of the module is unique. □

Proof of condition (ii): If the condition (i) holds and none of the merged intermediate metabolites has an in-flux or out-flux other than merged reactions or the module input and output, i.e., the module outputs are fixed and the intermediate metabolites of the module does have any biochemical mess exchange with other reactions other than through the module inputs or outputs, for any  and , , we have  if , and  if . □

	Noted, based on Lemma 1, if the two conditions hold, i.e., (1) None of the merged intermediate metabolites has more than one out-flux reactions that correspond to more than one module outputs, and (2) None of the merged intermediate metabolites has an in-flux or out-flux other than merged reactions or the module input and output, the module outputs have a unique solution under fixed inputs and changes of the reactions inside the module are independent to reactions outside the module conditional to a fixed flux rate of the module, i.e., solving the flux of each individual reaction in a merged module is equivalent to solve the flux of the module.

Model Implementation
	The deep neural network is implemented based on pytorch version 1.6.0. Structure of neural network is costumed in a Flux Class object. For each metabolic module, a three layers neural network was created. The number of hidden nodes is eight. The number of output node is one. Since gene number in metabolic modules are different, we adopt a dynamic way to create input nodes. In Flux Class definition, the number of input nodes is fixed at the total gene number for all metabolic modules. However, we set the input value as zero if current gene does not exist in the current metabolic module. In addition, we do not allow the bias parameter for the input layer. In this way, only existed genes are connected to the hidden layer and actual input nodes of sub-networks are different. Input gene expression value of sub-network is normalized by logarithm if the input value is larger than 30. An activation function calculates a weighted sum of its input, add a bias and then decides whether it should be active or not. A Hyperbolic Tangent activation function, named Tanhshrink, is used here.  The element-wise of Tanhshrik function is defined as . To build all sub-networks in a large deep neural network, we use torch.nn.ModuleList to store parallel sub-networks.  The second part of the large parallel neural network is the constrain function for estimated flux value. The flux balance of each metabolite can be formed as a linear equation. In other words, inflow value is supposed to equal to outflow value for each metabolite. In total, the number of linear equations is equal to the number of metabolites. The calculation of linear equations is a child function of Flux object to ensure balance status is updated in every step of optimization. The stoichiometric matrix, which stored the corresponding relationship between metabolite and modules, is used to update linear equations. We use a stochastic optimization method to update the parameters for all sub-networks. To avoid the trivial solution, we add penalty term in the objective function.  is the summation of gene expression value of all metabolic genes. each supermodule modules. This penalty term also makes sure the estimated flux value proportion to the gene expression value scale for each single cell.  is the hyperparameter to balance the importance of two terms in the objective function. Learning rate in optimization is another hyperparameter. Small learning rate will cause slow converge while large learning rate will cause too oscillatory to converge.

Neural network of the flux of each metabolic module
	The metabolic network is a complex biological topological structure. To mimic the inclusiveness and flexibility of metabolic network in single cell resolution level, we model it by deep neural network which is powerful to describe nonlinear relationship and capture the latent information in large scale data with unknown noise. Although the metabolic network has high connectivity, each metabolic module is independent and only regulate the specific functionality in individual cells. In our model, each metabolic module is implemented as an independent sub-network. The sub-network is a deep neural network consist of input layer, hidden layers, and output layer. The input of sub-network is SC gene expression value and the output is the estimated flux. These sub-networks have high connectivity of output nodes by paralleling them as a large-scale deep neural network. If there are common genes in several modules, these sub-networks have connection in hidden layer via common input nodes. In each metabolic module, the node number of input layer is matched with gene number in module and thus a dynamic deep network construction method is proposed (see detailed implementation). The total node number of output layer is equal to the module number .

Scalability and Identifiability.
	Scalability analysis. The most time-consuming of scFEA is the training of neural networks. In the training step, we update the parameter of neural network to minimize the loss function. Specifically, the training process consists of a forward pass process and a back-propagation update process for each epoch. The forward pass process is formed by a matrix multiplication operation, namely, input multiplied by the weights and plus the bias. Then an activation function determines whether each neural node is activated or non-activated, where the activation function has  time complexity. In total, the time complexity is  for three layers of forwarding and back-propagation update, where  is the number of nodes in the input layer,  is the number of nodes of the hidden layers, is the number of nodes of the output layer,  is the cell number,  is number of iterations. In this study, we set , , , ,  is cell number for each dataset. Noting that to implement scFEA, parallel GPU computing is encouraged since sub-networks are independent. We tested the running time of scFEA on a personal laptop of Intel i7-7600 CPU and 16GB RAM. The scFEA analysis of the complete network took 14 and 23 minutes on 4486 cells of the GSE72056 data and 5902 cells of the GSE103322 datasets, respectively. 
	Identifiability. The number of parameters in the complete model is around , where  is the number genes in module  ( and  for the complete map) and  is the number of layers of  ( as the empirical setting). The number of constraints is the total number of metabolites,  ( for the complete map). Hence the number of total constraints divided by the number of parameters is , which is  and  when  or . For a scRNA-seq data with  for the data generated by constructing a library for each individual cell or  for drop-seq data, selecting  the  is much larger can 1, hence guarantee the identifiability and mathematical correctness of the formulation.

Data simulation, perturbation, cross-validation, and drop-out experiment details. 
To validate scFEA predicted metabolic fluxes, we simulated pseudo scRNA-seq data where the true cell-wise flux is known. The difficulty of simulation is to mimic the non-linear relationship between genes and metabolic modules. We took two-step recurrent way to solve the challenge. Firstly, we separate 1000 SCs and total 22 super modules in 10 groups. The genes thus been divided as 10 groups as well. For each group, the expression value forms an independent normal distribution . Then, feed generated scRNA-seq data into scFEA and get the predicted flux as the basis for second round simulation. The current predicted fluxes are ground truth. In second step, the expression value in each module and each single cell forms an independent normal distribution , where  is predicted flux in last step. Then, new pseudo dataset can also be applied to scFEA and correlate the predicted flux with the ground truth in sample/module-wise. Pearson’s correlation was used in analysis. Based on the synthetic data, we had a predicted metabolic flux matrix which is 1000 single cells by 169 modules. To validate the predicted flux, we calculated the Pearson’s correlation of true flux matrix and predicted flux in row-wise (sample-wise) and column-wise (module-wise). Two groups of correlation coefficients are shown in Figure 5D as violin plot. For sample-wise correlation, each point represents Pearson’s correlation of cell , calculated by . All correlation coefficients under same null hypothesis, which is two variables have no linear correlation. Thus, we calculate Person’s correlation value with probability of 0.05 to reject the null hypothesis, using Student’s t-distribution. Then we calculate the ratio of points which greater than the correlation under null hypothesis.
Other validation experiments based on our pancreatic cancer dataset. To generate perturbed data, we set parameter  to control the ratio of perturbed single cells. In each setting, we randomly selected  single cells and shuffled the genes. Five repetitions executed in each setting. To validate the robustness of scFEA, we executed both cross-validation and drop-out experiment. In cross-validation experiments, we separated total single cells into 5 or 10 groups and 80% (4/5) or 90% (9/10) single cells were used in each experiment. In drop-out experiments, we randomly sampled metabolic module related genes. After fixing the iterative addition drop-out rate, we sample single cells and make the expression as zero. The lower expression value has a high drop-out probability.

Public scRNA-seq data processing and analysis
	We collected six datasets from public domain. Basic QC for SC using the Seurat (version 3) default parameter to filter out cells with high expressions of MT-coding genes. The cell type label and sample information provided in the original work were directly utilized.
GSE132581: This dataset is collected on mouse perivascular adipose tissue. The original work indicated the two distinct subpopulations existed in PVAT-derived mesenchymal stem cells.
GSE72056: This dataset is collected on human melanoma tissues. The original paper provided cell classification and annotations including B cells, cancer-associated fibroblast (CAF) cells, endothelial cells, macrophage cells, malignant cells, NK cells, T cells, and unknown cells.
GSE103322: This dataset is collected on head and neck cancer tissues. The original paper provided cell classification and annotations including B cells, dendritic cells, endothelial cells, fibroblast cells, macrophage cells, malignant cells, mast cells, myocyte cells, and T cells. Notably, as indicated by the original work, malignant cells have high intertumoral heterogeneity.
CCLE data: This dataset was downloaded from Broad Institute CCLE data portal (https://portals.broadinstitute.org/ccle). In total, pan-cancer cell lines (n = 1076) were included in this paper.
Spatial breast cancer data: This dataset was downloaded from 10x spatial official website. Block A section 1 was used in this paper. (https://support.10xgenomics.com/spatial-gene-expression/datasets) 
ROSMAP data: This dataset is generated from the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP), mainly focus on the Alzheimer’s disease research. The dataset was download from RADC Research Resource Sharing Hub (https://www.radc.rush.edu/) 
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