Assay Cell-type Accession (Source)

Paired-End Analysis of TSSs | mixed stage embryos (fly) | processed set (Ni et al., 2010)

CTCF ChIP-seq white pre-pupa (fly) GSM602326 (GEO)

CTCF ChIP-seq H1 ESCs (human) ENCFF991GTC (ENCODE)

GR ChIP-seq treated A459 (human) ENCFF835HHK (ENCODE)

EP300 ChIP-seq treated A459 (human) ENCFF774PLX (ENCODE)

eRNAs from GRO-cap K562 (human) processed set of eRNAs (Azofeifa
et al, 2018) from SRR1552480
(SRA)

EP300 ChIP-seq K562 (human) ENCFF821GNB (ENCODE)

STARR-seq K562 (human) processed (Lee et al., 2020) from
ENCFF717VJK & ENCFF394DBM
(ENCODE)

dELSs (ENCODE IIT) K562 (human) dELS from ENCFF464BRU
(ENCODE)

pELSs (ENCODE III) K562 (human) pELS from ENCFF464BRU
(ENCODE)

scATAC-seq 2-4hr after egg-laying (fly) | Table S1 from Cusanovich et al.
(2018)

DNase-seq H1 ESCs (human) ENCFF030XPN (ENCODE)

ATAC-seq 20 mouse tissues processed set (Liu et al., 2019)

Supplemental Table S1: Datasets on which CISDIVERSITY was run in this study. Processed data/peaks were used from
the original study in each case.
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Supplemental Figure S1: When there is a single module (r = 1) or the modules are less separable (8 = 10), the
performance of CISDIVERSITY in terms of recovering planted motifs is still better or comparable to that of MEME or
HOMER.
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Supplemental Figure S3: Modules learned on the pooled human CAGE data. The motifs are part of the main text.
Promoters are defined as narrow if the interquantile range of the tags (Frith and the FANTOM consortium, 2014) falls below

three bases. Promoters are defined as tissue-specifically expressed if their Shannon entropy falls below 6. The boxplot of

pooled tag counts is shown for each module. If a module is significantly enriched or depleted (corrected p < 10710) with one

of the three properties, the property is displayed.
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Supplemental Figure S4: Median phastCons scores across 15 fly genomes are shown in pink at all positions within each
motif. The dotted line shows the overall median score across each region that contains the particular motif. Su(Hw) and
CTCF are the most conserved. In contrast, the recently discovered Pita motifs (motifs 2&4) and the Ibf motif (motif 9) are

not conserved. Unknown motifs, but which are relatively well-conserved, are shown in black boxes. These warrant further

investigation.
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Human EP300 ChlP-seq regions 1 hr after dex treatment

(A) Learned motifs (C) Partition of the full data
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Supplemental Figure S5: Results of CISDIVERSITY on the EP300 ChIP-seq data in A549 cells 1 hr after being treated
with dex. The motifs are near-identical to those learned on GR ChIP-seq data in the same cell-type, but the distribution of

the modules is different.



Human GR ChlP-seq 400bp regions 1 hr after dex treatment
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Supplemental Figure S6: Results of CISDIVERSITY on a larger 400bp neighborhood of GR~-bound summits. The modules

and motifs are reordered based on the motifs that are also found in the 200bp neighborhood (red box), those that are more

spread out along the region and have low-complexity (green box), and those that resemble motifs of TF active in the lung

tissue (orange box). The histogram depicts the distribution of the binding sites of each motif along the 400bp region.



Human GR ChIP-seq 1000bp regions 1 hr after dex treatment
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Supplemental Figure S7: Results of CISDIVERSITY on an even larger 1000bp neighborhood of GR-bound summits.

motif is no longer the most abundant motif. Instead, we notice low-complexity and co-factors being more frequent.
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Supplemental Figure S9: Results of running CUSTAL on the regions of module 9 of the distant eRNAs.
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Supplemental Figure S10: Similar to Figure 6A, overlaps with active histone marks and repressive marks are shown
in green and red. None of the red marks are enriched in any module, but the active marks are differentially enriched

(hypergeometric p < 10™*, shown in bold).
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Supplemental Figure S11: Results of CISDIVERSITY on bidirectional transcripts which overlap with an annotated TSS.
Also shown is the overlap with the TF binding data used in Figure 6A and active histone marks (hypergeometric p < 1074,
shown in bold).
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Supplemental Figure S12: Sequences that are common across three assays that measure enhancer activity in K562.
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Supplemental Figure S13: Complete results of CISDIVERSITY run on ATAC-seq regions in fly at 2—4 hrs after embryoge-

nesis.
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Supplemental Figure S14: Complete results of CISDIVERSITY run on DNase-seq regions in human H1 ESCs.
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Supplemental Figure S15: Distribution of posterior scores of models learned on the simulated datasets are shown in black
(100 datasets containing human non-repetitive genomic regions with no planted motifs) and red (320 datasets with planted

motifs and modules as per main text).



