SUPPLEMENTAL CODE:

Custom scripts used in the preparation of this paper are provided below (each preceded by “Script: script_name.ext:”), and are also available at: https://ajtock.github.io/Wheat_DMC1_ASY1_paper/

ChIP-seq and MNase-seq data processing and alignment workflow
This is a Snakemake workflow for automated processing and alignment of paired-end read data derived from chromatin immunoprecipitation or micrococcal nuclease digestion followed by high-throughput sequencing (ChIP-seq or MNase-seq).

Requirements:
· Installation of Snakemake and optionally conda
· Demultiplexed paired-end reads in gzipped FASTQ format located in the data/ directory. These should be named according to the following naming convention: {sample}_R1.fastq.gz and {sample}_R2.fastq.gz
· A samtools-indexed reference genome in FASTA format and a chromosome sizes file (e.g., wheat_v1.0.fa, wheat_v1.0.fa.fai, and wheat_v1.0.fa.sizes, the latter two of which generated with samtools faidx wheat_v1.0.fa; cut -f1,2 wheat_v1.0.fa.fai > wheat_v1.0.fa.sizes), each located in data/index/. The IWGSC RefSeq v1.0 Chinese Spring genome assembly was used in this case
· A reference genome index for bowtie2, located in data/index/ (see data/index/bowtie2_index.sh for an example of how to generate this)
· Snakefile in this repository. This contains "rules" that each execute a step in the workflow
· config.yaml in this repository. This contains customizable parameters including reference, which should be the reference genome file name without the .fa extension (e.g., wheat_v1.0)
· Optional: environment.yaml in this repository, used to create the software environment if conda is used
· If conda is not used, the tools listed in environment.yaml must be specified in the PATH variable
Creating the conda environment:

conda env create --file environment.yaml --name ChIPseq_mapping

Usage:

In a Unix shell, navigate to the base directory containing Snakefile, config.yaml, environment.yaml, and the data\ subdirectory, which should have a directory tree structure like this:

.
├── alignment_summary.sh
├── config.yaml
├── data
│ ├── DMC1_Rep1_ChIP_R1.fastq.gz
│ ├── DMC1_Rep1_ChIP_R2.fastq.gz
│ └── index
│ ├── bowtie2_index.sh
│ ├── samtools_faidx_chr_sizes.sh
│ ├── wheat_v1.0.1.bt2l
│ ├── wheat_v1.0.2.bt2l
│ ├── wheat_v1.0.3.bt2l
│ ├── wheat_v1.0.4.bt2l
│ ├── wheat_v1.0.fa
│ ├── wheat_v1.0.fa.fai
│ ├── wheat_v1.0.fa.sizes
│ ├── wheat_v1.0.rev.1.bt2l
│ └── wheat_v1.0.rev.2.bt2l
├── environment.yaml
├── README.md
├── scripts
│ └── keepPaired.py
└── Snakefile

Then run the following commands in the base directory (--cores should match the THREADS parameter in config.yaml):

conda activate ChIPseq_mapping
snakemake -p --cores 48
conda deactivate

Script: environment.yaml:
channels:
 - bioconda
dependencies:
 - pandas=0.23.4
 - fastqc=0.11.8
 - bbmap=38.22
 - cutadapt=1.18
 - bowtie2=2.3.4.3
 - samtools=1.9
 - deeptools=3.1.3

Script: config.yaml:
SAMPLES: ["DMC1_Rep1_ChIP"]
THREADS: 48
MEMORY: "256g"
FILTER:
 cutadapt:
 R1_5prime_cut: 5 # -u
 R1_3prime_cut: -4 # -u
 R2_5prime_cut: 5 # -U
 R2_3prime_cut: -4 # -U
 adapter_R1: AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC # -a
 adapter_R2: AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT # -A
 quality-filter: 20 # -q
 minimum-overlap: 3 # -O (default: 3)
 minimum-length: 30 # -m
 maximum-length: 76 # -M
 extra-params:
NOTE: reference genome-specific mapping parameters
MAPPING:
 alignments: 4 # "In -k <N> mode, Bowtie 2 searches for up to N distinct, valid alignments for each read"
 reference: "data/index/wheat_v1.0"
 MAPQunique: 23 # -q
 MAPQmaxi: 2 # -q
 sortMemory: "5G"
COVERAGE:
 normalizeUsing: "CPM"
 ignoreForNormalization: "chrUn" # Reference genome-specific parameter
 binSize: 1
 genomeBinSize: 1000000
 genomeBinName: "1Mb"

NEBNext adapter and universal primer for Illumina:
https://international.neb.com/-/media/catalog/datacards-or-manuals/manuale7335.pdf
https://www.biostars.org/p/149301/
https://cutadapt.readthedocs.io/en/stable/guide.html#illumina-truseq
http://bioinformatics.cvr.ac.uk/blog/illumina-adapter-and-primer-sequences/
TruSeq adapters:
http://emea.support.illumina.com/bulletins/2016/12/what-sequences-do-i-use-for-adapter-trimming.html

Script: Snakefile:
Snakemake workflow for aligning paired-end ChIP-seq or MNase-seq reads to a reference genome

Chromosome sizes file below ("data/index/wheat_v1.0.fa.sizes") must exist
before running snakemake
e.g., in "data/index/" run:
samtools faidx wheat_v1.0.fa; cut -f1,2 wheat_v1.0.fa.fai > wheat_v1.0.fa.sizes

Usage ("--cores" should match the "THREADS" parameter in config.yaml, and reflect available threads):
conda env create --file environment.yaml --name ChIPseq_mapping # On first use only
conda activate ChIPseq_mapping
snakemake -p --cores 48
conda deactivate

import pandas as pd
import os

To make the samtools rule work with a shell script ("scripts/keepPaired.py") invoked using the "shell" directive,
we need to determine the base path of Snakefile since we expect the "scripts/" subdirectory to be located here
SRCDIR = srcdir("")

Specify config file parameters
configfile: "config.yaml"
Define wildcards and variables
sample = config["SAMPLES"]
reference = config["MAPPING"]["reference"]
refbase = os.path.basename(reference)
genomeBinName = config["COVERAGE"]["genomeBinName"]

Determine bam index format (bai or csi) based on chromosome sizes
Genomes with chromosomes longer than ~500 Mb (e.g., in wheat) require a csi index
E.g., in axolotl: https://sourceforge.net/p/samtools/mailman/message/36249039/
chrSizes = pd.read_table("data/index/" + refbase + ".fa.sizes",
 header = None)
smallChrs = 0
for x in chrSizes[1]:
 if x < 5e+08:
 smallChrs = smallChrs + 1

if smallChrs < len(chrSizes[1]):
 bamidx = "csi"
else:
 bamidx = "bai"

Specify the desired end target file(s)
rule all:
 input:
 expand("logs/fastqc/raw/{sample}_R1_fastqc.html",
 sample = sample),
 expand("logs/fastqc/raw/{sample}_R2_fastqc.html",
 sample = sample),
 expand("data/dedup/{sample}_R1_dedup.fastq.gz",
 sample = sample),
 expand("data/dedup/{sample}_R1_dedup_repair.fastq.gz",
 sample = sample),
 expand("data/dedup/{sample}_R2_dedup_repair.fastq.gz",
 sample = sample),
 expand("data/dedup/trimmed/{sample}_R1_dedup_repair_trimmed.fastq.gz",
 sample = sample),
 expand("data/dedup/trimmed/{sample}_R2_dedup_repair_trimmed.fastq.gz",
 sample = sample),
 expand("logs/fastqc/trimmed/{sample}_R1_dedup_repair_trimmed_fastqc.html",
 sample = sample),
 expand("logs/fastqc/trimmed/{sample}_R2_dedup_repair_trimmed_fastqc.html",
 sample = sample),
 expand("mapped/{sample}_MappedOn_{refbase}.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.{bamidx}",
 sample = sample,
 refbase = refbase,
 bamidx = bamidx),
 expand("mapped/unique/bw/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.bw",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/bg/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.bedgraph",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/bg/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm_binSize{genomeBinName}.bedgraph",
 sample = sample,
 refbase = refbase,
 genomeBinName = genomeBinName),
 expand("mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.{bamidx}",
 sample = sample,
 refbase = refbase,
 bamidx = bamidx),
 expand("mapped/both/bw/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.bw",
 sample = sample,
 refbase = refbase),
 expand("mapped/both/bg/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.bedgraph",
 sample = sample,
 refbase = refbase),
 expand("mapped/both/bg/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm_binSize{genomeBinName}.bedgraph",
 sample = sample,
 refbase = refbase,
 genomeBinName = genomeBinName)

Run fastqc on R1 raw data
rule fastqc_R1_raw:
 """Create fastqc report"""
 input:
 "data/{sample}_R1.fastq.gz"
 output:
 html = "logs/fastqc/raw/{sample}_R1_fastqc.html",
 zip = "logs/fastqc/raw/{sample}_R1_fastqc.zip"
 params: "--extract"
 log:
 "logs/fastqc/raw/{sample}_R1.log"
 wrapper:
 "0.27.1/bio/fastqc"
Run fastqc on R2 raw data
rule fastqc_R2_raw:
 """Create fastqc report"""
 input:
 "data/{sample}_R2.fastq.gz"
 output:
 html = "logs/fastqc/raw/{sample}_R2_fastqc.html",
 zip = "logs/fastqc/raw/{sample}_R2_fastqc.zip"
 params: "--extract"
 log:
 "logs/fastqc/raw/{sample}_R2.log"
 wrapper:
 "0.27.1/bio/fastqc"

Deduplicate R1 reads
rule dedupe_R1:
 """Remove duplicate R1 reads"""
 input:
 "data/{sample}_R1.fastq.gz"
 output:
 "data/dedup/{sample}_R1_dedup.fastq.gz"
 threads: config["THREADS"]
 params:
 memory = config["MEMORY"]
 log:
 "logs/dedup/{sample}_R1_dedup.log"
 shell:
 "(dedupe.sh -Xmx{params.memory} in={input} out={output}"
 " threads={threads} ac=f) 2> {log}"

Re-pair separately deduplicated reads
rule repair:
 """Re-pair separately deduplicated reads"""
 input:
 fastq1 = "data/dedup/{sample}_R1_dedup.fastq.gz",
 fastq2 = "data/{sample}_R2.fastq.gz"
 output:
 fastq1 = "data/dedup/{sample}_R1_dedup_repair.fastq.gz",
 fastq2 = "data/dedup/{sample}_R2_dedup_repair.fastq.gz",
 fastq3 = "data/dedup/{sample}_dedup_singletons.fastq.gz"
 params:
 memory = config["MEMORY"]
 log:
 "logs/repair/{sample}_R1_R2_dedup_repair.log"
 shell:
 "(repair.sh -Xmx{params.memory} repair=t"
 " in1={input.fastq1} in2={input.fastq2}"
 " out1={output.fastq1} out2={output.fastq2}"
 " outs={output.fastq3}) 2> {log}"

Trim off adapters
rule cutadapt:
 """Remove adapters"""
 input:
 "data/dedup/{sample}_R1_dedup_repair.fastq.gz",
 "data/dedup/{sample}_R2_dedup_repair.fastq.gz"
 output:
 fastq1 = "data/dedup/trimmed/{sample}_R1_dedup_repair_trimmed.fastq.gz",
 fastq2 = "data/dedup/trimmed/{sample}_R2_dedup_repair_trimmed.fastq.gz",
 qc = "data/dedup/trimmed/{sample}_dedup_repair_trimmed.qc.txt"
 params:
 " -u " + str(config["FILTER"]["cutadapt"]["R1_5prime_cut"]) +
 " -u " + str(config["FILTER"]["cutadapt"]["R1_3prime_cut"]) +
 " -U " + str(config["FILTER"]["cutadapt"]["R2_5prime_cut"]) +
 " -U " + str(config["FILTER"]["cutadapt"]["R2_3prime_cut"]) +
 " -a " + config["FILTER"]["cutadapt"]["adapter_R1"] +
 " -A " + config["FILTER"]["cutadapt"]["adapter_R2"] +
 " -O " + str(config["FILTER"]["cutadapt"]["minimum-overlap"]) +
 " -q " + str(config["FILTER"]["cutadapt"]["quality-filter"]) +
 " -m " + str(config["FILTER"]["cutadapt"]["minimum-length"]) +
 " -M " + str(config["FILTER"]["cutadapt"]["maximum-length"]) +
 " --cores=0"
 log:
 "logs/cutadapt/{sample}_dedup_repair_trimmed.log"
 wrapper:
 "0.27.1/bio/cutadapt/pe"

Run fastqc on R1 trimmed data
rule fastqc_R1_trimmed:
 """Create fastqc report"""
 input:
 "data/dedup/trimmed/{sample}_R1_dedup_repair_trimmed.fastq.gz"
 output:
 html = "logs/fastqc/trimmed/{sample}_R1_dedup_repair_trimmed_fastqc.html",
 zip = "logs/fastqc/trimmed/{sample}_R1_dedup_repair_trimmed_fastqc.zip"
 params: "--extract"
 log:
 "logs/fastqc/trimmed/{sample}_R1_dedup_repair_trimmed.log"
 wrapper:
 "0.27.1/bio/fastqc"
Run fastqc on R2 trimmed data
rule fastqc_R2_trimmed:
 """Create fastqc report"""
 input:
 "data/dedup/trimmed/{sample}_R2_dedup_repair_trimmed.fastq.gz"
 output:
 html = "logs/fastqc/trimmed/{sample}_R2_dedup_repair_trimmed_fastqc.html",
 zip = "logs/fastqc/trimmed/{sample}_R2_dedup_repair_trimmed_fastqc.zip"
 params: "--extract"
 log:
 "logs/fastqc/trimmed/{sample}_R2_dedup_repair_trimmed.log"
 wrapper:
 "0.27.1/bio/fastqc"

Align to reference genome
rule bowtie2:
 """Map reads using bowtie2 and sort them using samtools"""
 input:
 fastq1 = "data/dedup/trimmed/{sample}_R1_dedup_repair_trimmed.fastq.gz",
 fastq2 = "data/dedup/trimmed/{sample}_R2_dedup_repair_trimmed.fastq.gz"
 output:
 protected("mapped/{sample}_MappedOn_{refbase}.bam")
 params:
 alignments = config["MAPPING"]["alignments"],
 MAPQmaxi = config["MAPPING"]["MAPQmaxi"]
 threads: config["THREADS"]
 log:
 "logs/bowtie2/{sample}_MappedOn_{refbase}_sort.log"
 shell:
 # -f 3 includes only concordantly aligned read pairs, and not unpaired reads
 # -F 2316 excludes unmapped reads (their mates too),
 # as well as secondary and supplementary alignments
 # Exclude alignments with MAPQ < config["MAPPING"]["MAPQmaxi"]
 "(bowtie2 --very-sensitive --no-mixed --no-discordant"
 " --threads {threads} -k {params.alignments}"
 " -x {reference} -1 {input.fastq1} -2 {input.fastq2} "
 "| samtools view -bh -@ {threads} -f 3 -F 2316 -q {params.MAPQmaxi} -o {output} -) 2> {log}"

Filter alignments for mismatches and extract alignments consisting
of at least 1 uniquely aligned read in a pair
rule samtools:
 input:
 "mapped/{sample}_MappedOn_{refbase}.bam"
 output:
 both = protected("mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam"),
 unique = protected("mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam")
 params:
 sortMemory = config["MAPPING"]["sortMemory"],
 MAPQunique = config["MAPPING"]["MAPQunique"]
 threads: config["THREADS"]
 log:
 both = "logs/samtools/{sample}_MappedOn_{refbase}_lowXM_both_sort.log",
 unique = "logs/samtools/{sample}_MappedOn_{refbase}_lowXM_unique_sort.log"
 shell:
 # Allow a maximum of 6 mismatches
 # ([^0-9] matches characters not in the range of 0 to 9)
 # http://seqanswers.com/forums/showthread.php?t=19729
 "(samtools view -h {input} "
 "| grep -e '^@' -e 'XM:i:[0-6][^0-9]' "
 # Retain alignments for which the names of both reads in a pair are the same
 "| scripts/keepPaired.py "
 "| samtools view -u - "
 "| samtools sort -@ {threads} -m {params.sortMemory} -o {output.both}) 2> {log.both}; "
 # Extract unique alignments, excluding alignments with MAPQ scores < config["MAPPING"]["MAPQunique"]
 # http://biofinysics.blogspot.com/2014/05/how-does-bowtie2-assign-mapq-scores.html
 # https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/
 "(samtools view -h -q {params.MAPQunique} {input} "
 "| grep -e '^@' -e 'XM:i:[0-6][^0-9]' "
 # Retain alignments for which the names of both reads in a pair are the same
 "| scripts/keepPaired.py "
 "| samtools view -u - "
 "| samtools sort -@ {threads} -m {params.sortMemory} -o {output.unique}) 2> {log.unique}"

Postmapping steps:
Index BAM files (index format [bai or csi] depends on chromosome sizes)
Generate samtools flagstat and idxstats
Calculate library-size-normalized coverage
if bamidx == "bai":
 rule postmapping:
 """bam.bai samtools flagstat idxstats"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam"
 output:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.{bamidx}",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.{bamidx}"
 log:
 uniqueflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_unique_sort_flagstat.log",
 bothflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_both_sort_flagstat.log",
 uniqueidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_unique_sort_idxstats.log",
 bothidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_both_sort_idxstats.log"
 shell:
 """
 samtools index {input.uniqueBAM}
 samtools flagstat {input.uniqueBAM} > {log.uniqueflagstat}
 samtools idxstats {input.uniqueBAM} > {log.uniqueidxstats}
 samtools index {input.bothBAM}
 samtools flagstat {input.bothBAM} > {log.bothflagstat}
 samtools idxstats {input.bothBAM} > {log.bothidxstats}
 """
 rule calc_coverage:
 """Calculate library-size-normalized coverage"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.bai",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.bai"
 output:
 uniqueBW = "mapped/unique/bw/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.bw",
 bothBW = "mapped/both/bw/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.bw",
 uniqueBG = "mapped/unique/bg/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.bedgraph",
 bothBG = "mapped/both/bg/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 ignoreForNormalization = config["COVERAGE"]["ignoreForNormalization"],
 binSize = config["COVERAGE"]["binSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.uniqueBAM} -o {output.uniqueBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}) 2> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.bothBAM} -o {output.bothBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}) 2> {log.both}"
 rule calc_coverage_genome:
 """Calculate library-size-normalized coverage in adjacent windows"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.bai",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.bai"
 output:
 uniqueBGgenome = "mapped/unique/bg/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm_binSize{genomeBinName}.bedgraph",
 bothBGgenome = "mapped/both/bg/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm_binSize{genomeBinName}.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 ignoreForNormalization = config["COVERAGE"]["ignoreForNormalization"],
 genomeBinSize = config["COVERAGE"]["genomeBinSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm_binSize{genomeBinName}.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm_binSize{genomeBinName}.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.genomeBinSize} -p {threads}) 2> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.genomeBinSize} -p {threads}) 2> {log.both}"
else:
 rule postmapping:
 """bam.csi samtools flagstat idxstats"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam"
 output:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.{bamidx}",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.{bamidx}"
 log:
 uniqueflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_unique_sort_flagstat.log",
 bothflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_both_sort_flagstat.log",
 uniqueidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_unique_sort_idxstats.log",
 bothidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_lowXM_both_sort_idxstats.log"
 shell:
 """
 samtools index -c -m 14 {input.uniqueBAM}
 samtools flagstat {input.uniqueBAM} > {log.uniqueflagstat}
 samtools idxstats {input.uniqueBAM} > {log.uniqueidxstats}
 samtools index -c -m 14 {input.bothBAM}
 samtools flagstat {input.bothBAM} > {log.bothflagstat}
 samtools idxstats {input.bothBAM} > {log.bothidxstats}
 """
 rule calc_coverage:
 """Calculate library-size-normalized coverage"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.csi",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.csi"
 output:
 uniqueBW = "mapped/unique/bw/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.bw",
 bothBW = "mapped/both/bw/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.bw",
 uniqueBG = "mapped/unique/bg/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.bedgraph",
 bothBG = "mapped/both/bg/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 ignoreForNormalization = config["COVERAGE"]["ignoreForNormalization"],
 binSize = config["COVERAGE"]["binSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.uniqueBAM} -o {output.uniqueBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}) 2> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.bothBAM} -o {output.bothBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}) 2> {log.both}"
 rule calc_coverage_genome:
 """Calculate library-size-normalized coverage in adjacent windows"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_lowXM_unique_sort.bam.csi",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_lowXM_both_sort.bam.csi"
 output:
 uniqueBGgenome = "mapped/unique/bg/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm_binSize{genomeBinName}.bedgraph",
 bothBGgenome = "mapped/both/bg/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm_binSize{genomeBinName}.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 ignoreForNormalization = config["COVERAGE"]["ignoreForNormalization"],
 genomeBinSize = config["COVERAGE"]["genomeBinSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_unique_sort_norm_binSize{genomeBinName}.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_lowXM_both_sort_norm_binSize{genomeBinName}.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.genomeBinSize} -p {threads}) 2> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --ignoreForNormalization {params.ignoreForNormalization}"
 " --extendReads"
 " --binSize {params.genomeBinSize} -p {threads}) 2> {log.both}"

Script: keepPaired.py:
#!/usr/bin/python2.7

Script by Devon Ryan (https://www.biostars.org/p/95929/)
for retaining filtered alignments that consist of both reads in a pair
It achieves this by checking for matching consecutive read names corresponding to a read pair

import csv
import sys

f = csv.reader(sys.stdin, dialect="excel-tab")
of = csv.writer(sys.stdout, dialect="excel-tab")
last_read = None
for line in f :
 # Take care of the header
 if(line[0][0] == "@") :
 of.writerow(line)
 continue

 if(last_read == None) :
 last_read = line
 else :
 if(last_read[0] == line[0]) :
 of.writerow(last_read)
 of.writerow(line)
 last_read = None
 else :
 last_read = line

BS-seq data processing and alignment workflow
This is a Snakemake workflow for automated processing of DNA methylation data derived from whole-genome bisulfite sequencing (BS-seq or WGBS) or NEBNext Enzymatic Methyl-seq (EM-seq).

Requirements:
· Installation of Snakemake and optionally conda
· Demultiplexed paired-end reads in gzipped FASTQ format located in the data/ directory. These should be named according to the following naming convention: {sample}_R1.fastq.gz and {sample}_R2.fastq.gz
· A reference genome in FASTA format (e.g., wheat_v1.0_incl_organelles_controls.fa) and a chromosome sizes file (e.g., wheat_v1.0_incl_organelles_controls.fa.sizes, generated with samtools faidx wheat_v1.0_incl_organelles_controls.fa; cut -f1,2 wheat_v1.0_incl_organelles_controls.fa.fai > wheat_v1.0_incl_organelles_controls.fa.sizes), both located in data/index/. No other FASTA-format files should be located in this directory. The IWGSC RefSeq v1.0 Chinese Spring genome assembly was used in this case
· A bisulfite-converted reference genome index for bowtie2, located in data/index/ (see data/index/bismark_genome_preparation.sh for an example of how to generate data/index/Bisulfite_Genome/)
· Snakefile in this repository. This contains "rules" that each execute a step in the workflow
· config.yaml in this repository. This contains customizable parameters including reference_prefix, which should be the reference genome file name without the .fa extension (e.g., wheat_v1.0_incl_organelles_controls)
· Optional: environment.yaml in this repository, used to create the software environment if conda is used
· If conda is not used, bismark, bowtie2, fastqc, trim_galore, samtools, deeptools, ucsc-bedgraphtobigwig and python3 must be specified in the PATH variable
Creating the conda environment:

conda env create --file environment.yaml --name BSseq_mapping

Usage:

In a Unix shell, navigate to the base directory containing Snakefile, config.yaml, environment.yaml, and the data\ subdirectory, which should have a directory tree structure like this:

.
├── config.yaml
├── data
│ ├── BSseq_Rep8a_SRR6792678_R1.fastq.gz
│ ├── BSseq_Rep8a_SRR6792678_R2.fastq.gz
│ └── index
│ ├── bismark_genome_preparation.sh
│ ├── Bisulfite_Genome
│ │ ├── CT_conversion
│ │ │ ├── BS_CT.1.bt2l
│ │ │ ├── BS_CT.2.bt2l
│ │ │ ├── BS_CT.3.bt2l
│ │ │ ├── BS_CT.4.bt2l
│ │ │ ├── BS_CT.rev.1.bt2l
│ │ │ ├── BS_CT.rev.2.bt2l
│ │ │ └── genome_mfa.CT_conversion.fa
│ │ └── GA_conversion
│ │ ├── BS_GA.1.bt2l
│ │ ├── BS_GA.2.bt2l
│ │ ├── BS_GA.3.bt2l
│ │ ├── BS_GA.4.bt2l
│ │ ├── BS_GA.rev.1.bt2l
│ │ ├── BS_GA.rev.2.bt2l
│ │ └── genome_mfa.GA_conversion.fa
│ ├── cat_wheat_nuclear_chloroplast_mitochondrial_genomes_and_control_sequences.sh
│ ├── genomic_nucleotide_frequencies.txt
│ ├── README_chloroplast_Lambda_pUC19_control_sequences.txt
│ ├── samtools_faidx_chr_sizes.sh
│ ├── separate_nuclear_organelles_controls
│ │ ├── lambda_NEB.fa
│ │ ├── pUC19_NEB.fa
│ │ ├── wheat_CS_chloroplast_genome.fa
│ │ ├── wheat_CS_mitochondrial_genome.fa
│ │ └── wheat_v1.0.fa
│ ├── wheat_v1.0_incl_organelles_controls.fa
│ ├── wheat_v1.0_incl_organelles_controls.fa.fai
│ └── wheat_v1.0_incl_organelles_controls.fa.sizes
├── environment.yaml
├── README.md
└── Snakefile

Then run the following commands in the base directory (--cores should match the THREADS parameter in config.yaml):

conda activate BSseq_mapping
snakemake -p --cores 48
conda deactivate

Script: environment.yaml:
channels:
 - bioconda
dependencies:
 - bowtie2=2.3.5
 - fastqc=0.11.8
 - trim-galore=0.6.4
 - samtools=1.9
 - bismark=0.20.0
 - python=3.7.3
 - pandas=0.25.1
 - cutadapt=2.5
 - ucsc-bedgraphtobigwig=357
 - deeptools=3.3.1
 - perl-gdgraph=1.54

Script: config.yaml:
SAMPLES: ["BSseq_Rep8a_SRR6792678"]
THREADS: 48
Trim Galore!
TRIM:
 # Trim 10 bp off read 5' ends
 R1_5prime_cut: "10" # --clip_R1
 R2_5prime_cut: "10" # --clip_R2

Bismark and SAMtools
NOTE: reference genome-specific mapping parameters
MAPPING:
 # This directory must contain the bisulfite-converted
 # reference genome index for bowtie2, generated by
 # data/index/bismark_genome_preparation.sh;
 # i.e., a subdirectory named "Bisulfite_Genome".
 # It must also contain the FASTA file from which the
 # index was built (e.g., wheat_v1.0_incl_organelles_controls.fa),
 # and a chromosome sizes file (e.g., wheat_v1.0_incl_organelles_controls.fa.sizes),
 # generated with:
 # samtools faidx wheat_v1.0_incl_organelles_controls.fa; cut -f1,2 wheat_v1.0_incl_organelles_controls.fa.fai > wheat_v1.0_incl_organelles_controls.fa.sizes
 reference: "data/index/"
 # reference_prefix is used for naming alignment output files;
 # this should be the name of the FASTA file (e.g., wheat_v1.0_incl_organelles_controls.fa)
 # without the .fa extension
 reference_prefix: "wheat_v1.0_incl_organelles_controls"
 extra_params_bismark: ""
 # Example to relax mapping
 #extra_params_bismark: "--score_min L,0,-0.4"
 sortMemory: "4G"

bamCoverage
COVERAGE:
 binSize: 50

bismark2bedGraph
BEDGRAPH:
 # --buffer_size (e.g., 50%) option applies only when UNIX 'sort' is used
 # UNIX 'sort' is not used where --ample_memory is specified
 # "This may result in a faster sorting process for very large files,
 # but this comes at the cost of a larger memory footprint...
 # Note however that due to the overheads of creating and looping
 # through arrays, this option might in fact be *slower* for small-ish
 # files (up to a few million alignments). Note also that this option is
 # not currently compatible with options '--scaffolds/--gazillion'."
 # --buffer_size 50% would be more appropriate than --ample_memory
 # for smaller genomes (e.g., TAIR10)
 sortMemory: "--ample_memory"

Script: Snakefile:
Snakemake workflow for automated processing of DNA methylation data
derived from whole-genome bisulfite sequencing (WGBS or BS-seq)
Adapted from https://github.com/seb-mueller/snakemake-bisulfite

IMPORTANT: This Snakemake pipeline should not be run with
Bismark version 0.21.0 or later due to the addition of HISAT2 support,
which requires Python 2, which conflicts with the Python 3 requirements
of other parts of this pipeline (e.g., the pigz part of the trim_galore rule)

Chromosome sizes file below ("data/index/wheat_v1.0_incl_organelles_controls.fa.sizes") must exist
before running snakemake
e.g., in "data/index/" run:
samtools faidx wheat_v1.0_incl_organelles_controls.fa;
cut -f1,2 wheat_v1.0_incl_organelles_controls.fa.fai > wheat_v1.0_incl_organelles_controls.fa.sizes

Usage (snakemake --cores should reflect available cores):
conda env create --file environment.yaml --name BSseq_mapping
conda activate BSseq_mapping
snakemake -p --cores 48
conda deactivate

import pandas as pd
import os

To make rules work with a shell script invoked using the "shell" directive,
we need to determine the base path of Snakefile
SRCDIR = srcdir("")

Specify config file parameters
configfile: "config.yaml"
Define wildcards and variables
sample = config["SAMPLES"]
An alternative approach would be globbing for filenames:
#sample = glob_wildcards("data/{S}_R1.fastq.gz").S
reference = config["MAPPING"]["reference"]
refbase = config["MAPPING"]["reference_prefix"]

mate = ['R1', 'R2']
context = ['CpG','CHG','CHH']
cwd = os.getcwd() + "/"

print(sample)
print(reference)
print(refbase)
print(mate)
print(context)

Determine bam index format (bai or csi) based on chromosome sizes
Genomes with chromosomes longer than ~500 Mb (e.g., in wheat) require a csi index
E.g., in axolotl: https://sourceforge.net/p/samtools/mailman/message/36249039/
chrSizes = pd.read_table(reference + refbase + ".fa.sizes",
 header = None)
smallChrs = 0
for x in chrSizes[1]:
 if x < 5e+08:
 smallChrs = smallChrs + 1

if smallChrs < len(chrSizes[1]):
 bamidx = "csi"
else:
 bamidx = "bai"

bash safe mode
shell.executable("/bin/bash")
shell.prefix("set -euo pipefail; ")

ruleorder: fastqc_raw > trim_galore > fastqc_trimmed > bismark > deduplicate_bismark > samtools > bamCoverage > methylation_extractor > bismark2bedGraph > bedGraphToBigWig > coverage2cytosine

rule all:
 input:
 # fastqc_raw
 expand("logs/fastqc/raw/{sample}_{mate}_fastqc.html",
 sample = sample,
 mate = mate),
 # trim_galore
 expand("trimmed/{sample}_{mate}_trimmed.fastq.gz",
 sample = sample,
 mate = mate),
 # fastqc_trimmed
 expand("logs/fastqc/trimmed/{sample}_{mate}_trimmed_fastqc.html",
 sample = sample,
 mate = mate),
 # bismark
 expand("mapped/{sample}_MappedOn_{refbase}.bam",
 sample = sample,
 refbase = refbase),
 # deduplicate_bismark
 expand("mapped/dedup/{sample}_MappedOn_{refbase}_dedup.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam",
 sample = sample,
 refbase = refbase),
 # samtools
 expand("mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam.{bamidx}",
 sample = sample,
 refbase = refbase,
 bamidx = bamidx),
 # bamCoverage
 expand("mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bw",
 sample = sample,
 refbase = refbase),
 # methylation_extractor
 expand("methylation_extracted/CpG_context_{sample}_MappedOn_{refbase}_dedup.txt.gz",
 sample = sample,
 refbase = refbase),
 expand("methylation_extracted/CHG_context_{sample}_MappedOn_{refbase}_dedup.txt.gz",
 sample = sample,
 refbase = refbase),
 expand("methylation_extracted/CHH_context_{sample}_MappedOn_{refbase}_dedup.txt.gz",
 sample = sample,
 refbase = refbase),
 # bismark2bedGraph
 expand("coverage/{sample}_MappedOn_{refbase}_dedup_{context}",
 sample = sample,
 refbase = refbase,
 context = context),
 expand("coverage/{sample}_MappedOn_{refbase}_dedup_{context}.gz.bismark.cov",
 sample = sample,
 refbase = refbase,
 context = context),
 # bedGraphToBigWig
 expand("coverage/bw/{sample}_MappedOn_{refbase}_dedup_{context}.bw",
 sample = sample,
 refbase = refbase,
 context = context),
 # coverage2cytosine
 expand("coverage/report/{sample}_MappedOn_{refbase}_dedup_{context}.CX_report.txt.gz",
 sample = sample,
 refbase = refbase,
 context = context)

Run fastqc on R1 and R2 raw data
rule fastqc_raw:
 """Create fastqc reports for raw R1 and R2"""
 input:
 "data/{sample}_{mate}.fastq.gz"
 output:
 html = "logs/fastqc/raw/{sample}_{mate}_fastqc.html",
 zip = "logs/fastqc/raw/{sample}_{mate}_fastqc.zip"
 params:
 " --extract"
 log:
 "logs/fastqc/raw/{sample}_{mate}.log"
 wrapper:
 "0.38.0/bio/fastqc"

Trim off adapters and low-quality bases
rule trim_galore:
 """Remove adapters and low-quality bases"""
 input:
 r1 = "data/{sample}_" + mate[0] + ".fastq.gz",
 r2 = "data/{sample}_" + mate[1] + ".fastq.gz"
 output:
 r1 = "trimmed/{sample}_" + mate[0] + "_trimmed.fastq.gz",
 r2 = "trimmed/{sample}_" + mate[1] + "_trimmed.fastq.gz"
 threads: 4
 params:
 " --clip_R1 " + str(config["TRIM"]["R1_5prime_cut"]) +
 " --clip_R2 " + str(config["TRIM"]["R2_5prime_cut"])
 log:
 std = "logs/trim_galore/{sample}_trimmed.log",
 r1 = "{sample}_" + mate[0] + ".fastq.gz_trimming_report.txt",
 r2 = "{sample}_" + mate[1] + ".fastq.gz_trimming_report.txt"
 shell:
 "(trim_galore"
 " --paired"
 " --cores {threads}"
 " --output_dir trimmed"
 " {params}"
 " {input.r1} {input.r2}) &> {log.std}; "
 "rename 's/val_[12].fq.gz/trimmed.fastq.gz/g' trimmed/{wildcards.sample}* ; "
 "mv trimmed/{log.r1} logs/trim_galore/ ; "
 "mv trimmed/{log.r2} logs/trim_galore/"

Run fastqc on R1 and R2 trimmed data
rule fastqc_trimmed:
 """Create fastqc reports for trimmed R1 and R2"""
 input:
 "trimmed/{sample}_{mate}_trimmed.fastq.gz"
 output:
 html = "logs/fastqc/trimmed/{sample}_{mate}_trimmed_fastqc.html",
 zip = "logs/fastqc/trimmed/{sample}_{mate}_trimmed_fastqc.zip"
 params:
 " --extract"
 log:
 "logs/fastqc/trimmed/{sample}_{mate}_trimmed.log"
 wrapper:
 "0.38.0/bio/fastqc"

Align to reference genome and call methylated cytosines
rule bismark:
 """Map reads using bismark and call methylated cytosines"""
 input:
 r1 = "trimmed/{sample}_" + mate[0] + "_trimmed.fastq.gz",
 r2 = "trimmed/{sample}_" + mate[1] + "_trimmed.fastq.gz"
 output:
 protected("mapped/{sample}_MappedOn_{refbase}.bam")
 threads: 8
 params:
 extra = config["MAPPING"]["extra_params_bismark"]
 log:
 std = "logs/bismark/{sample}_MappedOn_{refbase}.log",
 rep = "logs/bismark/{sample}_MappedOn_{refbase}_report.txt",
 nuc = "logs/bismark/{sample}_MappedOn_{refbase}.nucleotide_stats.txt"
 shell:
 # USAGE: bismark [options] <genome_folder> {-1 <mates1> -2 <mates2> | <singles>}
 "(bismark"
 " --bowtie2"
 " --multicore {threads}"
 " --nucleotide_coverage"
 # "Please note that the option -B/--basename in conjunction with --multicore is
 # currently not supported (as in: disabled), but we are aiming to address this soon"
 # https://www.bioinformatics.babraham.ac.uk/projects/bismark/
" --basename {wildcards.sample}_MappedOn_{refbase}"
" --prefix {wildcards.sample}_MappedOn_{refbase}"
 " --output_dir mapped"
 " {params.extra}"
 " {reference}"
 " -1 {input.r1} -2 {input.r2}) &> {log.std}; "
 "mv mapped/{wildcards.sample}_R1_trimmed_bismark_bt2_pe.bam {output} ; "
 "mv mapped/{wildcards.sample}_R1_trimmed_bismark_bt2_PE_report.txt {log.rep} ; "
 "mv mapped/{wildcards.sample}_R1_trimmed_bismark_bt2_pe.nucleotide_stats.txt {log.nuc}"

Remove duplicate alignments
CHANGE NOTE: moved samtools sort to this
rule deduplicate_bismark:
 """Remove duplicate paired-end read alignments from the Bismark mapping output"""
 # "*** Please note that for paired-end BAM files the deduplication script expects Read1 and Read2 to
 # follow each other in consecutive lines! If the file has been sorted by position make sure that you resort it
 # by read name first (e.g. using samtools sort -n) ***"
 input:
 "mapped/{sample}_MappedOn_{refbase}.bam"
 output:
 dedup = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup.bam",
 sort = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam"
 params:
 sortMemory = config["MAPPING"]["sortMemory"]
 threads: config["THREADS"]
 log:
 std = "logs/deduplicate_bismark/{sample}_MappedOn_{refbase}_dedup.log",
 rep = "logs/deduplicate_bismark/{sample}_MappedOn_{refbase}_dedup_report.txt"
 shell:
 # USAGE: deduplicate_bismark [options] <filename(s)>
 "(deduplicate_bismark"
 " --paired"
 " --output_dir mapped/dedup"
 " --bam"
 " {input}) &> {log.std}; "
 "mv mapped/dedup/{wildcards.sample}_MappedOn_{refbase}.deduplicated.bam {output.dedup} ; "
 "mv mapped/dedup/{wildcards.sample}_MappedOn_{refbase}.deduplication_report.txt {log.rep} ; "
 "samtools sort -@ {threads} -m {params.sortMemory} -o {output.sort} {output.dedup}"

Index deduplicated Bismark mapping output and generate coverage bigWig
Index format (bai or csi) depends on chromosome sizes
CHANGE NOTE: bai or csi BAM indexing
if bamidx == "bai":
 rule samtools:
 """bai-index deduplicated Bismark mapping output"""
 input:
 "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam"
 output:
 "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam.{bamidx}"
 shell:
 "samtools index {input}"
 rule bamCoverage:
 """Calculate coverage in bigWig (bw) format"""
 input:
 BAM = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam",
 BAMidx = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam.bai"
 output:
 BW = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bw"
 params:
 binSize = config["COVERAGE"]["binSize"]
 threads: config["THREADS"]
 log:
 "logs/bamCoverage/{sample}_MappedOn_{refbase}_dedup_sort_bw.log"
 shell:
 "(bamCoverage -b {input.BAM} -o {output.BW}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}) &> {log}"
else:
 rule samtools:
 """csi-index deduplicated Bismark mapping output"""
 input:
 "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam"
 output:
 "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam.{bamidx}"
 shell:
 "samtools index -c -m 14 {input}"
 rule bamCoverage:
 """Calculate coverage in bigWig (bw) format"""
 input:
 BAM = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam",
 BAMidx = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bam.csi"
 output:
 BW = "mapped/dedup/{sample}_MappedOn_{refbase}_dedup_sort.bw"
 params:
 binSize = config["COVERAGE"]["binSize"]
 threads: config["THREADS"]
 log:
 "logs/bamCoverage/{sample}_MappedOn_{refbase}_dedup_sort_bw.log"
 shell:
 "(bamCoverage -b {input.BAM} -o {output.BW}"
 " --extendReads"
 " --binSize {params.binSize} -p {threads}) &> {log}"

Extract the methylation call for each cytosine analysed
and output in context-specific files
CHANGE NOTE: BAM must be unsorted, with the second read in a pair following the first
CHANGE NOTE: Removed -s option (specifies that data is single-end)
rule methylation_extractor:
 """Extract the methylation call for each cytosine analysed in context-specific manner"""
 input:
 "mapped/dedup/{sample}_MappedOn_{refbase}_dedup.bam"
 output:
 CpG = "methylation_extracted/CpG_context_{sample}_MappedOn_{refbase}_dedup.txt.gz",
 CHG = "methylation_extracted/CHG_context_{sample}_MappedOn_{refbase}_dedup.txt.gz",
 CHH = "methylation_extracted/CHH_context_{sample}_MappedOn_{refbase}_dedup.txt.gz"
 # "Please note that a typical process of extracting a BAM file and writing out '.gz'
 # output streams will in fact use ~3 cores per value of --parallel <int> specified
 # (1 for the methylation extractor itself, 1 for a Samtools stream, 1 for GZIP stream),
 # so --parallel 10 is likely to use around 30 cores of system resources."
 threads: 10
 log:
 "logs/methylation_extractor/{sample}_MappedOn_{refbase}_dedup_methylation_extractor.log"
 shell:
 # USAGE: bismark_methylation_extractor [options] <filenames>
 # NOTE: Not including --bedgraph option as the file naming conventions are not ideal;
 # bedGraphs will be generated by the stand-alone Bismark script bismark2bedGraph
 # in subsequent rule
 "(bismark_methylation_extractor"
 " --paired-end"
 " --comprehensive"
 " --output methylation_extracted"
 " --gzip"
 " --parallel {threads}"
 " {input}) &> {log}"

Generate bedGraph and coverage files sorted by chromosomal coordinate
NOTE: gzipped outfiles must be gunzipped for downstream use
CHANGE NOTE: added "--keep" option to gunzip commands so that gzipped files will be kept
Considered redirecting stdout of gunzip to {output.bedGraph}.bedGraph,
but this would prevent use of temp() to remove uncompressed output files after use
rule bismark2bedGraph:
 """Generate bedGraph and coverage files sorted by chromosomal coordinate"""
 input:
 "methylation_extracted/{context}_context_{sample}_MappedOn_{refbase}_dedup.txt.gz"
 output:
 bedGraph = temp("coverage/{sample}_MappedOn_{refbase}_dedup_{context}"),
 cov = temp("coverage/{sample}_MappedOn_{refbase}_dedup_{context}.gz.bismark.cov")
 params:
 # config.yaml specifies --ample_memory OR --buffer_size 50%
 # See config.yaml for best option to use for given samples
 sortMemory = config["BEDGRAPH"]["sortMemory"]
 log:
 "logs/bismark2bedGraph/{sample}_MappedOn_{refbase}_dedup_{context}_bismark2bedGraph.log"
 shell:
 # USAGE: bismark2bedGraph [options] -o <output> [methylation extractor input files]
 "(bismark2bedGraph"
 " --dir coverage"
 " --CX_context"
 " {params.sortMemory}"
 " -o {wildcards.sample}_MappedOn_{refbase}_dedup_{wildcards.context} "
 " {input}) &> {log} ; "
 "gunzip --keep {output.bedGraph}.gz; "
 "gunzip --keep {output.cov}.gz"

Convert bedGraph into bigWig format for IGV and for use with
deepTools computeMatrix function (in a separate Snakemake workflow),
to create a matrix of DNA methylation proportion profiles around features
NOTE: chromosome sizes file ("data/index/wheat_v1.0_incl_organelles_controls.fa.sizes") must exist
before running snakemake; e.g., in "data/index/" run:
samtools faidx wheat_v1.0_incl_organelles_controls.fa;
cut -f1,2 wheat_v1.0_incl_organelles_controls.fa.fai > wheat_v1.0_incl_organelles_controls.fa.sizes
CHANGE NOTE: changed {reference}/{refbase}.fa.fai to {reference}/{refbase}.fa.sizes
rule bedGraphToBigWig:
 """Convert bedGraph into bigWig format"""
 input:
 "coverage/{sample}_MappedOn_{refbase}_dedup_{context}"
 output:
 "coverage/bw/{sample}_MappedOn_{refbase}_dedup_{context}.bw"
 log:
 "logs/bedGraphToBigWig/{sample}_MappedOn_{refbase}_dedup_{context}_bedGraphToBigWig.log"
 shell:
 # USAGE: bedGraphToBigWig in.bedGraph chrom.sizes out.bw
 # where in.bedGraph is a four-column file in the format:
 # <chrom> <start> <end> <value>
 # and chrom.sizes is a two-column file/URL: <chromosome name> <size in bases>
 # and out.bw is the output indexed big wig file.
 # The input bedGraph file must be sorted, use the unix sort command:
 "(sed '1d' {input} | LC_COLLATE=C sort -k1,1 -k2,2n > {input}_sorted ; "
 "bedGraphToBigWig {input}_sorted {reference}/{refbase}.fa.sizes {output} ; "
 "rm {input}_sorted) &> {log}"

Generate a cytosine methylation report for a genome of interest
CHANGE NOTE: wrong input file specified; this should be
coverage/{sample}_MappedOn_{refbase}_dedup_{context}.gz.bismark.cov or
coverage/{sample}_MappedOn_{refbase}_dedup_{context}.gz.bismark.cov.gz
rule coverage2cytosine:
 """Generate a cytosine methylation report for a genome of interest"""
 input:
 "coverage/{sample}_MappedOn_{refbase}_dedup_{context}.gz.bismark.cov"
 output:
 "coverage/report/{sample}_MappedOn_{refbase}_dedup_{context}.CX_report.txt.gz"
 log:
 "logs/coverage2cytosine/{sample}_MappedOn_{refbase}_dedup_{context}_coverage2cytosine.log"
 shell:
 # USAGE: coverage2cytosine [options] --genome_folder <path> -o <output> [input]
 # "The input file needs to have been generated with the script bismark2bedGraph (the file is called *.cov, or .cov.gz) or
 # otherwise be sorted by position and exactly in the following format:
 # <chromosome> <start position> <end position> <methylation percentage> <count methylated> <count unmethylated>
 # The coordinates of the input file are expected to be 1-based throughout (do not use files ending in .zero.cov!)."
 "(coverage2cytosine"
 " --dir coverage/report"
 " --CX_context"
 " --gzip"
 " --genome_folder {cwd}{reference}"
 " -o {wildcards.sample}_MappedOn_{refbase}_dedup_{wildcards.context}"
 " {input}) &> {log}"

RNA-seq data processing and alignment workflow
This is a Snakemake workflow for automated processing and alignment of paired-end RNA-seq data.

Requirements:
· Installation of Snakemake and optionally conda
· Demultiplexed paired-end reads in gzipped FASTQ format located in the data/ directory. These should be named according to the following naming convention: {sample}_R1.fastq.gz and {sample}_R2.fastq.gz
· A samtools-indexed reference genome in FASTA format and a chromosome sizes file (e.g., wheat_v1.0.fa, wheat_v1.0.fa.fai, and wheat_v1.0.fa.sizes, the latter two of which generated with samtools faidx wheat_v1.0.fa; cut -f1,2 wheat_v1.0.fa.fai > wheat_v1.0.fa.sizes), each located in data/index/
· Gene annotations in GTF format (e.g., IWGSC_v1.1_HC_20170706.gtf) and a reference genome index with exon and splice site annotations for hisat2, each located in data/index/ (see data/index/hisat2_genome_index.sh for an example of how to generate these). The IWGSC RefSeq v1.0 Chinese Spring genome assembly and the IWGSC RefSeq v1.1 gene annotation were used in this case
· Lists of potential contaminant sequences to be removed, located in contaminants/, provided or described in this repository
· Snakefile in this repository. This contains "rules" that each execute a step in the workflow
· config.yaml in this repository. This contains customizable parameters including reference, which should be the reference genome file name without the .fa extension (e.g., wheat_v1.0)
· Optional: environment.yaml in this repository, used to create the software environment if conda is used
· If conda is not used, the tools listed in environment.yaml must be specified in the PATH variable
Creating the conda environment:

conda env create --file environment.yaml --name RNAseq_mapping

Usage:

In a Unix shell, navigate to the base directory containing Snakefile, config.yaml, environment.yaml, and the data\ subdirectory, which should have a directory tree structure like this:

.
├── config.yaml
├── contaminants
│ ├── cat_all_and_TruSeq_Single_Indexes.fa
│ ├── contaminants_list_fastqc.txt
│ ├── ribokmers.fa.gz
│ └── ribokmers_README.txt
├── data
│ ├── index
│ │ ├── hisat2_genome_index.sh
│ │ ├── IWGSC_v1.1_HC_20170706.exon
│ │ ├── IWGSC_v1.1_HC_20170706.gtf
│ │ ├── IWGSC_v1.1_HC_20170706.ss
│ │ ├── samtools_faidx_chr_sizes.sh
│ │ ├── wheat_v1.0.1.ht2l
│ │ ├── wheat_v1.0.2.ht2l
│ │ ├── wheat_v1.0.3.ht2l
│ │ ├── wheat_v1.0.4.ht2l
│ │ ├── wheat_v1.0.5.ht2l
│ │ ├── wheat_v1.0.6.ht2l
│ │ ├── wheat_v1.0.7.ht2l
│ │ ├── wheat_v1.0.8.ht2l
│ │ ├── wheat_v1.0.fa
│ │ ├── wheat_v1.0.fa.fai
│ │ └── wheat_v1.0.fa.sizes
│ ├── WT_RNAseq_Rep1_ERR2402974_R1.fastq.gz
│ ├── WT_RNAseq_Rep1_ERR2402974_R2.fastq.gz
│ ├── WT_RNAseq_Rep2_ERR2402973_R1.fastq.gz
│ ├── WT_RNAseq_Rep2_ERR2402973_R2.fastq.gz
│ ├── WT_RNAseq_Rep3_ERR2402972_R1.fastq.gz
│ └── WT_RNAseq_Rep3_ERR2402972_R2.fastq.gz
├── environment.yaml
├── README.md
├── scripts
│ └── keepPaired.py
└── Snakefile

Then run the following commands in the base directory (--cores should match the THREADS parameter in config.yaml):

conda activate RNAseq_mapping
snakemake -p --cores 48
conda deactivate

Script: environment.yaml:
channels:
 - bioconda
dependencies:
 - fastqc=0.11.8
 - bbmap=38.22
 - trimmomatic=0.38
 - pigz=2.3.4
 - hisat2=2.1.0
 - samtools=1.9
 - deeptools=3.1.3

Script: config.yaml:
SAMPLES: [
 "WT_RNAseq_Rep1_ERR2402974",
 "WT_RNAseq_Rep2_ERR2402973",
 "WT_RNAseq_Rep3_ERR2402972"
]
THREADS: 48
MEMORY: "250g"
FILTER:
 fastqc:
 contaminants: "contaminants/contaminants_list_fastqc.txt"
 bbduk:
 kmerSize: 18
 rRNAfasta: "contaminants/ribokmers.fa.gz"
 trimmomatic:
 ILLUMINACLIP: "ILLUMINACLIP:contaminants/cat_all_and_TruSeq_Single_Indexes.fa:2:30:10:1:true"
 HEADCROP: "HEADCROP:10"
 LEADING: "LEADING:3"
 TRAILING: "TRAILING:3"
 SLIDINGWINDOW: "SLIDINGWINDOW:4:20"
 MINLEN: "MINLEN:80"
MAPPING:
 reference: "data/index/wheat_v1.0"
 spliceSites: "data/index/IWGSC_v1.1_HC_20170706"
 alignments: 5
 MAPQboth: 1
 MAPQunique: 60
 sortMemory: "4G"
COVERAGE:
 normalizeUsing: "BPM"
 ignoreForNormalization: "chrUn" # Reference genome-specific parameter
 binSize: 1
 genomeBinSize: 1000000
 genomeBinName: "1Mb"

Script: Snakefile:
Snakemake workflow for aligning paired-end RNA-seq reads to a reference genome

Chromosome sizes file below ("data/index/wheat_v1.0.fa.sizes") must exist
before running snakemake
e.g., in "data/index/" run:
samtools faidx wheat_v1.0.fa; cut -f1,2 wheat_v1.0.fa.fai > wheat_v1.0.fa.sizes

Usage ("--cores" should match the "THREADS" parameter in config.yaml, and reflect available threads):
conda env create --file environment.yaml --name RNAseq_mapping # On first use only
conda activate RNAseq_mapping
snakemake -p --cores 48
conda deactivate

import pandas as pd
import os

To make the samtools rule work with a shell script ("scripts/keepPaired.py") invoked using the "shell" directive,
we need to determine the base path of Snakefile since we expect the "scripts/" subdirectory to be located here
SRCDIR = srcdir("")

Specify config file parameters
configfile: "config.yaml"
sample = config["SAMPLES"]
reference = config["MAPPING"]["reference"]
refbase = os.path.basename(reference)
genomeBinName = config["COVERAGE"]["genomeBinName"]

Determine bam index format (bai or csi) based on chromosome sizes
Genomes with chromosomes longer than ~500 Mb (e.g., in wheat) require a csi index
E.g., in axolotl: https://sourceforge.net/p/samtools/mailman/message/36249039/
chrSizes = pd.read_table("data/index/" + refbase + ".fa.sizes",
 header = None)
smallChrs = 0
for x in chrSizes[1]:
 if x < 5e+08:
 smallChrs = smallChrs + 1

if smallChrs < len(chrSizes[1]):
 bamidx = "csi"
else:
 bamidx = "bai"

ruleorder: fastqc_R1_raw > fastqc_R2_raw > bbduk > trimmomatic > fastqc_R1_trimmed > fastqc_R2_trimmed > hisat2 > samtools > postmapping > calc_coverage > calc_coverage_genome

Specify the desired end target file(s)
rule all:
 input:
 expand("logs/fastqc/raw/{sample}_R1_fastqc.html",
 sample = sample),
 expand("logs/fastqc/raw/{sample}_R2_fastqc.html",
 sample = sample),
 expand("data/{sample}_R1_rRNAremoved.fastq.gz",
 sample = sample),
 expand("data/{sample}_R2_rRNAremoved.fastq.gz",
 sample = sample),
 expand("data/trimmed/{sample}_R1_rRNAremoved_trimmed.fastq.gz",
 sample = sample),
 expand("data/trimmed/{sample}_R2_rRNAremoved_trimmed.fastq.gz",
 sample = sample),
 expand("logs/fastqc/trimmed/{sample}_R1_rRNAremoved_trimmed_fastqc.html",
 sample = sample),
 expand("logs/fastqc/trimmed/{sample}_R2_rRNAremoved_trimmed_fastqc.html",
 sample = sample),
 expand("mapped/{sample}_MappedOn_{refbase}.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.{bamidx}",
 sample = sample,
 refbase = refbase,
 bamidx = bamidx),
 expand("mapped/unique/bw/{sample}_MappedOn_{refbase}_unique_sort_norm.bw",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/bg/{sample}_MappedOn_{refbase}_unique_sort_norm.bedgraph",
 sample = sample,
 refbase = refbase),
 expand("mapped/unique/bg/{sample}_MappedOn_{refbase}_unique_sort_norm_binSize{genomeBinName}.bedgraph",
 sample = sample,
 refbase = refbase,
 genomeBinName = genomeBinName),
 expand("mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.{bamidx}",
 sample = sample,
 refbase = refbase,
 bamidx = bamidx),
 expand("mapped/both/bw/{sample}_MappedOn_{refbase}_both_sort_norm.bw",
 sample = sample,
 refbase = refbase),
 expand("mapped/both/bg/{sample}_MappedOn_{refbase}_both_sort_norm.bedgraph",
 sample = sample,
 refbase = refbase),
 expand("mapped/both/bg/{sample}_MappedOn_{refbase}_both_sort_norm_binSize{genomeBinName}.bedgraph",
 sample = sample,
 refbase = refbase,
 genomeBinName = genomeBinName)

Run fastqc on R1 raw data
rule fastqc_R1_raw:
 """Create fastqc report"""
 input:
 "data/{sample}_R1.fastq.gz"
 output:
 html = "logs/fastqc/raw/{sample}_R1_fastqc.html",
 zip = "logs/fastqc/raw/{sample}_R1_fastqc.zip"
 params:
 " --extract" +
 " --adapters " + str(config["FILTER"]["fastqc"]["contaminants"])
 log:
 "logs/fastqc/raw/{sample}_R1.log"
 wrapper:
 "0.31.1/bio/fastqc"
Run fastqc on R2 raw data
rule fastqc_R2_raw:
 """Create fastqc report"""
 input:
 "data/{sample}_R2.fastq.gz"
 output:
 html = "logs/fastqc/raw/{sample}_R2_fastqc.html",
 zip = "logs/fastqc/raw/{sample}_R2_fastqc.zip"
 params:
 " --extract" +
 " --adapters " + str(config["FILTER"]["fastqc"]["contaminants"])
 log:
 "logs/fastqc/raw/{sample}_R2.log"
 wrapper:
 "0.31.1/bio/fastqc"

Remove rRNA
rule bbduk:
 """Remove rRNA"""
 input:
 r1 = "data/{sample}_R1.fastq.gz",
 r2 = "data/{sample}_R2.fastq.gz"
 output:
 r1rRNA = "data/{sample}_R1_rRNA.fastq.gz",
 r1nonrRNA = "data/{sample}_R1_rRNAremoved.fastq.gz",
 r2rRNA = "data/{sample}_R2_rRNA.fastq.gz",
 r2nonrRNA = "data/{sample}_R2_rRNAremoved.fastq.gz"
 threads: config["THREADS"]
 params:
 memory = config["MEMORY"],
 kmerSize = config["FILTER"]["bbduk"]["kmerSize"],
 rRNAfasta = config["FILTER"]["bbduk"]["rRNAfasta"]
 log:
 "logs/bbduk/{sample}_rRNAremoved.log"
 shell:
 "(bbduk.sh -Xmx{params.memory}"
 " in={input.r1}"
 " in2={input.r2}"
 " outmatch={output.r1rRNA}"
 " outmatch2={output.r2rRNA}"
 " outnonmatch={output.r1nonrRNA}"
 " outnonmatch2={output.r2nonrRNA}"
 " k={params.kmerSize}"
 " ref={params.rRNAfasta}"
 " threads={threads}) &> {log}"

Trim off adapters and low-quality bases
rule trimmomatic:
 """Remove adapters and low-quality bases"""
 input:
 r1 = "data/{sample}_R1_rRNAremoved.fastq.gz",
 r2 = "data/{sample}_R2_rRNAremoved.fastq.gz"
 output:
 r1 = "data/trimmed/{sample}_R1_rRNAremoved_trimmed.fastq.gz",
 r2 = "data/trimmed/{sample}_R2_rRNAremoved_trimmed.fastq.gz",
 # Reads where trimming entirely removed the mate
 r1_unpaired = "data/trimmed/{sample}_R1_rRNAremoved_trimmed_unpaired.fastq.gz",
 r2_unpaired = "data/trimmed/{sample}_R2_rRNAremoved_trimmed_unpaired.fastq.gz"
 threads: config["THREADS"]
 params:
 # List of trimming paramters (see Trimmomatic manual)
 trimmer = [str(config["FILTER"]["trimmomatic"]["ILLUMINACLIP"]),
 str(config["FILTER"]["trimmomatic"]["HEADCROP"]),
 str(config["FILTER"]["trimmomatic"]["LEADING"]),
 str(config["FILTER"]["trimmomatic"]["TRAILING"]),
 str(config["FILTER"]["trimmomatic"]["SLIDINGWINDOW"]),
 str(config["FILTER"]["trimmomatic"]["MINLEN"])]
 log:
 "logs/trimmomatic/{sample}_rRNAremoved_trimmed.log"
 shell:
 "(trimmomatic PE -threads {threads}"
 " {input.r1} {input.r2}"
 " {output.r1} {output.r1_unpaired}"
 " {output.r2} {output.r2_unpaired}"
 " {params.trimmer}) &> {log}"

Run fastqc on R1 rRNAremoved_trimmed data
rule fastqc_R1_trimmed:
 """Create fastqc report"""
 input:
 "data/trimmed/{sample}_R1_rRNAremoved_trimmed.fastq.gz"
 output:
 html = "logs/fastqc/trimmed/{sample}_R1_rRNAremoved_trimmed_fastqc.html",
 zip = "logs/fastqc/trimmed/{sample}_R1_rRNAremoved_trimmed_fastqc.zip"
 params:
 " --extract" +
 " --adapters " + str(config["FILTER"]["fastqc"]["contaminants"])
 log:
 "logs/fastqc/trimmed/{sample}_R1_rRNAremoved_trimmed.log"
 wrapper:
 "0.31.1/bio/fastqc"
Run fastqc on R2 rRNAremoved_trimmed data
rule fastqc_R2_trimmed:
 """Create fastqc report"""
 input:
 "data/trimmed/{sample}_R2_rRNAremoved_trimmed.fastq.gz"
 output:
 html = "logs/fastqc/trimmed/{sample}_R2_rRNAremoved_trimmed_fastqc.html",
 zip = "logs/fastqc/trimmed/{sample}_R2_rRNAremoved_trimmed_fastqc.zip"
 params:
 " --extract" +
 " --adapters " + str(config["FILTER"]["fastqc"]["contaminants"])
 log:
 "logs/fastqc/trimmed/{sample}_R2_rRNAremoved_trimmed.log"
 wrapper:
 "0.31.1/bio/fastqc"

Align to the reference genome
rule hisat2:
 """Obtain unique and multiple alignments using hisat2"""
 input:
 fastq1 = "data/trimmed/{sample}_R1_rRNAremoved_trimmed.fastq.gz",
 fastq2 = "data/trimmed/{sample}_R2_rRNAremoved_trimmed.fastq.gz"
 output:
 protected("mapped/{sample}_MappedOn_{refbase}.bam")
 params:
 alignments = config["MAPPING"]["alignments"],
 MAPQboth = config["MAPPING"]["MAPQboth"],
 spliceSites = config["MAPPING"]["spliceSites"]
 threads: config["THREADS"]
 log:
 "logs/hisat2/{sample}_MappedOn_{refbase}.log"
 shell:
 # USAGE:
 # hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r> | --sra-acc <SRA accession number>} [-S <sam>]
 # -f 3 includes only concordantly aligned read pairs, and not unpaired reads
 # -F 2316 excludes unmapped reads (their mates too),
 # as well as secondary and supplementary alignments
 # Exclude alignments with MAPQ < config["MAPPING"]["MAPQboth"]
 "(hisat2"
 " -k {params.alignments}"
 " --no-mixed"
 " --no-discordant"
 " --no-unal"
 " --rna-strandness RF"
 " --known-splicesite-infile {params.spliceSites}.ss"
 " --novel-splicesite-outfile {params.spliceSites}.nss"
 " --novel-splicesite-infile {params.spliceSites}.nss"
 " --threads {threads}"
 " -x {reference}"
 " -1 {input.fastq1} -2 {input.fastq2} "
 "| samtools view -bh -@ {threads} -f 3 -F 2316 -q {params.MAPQboth} -o {output} -) &> {log}"

Filter alignments for mismatches and extract unique alignments
rule samtools:
 """Filter alignments for mismatches and extract unique alignments"""
 input:
 "mapped/{sample}_MappedOn_{refbase}.bam"
 output:
 both = protected("mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam"),
 unique = protected("mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam")
 params:
 sortMemory = config["MAPPING"]["sortMemory"],
 MAPQunique = config["MAPPING"]["MAPQunique"]
 threads: config["THREADS"]
 log:
 both = "logs/samtools/{sample}_MappedOn_{refbase}_both_sort.log",
 unique = "logs/samtools/{sample}_MappedOn_{refbase}_unique_sort.log"
 shell:
 # Allow a maximum of 6 mismatches
 # ([^0-9] matches characters not in the range of 0 to 9)
 # http://seqanswers.com/forums/showthread.php?t=19729
 "(samtools view -h {input} "
 "| grep -e '^@' -e 'XM:i:[0-6][^0-9]' "
 # Retain alignments for which the names of both reads in a pair are the same
 "| scripts/keepPaired.py "
 "| samtools view -u - "
 "| samtools sort -@ {threads} -m {params.sortMemory} -o {output.both}) &> {log.both}; "
 # Extract unique alignments, excluding alignments with MAPQ scores < config["MAPPING"]["MAPQunique"]
 # https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/
 "(samtools view -h -q {params.MAPQunique} {input} "
 "| grep -e '^@' -e 'XM:i:[0-6][^0-9]' "
 # Retain alignments for which the names of both reads in a pair are the same
 "| scripts/keepPaired.py "
 "| samtools view -u - "
 "| samtools sort -@ {threads} -m {params.sortMemory} -o {output.unique}) &> {log.unique}"

Postmapping steps:
Index BAM files (index format [bai or csi] depends on chromosome sizes)
Generate samtools flagstat and idxstats
Calculate library-size-normalised coverage
if bamidx == "bai":
 rule postmapping:
 """bam.bai samtools flagstat idxstats"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam"
 output:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.{bamidx}",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.{bamidx}"
 log:
 uniqueflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_unique_sort_flagstat.log",
 bothflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_both_sort_flagstat.log",
 uniqueidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_unique_sort_idxstats.log",
 bothidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_both_sort_idxstats.log"
 shell:
 """
 samtools index {input.uniqueBAM}
 samtools flagstat {input.uniqueBAM} > {log.uniqueflagstat}
 samtools idxstats {input.uniqueBAM} > {log.uniqueidxstats}
 samtools index {input.bothBAM}
 samtools flagstat {input.bothBAM} > {log.bothflagstat}
 samtools idxstats {input.bothBAM} > {log.bothidxstats}
 """
 rule calc_coverage:
 """Calculate library-size-normalized coverage"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.bai",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.bai"
 output:
 uniqueBW = "mapped/unique/bw/{sample}_MappedOn_{refbase}_unique_sort_norm.bw",
 bothBW = "mapped/both/bw/{sample}_MappedOn_{refbase}_both_sort_norm.bw",
 uniqueBG = "mapped/unique/bg/{sample}_MappedOn_{refbase}_unique_sort_norm.bedgraph",
 bothBG = "mapped/both/bg/{sample}_MappedOn_{refbase}_both_sort_norm.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 binSize = config["COVERAGE"]["binSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_unique_sort_norm.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_both_sort_norm.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.uniqueBAM} -o {output.uniqueBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}) &> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.bothBAM} -o {output.bothBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}) &> {log.both}"
 rule calc_coverage_genome:
 """Calculate library-size-normalized coverage in adjacent windows"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.bai",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.bai"
 output:
 uniqueBGgenome = "mapped/unique/bg/{sample}_MappedOn_{refbase}_unique_sort_norm_binSize{genomeBinName}.bedgraph",
 bothBGgenome = "mapped/both/bg/{sample}_MappedOn_{refbase}_both_sort_norm_binSize{genomeBinName}.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 genomeBinSize = config["COVERAGE"]["genomeBinSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_unique_sort_norm_binSize{genomeBinName}.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_both_sort_norm_binSize{genomeBinName}.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.genomeBinSize} -p {threads}) &> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.genomeBinSize} -p {threads}) &> {log.both}"
else:
 rule postmapping:
 """bam.csi samtools flagstat idxstats"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam"
 output:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.{bamidx}",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.{bamidx}"
 log:
 uniqueflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_unique_sort_flagstat.log",
 bothflagstat = "logs/samtools/stats/{sample}_MappedOn_{refbase}_both_sort_flagstat.log",
 uniqueidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_unique_sort_idxstats.log",
 bothidxstats = "logs/samtools/stats/{sample}_MappedOn_{refbase}_both_sort_idxstats.log"
 shell:
 """
 samtools index -c -m 14 {input.uniqueBAM}
 samtools flagstat {input.uniqueBAM} > {log.uniqueflagstat}
 samtools idxstats {input.uniqueBAM} > {log.uniqueidxstats}
 samtools index -c -m 14 {input.bothBAM}
 samtools flagstat {input.bothBAM} > {log.bothflagstat}
 samtools idxstats {input.bothBAM} > {log.bothidxstats}
 """
 rule calc_coverage:
 """Calculate library-size-normalized coverage"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.csi",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.csi"
 output:
 uniqueBW = "mapped/unique/bw/{sample}_MappedOn_{refbase}_unique_sort_norm.bw",
 bothBW = "mapped/both/bw/{sample}_MappedOn_{refbase}_both_sort_norm.bw",
 uniqueBG = "mapped/unique/bg/{sample}_MappedOn_{refbase}_unique_sort_norm.bedgraph",
 bothBG = "mapped/both/bg/{sample}_MappedOn_{refbase}_both_sort_norm.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 binSize = config["COVERAGE"]["binSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_unique_sort_norm.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_both_sort_norm.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.uniqueBAM} -o {output.uniqueBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}) &> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBW}"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}; "
 "bamCoverage -b {input.bothBAM} -o {output.bothBG} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.binSize} -p {threads}) &> {log.both}"
 rule calc_coverage_genome:
 """Calculate library-size-normalized coverage in adjacent windows"""
 input:
 uniqueBAM = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam",
 bothBAM = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam",
 uniqueBAMidx = "mapped/unique/{sample}_MappedOn_{refbase}_unique_sort.bam.csi",
 bothBAMidx = "mapped/both/{sample}_MappedOn_{refbase}_both_sort.bam.csi"
 output:
 uniqueBGgenome = "mapped/unique/bg/{sample}_MappedOn_{refbase}_unique_sort_norm_binSize{genomeBinName}.bedgraph",
 bothBGgenome = "mapped/both/bg/{sample}_MappedOn_{refbase}_both_sort_norm_binSize{genomeBinName}.bedgraph"
 params:
 normalizeUsing = config["COVERAGE"]["normalizeUsing"],
 genomeBinSize = config["COVERAGE"]["genomeBinSize"]
 log:
 unique = "logs/bamCoverage/{sample}_MappedOn_{refbase}_unique_sort_norm_binSize{genomeBinName}.log",
 both = "logs/bamCoverage/{sample}_MappedOn_{refbase}_both_sort_norm_binSize{genomeBinName}.log"
 threads: config["THREADS"]
 shell:
 "(bamCoverage -b {input.uniqueBAM} -o {output.uniqueBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.genomeBinSize} -p {threads}) &> {log.unique}; "
 "(bamCoverage -b {input.bothBAM} -o {output.bothBGgenome} -of bedgraph"
 " --normalizeUsing {params.normalizeUsing}"
 " --binSize {params.genomeBinSize} -p {threads}) &> {log.both}"

Chromosome profiles
R scripts for calculating and plotting windowed library-size-normalized log2(ChIP/control) coverage, recombination rate (cM/Mb), and feature frequency along the wheat chromosomes are provided below.

Script: chrProfilePlot_log2ChIPcontrol_x2_cMMb_genes_step1Mb.R:
#!/applications/R/R-3.5.0/bin/Rscript

Plot smoothed windowed library-size-normalized log2(ChIP/control) coverage,
recombination rate (cM/Mb), and feature frequency along wheat chromosomes

Change xblocks height to 46.0 in chrPartitionPlotCov2_feature2 function

Usage:
./chrProfilePlot_log2ChIPcontrol_x2_cMMb_genes_step1Mb.R CENH3 CENH3_ChIP_SRR1686799 ASY1_CS ASY1_CS_Rep1_ChIP input input_SRR6350669 input input_SRR6350669 both 1Mb 1000000 15 dodgerblue darkgreen 200720 'chr3A,chr3B,chr3D'

#markChIPA <- "CENH3_ChIP_SRR1686799"
#libNameChIPA <- "CENH3"
#markChIPB <- "ASY1_CS"
#libNameChIPB <- "ASY1_CS_Rep1_ChIP"
#markControlA <- "input"
#libNameControlA <- "input_SRR6350669"
#markControlB <- "input"
#libNameControlB <- "input_SRR6350669"
#align <- "both"
#winName <- "1Mb"
#winSize <- 1000000
#N <- 15
#colourA <- "dodgerblue"
#colourB <- "darkgreen"
#date <- "200720"
#chrName <- unlist(strsplit("chr3A,chr3B,chr3D",
split = ","))

args <- commandArgs(trailingOnly = T)
markChIPA <- args[1]
libNameChIPA <- args[2]
markChIPB <- args[3]
libNameChIPB <- args[4]
markControlA <- args[5]
libNameControlA <- args[6]
markControlB <- args[7]
libNameControlB <- args[8]
align <- args[9]
winName <- args[10]
winSize <- as.numeric(args[11])
N <- as.numeric(args[12])
colourA <- args[13]
colourB <- args[14]
date <- args[15]
chrName <- unlist(strsplit(args[16],
 split = ","))

makeTransparent <- function(thisColour, alpha = 210)
{
 newColour <- col2rgb(thisColour)
 apply(newColour, 2, function(x) {
 rgb(red = x[1], green = x[2], blue = x[3],
 alpha = alpha, maxColorValue = 255)
 })
}

colourA <- makeTransparent(colourA)
colourB <- makeTransparent(colourB)

Source functions
source("/projects/ajt200/Rfunctions/wheatPlotFunctions.R")
library(parallel)
library(plyr)
library(data.table)
library(varhandle)
library(zoo)

plotDir <- "plots/"

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4AL
eftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALef
tmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
markers <- read.table("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.0_recombination_rate_analysis/iwgsc_refseqv1.0_mapping_data.txt",
 header = TRUE)

ChIPA profile
if(libNameChIPA %in% c("H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "CENH3_ChIP_SRR1686799")) {
 covDirChIPA <- paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 markChIPA, "/snakemake_ChIPseq/mapped/",
 align, "/bg/")
} else if(libNameChIPA %in% c("H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621")) {
 covDirChIPA <- paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 markChIPA, "/snakemake_ChIPseq/mapped/",
 align, "/bg/")
} else {
 covDirChIPA <- paste0("/home/ajt200/analysis/wheat/",
 markChIPA, "/snakemake_ChIPseq/mapped/",
 align, "/bg/")
}
profileChIPA <- read.table(paste0(covDirChIPA, libNameChIPA, "_MappedOn_wheat_v1.0_lowXM_",
 align, "_sort_norm_binSize", winName, ".bedgraph"))
Rows where the difference between end and start coordinates is > winSize
profileChIPA_bigWins <- profileChIPA[profileChIPA$V3-profileChIPA$V2 > winSize,]
Rows where the difference between end and start coordinates is == winSize
profileChIPA <- profileChIPA[profileChIPA$V3-profileChIPA$V2 == winSize,]

Create a list of big windows, each split into windows of winSize,
or < winSize if at chromosome end
profileChIPA_bigWinsList <- mclapply(seq_along(1:dim(profileChIPA_bigWins)[1]), function(x) {
 bigWinsSplit <- seq(from = profileChIPA_bigWins[x,]$V2,
 to = profileChIPA_bigWins[x,]$V3,
 by = winSize)

 if(bigWinsSplit[length(bigWinsSplit)] < profileChIPA_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileChIPA_bigWins[x,]$V1),
 V2 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)],
 bigWinsSplit[length(bigWinsSplit)])),
 V3 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)]+winSize,
 profileChIPA_bigWins[x,]$V3)),
 V4 = as.numeric(profileChIPA_bigWins[x,]$V4))
 } else if (bigWinsSplit[length(bigWinsSplit)] == profileChIPA_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileChIPA_bigWins[x,]$V1),
 V2 = as.integer(bigWinsSplit[-length(bigWinsSplit)]),
 V3 = as.integer(bigWinsSplit[-length(bigWinsSplit)]+winSize),
 V4 = as.numeric(profileChIPA_bigWins[x,]$V4))
 }
}, mc.cores = detectCores())

profileChIPA_bigWinsDT <- rbindlist(profileChIPA_bigWinsList)
profileChIPA <- rbind.fill(profileChIPA, profileChIPA_bigWinsDT)
profileChIPA <- profileChIPA[order(profileChIPA$V1, profileChIPA$V2),]

chrLenValsAList <- mclapply(seq_along(chrs), function (x) {
 chrProfileChIPA <- profileChIPA[profileChIPA$V1 == chrs[x],]
 if(chrProfileChIPA[dim(chrProfileChIPA)[1],]$V3 < chrLens[x]) {
 data.frame(V1 = chrs[x],
 V2 = as.integer(chrProfileChIPA[dim(chrProfileChIPA)[1],]$V3),
 V3 = as.integer(chrLens[x]),
 V4 = as.numeric(chrProfileChIPA[dim(chrProfileChIPA)[1],]$V4))
 }
}, mc.cores = detectCores())
profileChIPA_chrLenValsADT <- rbindlist(chrLenValsAList)
profileChIPA <- rbind.fill(profileChIPA, profileChIPA_chrLenValsADT)
profileChIPA <- profileChIPA[order(profileChIPA$V1, profileChIPA$V2),]

profileChIPA <- data.frame(chr = as.character(profileChIPA$V1),
 window = as.integer(profileChIPA$V2+1),
 CPM = as.numeric(profileChIPA$V4),
 stringsAsFactors = F)

ChIPB profile
if(libNameChIPB %in% c("H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "CENH3_ChIP_SRR1686799")) {
 covDirChIPB <- paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 markChIPB, "/snakemake_ChIPseq/mapped/",
 align, "/bg/")
} else if(libNameChIPB %in% c("H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621")) {
 covDirChIPB <- paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 markChIPB, "/snakemake_ChIPseq/mapped/",
 align, "/bg/")
} else {
 covDirChIPB <- paste0("/home/ajt200/analysis/wheat/",
 markChIPB, "/snakemake_ChIPseq/mapped/",
 align, "/bg/")
}
profileChIPB <- read.table(paste0(covDirChIPB, libNameChIPB, "_MappedOn_wheat_v1.0_lowXM_",
 align, "_sort_norm_binSize", winName, ".bedgraph"))
Rows where the difference between end and start coordinates is > winSize
profileChIPB_bigWins <- profileChIPB[profileChIPB$V3-profileChIPB$V2 > winSize,]
Rows where the difference between end and start coordinates is == winSize
profileChIPB <- profileChIPB[profileChIPB$V3-profileChIPB$V2 == winSize,]

Create a list of big windows, each split into windows of winSize,
or < winSize if at chromosome end
profileChIPB_bigWinsList <- mclapply(seq_along(1:dim(profileChIPB_bigWins)[1]), function(x) {
 bigWinsSplit <- seq(from = profileChIPB_bigWins[x,]$V2,
 to = profileChIPB_bigWins[x,]$V3,
 by = winSize)

 if(bigWinsSplit[length(bigWinsSplit)] < profileChIPB_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileChIPB_bigWins[x,]$V1),
 V2 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)],
 bigWinsSplit[length(bigWinsSplit)])),
 V3 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)]+winSize,
 profileChIPB_bigWins[x,]$V3)),
 V4 = as.numeric(profileChIPB_bigWins[x,]$V4))
 } else if (bigWinsSplit[length(bigWinsSplit)] == profileChIPB_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileChIPB_bigWins[x,]$V1),
 V2 = as.integer(bigWinsSplit[-length(bigWinsSplit)]),
 V3 = as.integer(bigWinsSplit[-length(bigWinsSplit)]+winSize),
 V4 = as.numeric(profileChIPB_bigWins[x,]$V4))
 }
}, mc.cores = detectCores())

profileChIPB_bigWinsDT <- rbindlist(profileChIPB_bigWinsList)
profileChIPB <- rbind.fill(profileChIPB, profileChIPB_bigWinsDT)
profileChIPB <- profileChIPB[order(profileChIPB$V1, profileChIPB$V2),]

chrLenValsBList <- mclapply(seq_along(chrs), function (x) {
 chrProfileChIPB <- profileChIPB[profileChIPB$V1 == chrs[x],]
 if(chrProfileChIPB[dim(chrProfileChIPB)[1],]$V3 < chrLens[x]) {
 data.frame(V1 = chrs[x],
 V2 = as.integer(chrProfileChIPB[dim(chrProfileChIPB)[1],]$V3),
 V3 = as.integer(chrLens[x]),
 V4 = as.numeric(chrProfileChIPB[dim(chrProfileChIPB)[1],]$V4))
 }
}, mc.cores = detectCores())
profileChIPB_chrLenValsBDT <- rbindlist(chrLenValsBList)
profileChIPB <- rbind.fill(profileChIPB, profileChIPB_chrLenValsBDT)
profileChIPB <- profileChIPB[order(profileChIPB$V1, profileChIPB$V2),]

profileChIPB <- data.frame(chr = as.character(profileChIPB$V1),
 window = as.integer(profileChIPB$V2+1),
 CPM = as.numeric(profileChIPB$V4),
 stringsAsFactors = F)

ControlA profile
if(libNameControlA == "MNase_Rep1") {
 covDirControlA <- paste0("/home/ajt200/analysis/wheat/",
 "MNase/snakemake_ChIPseq/mapped/", align, "/bg/")
 profileControlA <- read.table(paste0(covDirControlA, "MNase_Rep1_MappedOn_wheat_v1.0_lowXM_",
 align, "_sort_norm_binSize", winName, ".bedgraph"))
} else if(libNameControlA == "input_SRR6350669") {
 covDirControlA <- paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 "input/snakemake_ChIPseq/mapped/", align, "/bg/")
 profileControlA <- read.table(paste0(covDirControlA, "input_SRR6350669_MappedOn_wheat_v1.0_lowXM_",
 align, "_sort_norm_binSize", winName, ".bedgraph"))
} else {
 if(!(libNameControlA %in% c("MNase_Rep1", "input_SRR6350669"))) {
 stop("libNameControlA is neither MNase_Rep1 nor input_SRR6350669")
 }
}
Rows where the difference between end and start coordinates is > winSize
profileControlA_bigWins <- profileControlA[profileControlA$V3-profileControlA$V2 > winSize,]
Rows where the difference between end and start coordinates is == winSize
profileControlA <- profileControlA[profileControlA$V3-profileControlA$V2 == winSize,]

Create a list of big windows, each split into windows of winSize,
or < winSize if at chromosome end
profileControlA_bigWinsList <- mclapply(seq_along(1:dim(profileControlA_bigWins)[1]), function(x) {
 bigWinsSplit <- seq(from = profileControlA_bigWins[x,]$V2,
 to = profileControlA_bigWins[x,]$V3,
 by = winSize)

 if(bigWinsSplit[length(bigWinsSplit)] < profileControlA_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileControlA_bigWins[x,]$V1),
 V2 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)],
 bigWinsSplit[length(bigWinsSplit)])),
 V3 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)]+winSize,
 profileControlA_bigWins[x,]$V3)),
 V4 = as.numeric(profileControlA_bigWins[x,]$V4))
 } else if (bigWinsSplit[length(bigWinsSplit)] == profileControlA_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileControlA_bigWins[x,]$V1),
 V2 = as.integer(bigWinsSplit[-length(bigWinsSplit)]),
 V3 = as.integer(bigWinsSplit[-length(bigWinsSplit)]+winSize),
 V4 = as.numeric(profileControlA_bigWins[x,]$V4))
 }
}, mc.cores = detectCores())

profileControlA_bigWinsDT <- rbindlist(profileControlA_bigWinsList)
profileControlA <- rbind.fill(profileControlA, profileControlA_bigWinsDT)
profileControlA <- profileControlA[order(profileControlA$V1, profileControlA$V2),]

chrLenValsAList <- mclapply(seq_along(chrs), function (x) {
 chrProfileControl <- profileControlA[profileControlA$V1 == chrs[x],]
 if(chrProfileControl[dim(chrProfileControl)[1],]$V3 < chrLens[x]) {
 data.frame(V1 = chrs[x],
 V2 = as.integer(chrProfileControl[dim(chrProfileControl)[1],]$V3),
 V3 = as.integer(chrLens[x]),
 V4 = as.numeric(chrProfileControl[dim(chrProfileControl)[1],]$V4))
 }
}, mc.cores = detectCores())
profileControlA_chrLenValsADT <- rbindlist(chrLenValsAList)
profileControlA <- rbind.fill(profileControlA, profileControlA_chrLenValsADT)
profileControlA <- profileControlA[order(profileControlA$V1, profileControlA$V2),]

profileControlA <- data.frame(chr = as.character(profileControlA$V1),
 window = as.integer(profileControlA$V2+1),
 CPM = as.numeric(profileControlA$V4),
 stringsAsFactors = F)

ControlB profile
if(libNameControlB == "MNase_Rep1") {
 covDirControlB <- paste0("/home/ajt200/analysis/wheat/",
 "MNase/snakemake_ChIPseq/mapped/", align, "/bg/")
 profileControlB <- read.table(paste0(covDirControlB, "MNase_Rep1_MappedOn_wheat_v1.0_lowXM_",
 align, "_sort_norm_binSize", winName, ".bedgraph"))
} else if(libNameControlB == "input_SRR6350669") {
 covDirControlB <- paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 "input/snakemake_ChIPseq/mapped/", align, "/bg/")
 profileControlB <- read.table(paste0(covDirControlB, "input_SRR6350669_MappedOn_wheat_v1.0_lowXM_",
 align, "_sort_norm_binSize", winName, ".bedgraph"))
} else {
 if(!(libNameControlB %in% c("MNase_Rep1", "input_SRR6350669"))) {
 stop("libNameControlB is neither MNase_Rep1 nor input_SRR6350669")
 }
}
Rows where the difference between end and start coordinates is > winSize
profileControlB_bigWins <- profileControlB[profileControlB$V3-profileControlB$V2 > winSize,]
Rows where the difference between end and start coordinates is == winSize
profileControlB <- profileControlB[profileControlB$V3-profileControlB$V2 == winSize,]

Create a list of big windows, each split into windows of winSize,
or < winSize if at chromosome end
profileControlB_bigWinsList <- mclapply(seq_along(1:dim(profileControlB_bigWins)[1]), function(x) {
 bigWinsSplit <- seq(from = profileControlB_bigWins[x,]$V2,
 to = profileControlB_bigWins[x,]$V3,
 by = winSize)

 if(bigWinsSplit[length(bigWinsSplit)] < profileControlB_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileControlB_bigWins[x,]$V1),
 V2 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)],
 bigWinsSplit[length(bigWinsSplit)])),
 V3 = as.integer(c(bigWinsSplit[-length(bigWinsSplit)]+winSize,
 profileControlB_bigWins[x,]$V3)),
 V4 = as.numeric(profileControlB_bigWins[x,]$V4))
 } else if (bigWinsSplit[length(bigWinsSplit)] == profileControlB_bigWins[x,]$V3) {
 data.frame(V1 = as.character(profileControlB_bigWins[x,]$V1),
 V2 = as.integer(bigWinsSplit[-length(bigWinsSplit)]),
 V3 = as.integer(bigWinsSplit[-length(bigWinsSplit)]+winSize),
 V4 = as.numeric(profileControlB_bigWins[x,]$V4))
 }
}, mc.cores = detectCores())

profileControlB_bigWinsDT <- rbindlist(profileControlB_bigWinsList)
profileControlB <- rbind.fill(profileControlB, profileControlB_bigWinsDT)
profileControlB <- profileControlB[order(profileControlB$V1, profileControlB$V2),]

chrLenValsBList <- mclapply(seq_along(chrs), function (x) {
 chrProfileControl <- profileControlB[profileControlB$V1 == chrs[x],]
 if(chrProfileControl[dim(chrProfileControl)[1],]$V3 < chrLens[x]) {
 data.frame(V1 = chrs[x],
 V2 = as.integer(chrProfileControl[dim(chrProfileControl)[1],]$V3),
 V3 = as.integer(chrLens[x]),
 V4 = as.numeric(chrProfileControl[dim(chrProfileControl)[1],]$V4))
 }
}, mc.cores = detectCores())
profileControlB_chrLenValsBDT <- rbindlist(chrLenValsBList)
profileControlB <- rbind.fill(profileControlB, profileControlB_chrLenValsBDT)
profileControlB <- profileControlB[order(profileControlB$V1, profileControlB$V2),]

profileControlB <- data.frame(chr = as.character(profileControlB$V1),
 window = as.integer(profileControlB$V2+1),
 CPM = as.numeric(profileControlB$V4),
 stringsAsFactors = F)

ChIPA
Calculate log2((ChIP+1)/(Control+1)) coverage within each window
profileChIPAlog2 <- data.frame(chr = as.character(profileChIPA$chr),
 window = as.numeric(profileChIPA$window),
 log2CPM = as.numeric(log2((profileChIPA$CPM+1)/(profileControlA$CPM+1))),
 stringsAsFactors = F)

chrProfilesChIPA <- mclapply(seq_along(chrs), function(x) {
 profileChIPAlog2[profileChIPAlog2$chr == chrs[x],]
}, mc.cores = length(chrs))

Calculate moving average of current window, ((N/2)-0.5) previous windows,
and ((N/2)-0.5) subsequent windows
(the higher N is, the greater the smoothing)
flank <- (N/2)-0.5
Define MA filter coefficients
f <- rep(1/N, N)

filt_chrProfilesChIPA <- mclapply(seq_along(chrProfilesChIPA), function(x) {
 filt_chrProfile <- stats::filter(x = chrProfilesChIPA[[x]]$log2CPM,
 filter = f,
 sides = 2)
 filt_chrProfile[1:flank] <- filt_chrProfile[flank+1]
 filt_chrProfile[(length(filt_chrProfile)-flank+1):length(filt_chrProfile)] <- filt_chrProfile[(length(filt_chrProfile)-flank)]
 data.frame(chr = as.character(chrProfilesChIPA[[x]]$chr),
 window = as.integer(chrProfilesChIPA[[x]]$window),
 filt_log2CPM = as.numeric(filt_chrProfile),
 stringsAsFactors = F)
}, mc.cores = length(chrProfilesChIPA))

minCPMA_chrs <- min(unlist(mclapply(seq_along(filt_chrProfilesChIPA),
 function(x) {
 min(c(filt_chrProfilesChIPA[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPA))))-0.25
maxCPMA_chrs <- max(unlist(mclapply(seq_along(filt_chrProfilesChIPA),
 function(x) {
 max(c(filt_chrProfilesChIPA[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPA))))+0.25

minCPMA <- min(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 min(c(filt_chrProfilesChIPA[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPA))))-0.25
maxCPMA <- max(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 max(c(filt_chrProfilesChIPA[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPA))))+0.25

ChIPB
Calculate log2((ChIP+1)/(Control+1)) coverage within each window
profileChIPBlog2 <- data.frame(chr = as.character(profileChIPB$chr),
 window = as.numeric(profileChIPB$window),
 log2CPM = as.numeric(log2((profileChIPB$CPM+1)/(profileControlB$CPM+1))),
 stringsAsFactors = F)

chrProfilesChIPB <- mclapply(seq_along(chrs), function(x) {
 profileChIPBlog2[profileChIPBlog2$chr == chrs[x],]
}, mc.cores = length(chrs))

Calculate moving average of current window, ((N/2)-0.5) previous windows,
and ((N/2)-0.5) subsequent windows
(the higher N is, the greater the smoothing)
flank <- (N/2)-0.5
Define MA filter coefficients
f <- rep(1/N, N)

filt_chrProfilesChIPB <- mclapply(seq_along(chrProfilesChIPB), function(x) {
 filt_chrProfile <- stats::filter(x = chrProfilesChIPB[[x]]$log2CPM,
 filter = f,
 sides = 2)
 filt_chrProfile[1:flank] <- filt_chrProfile[flank+1]
 filt_chrProfile[(length(filt_chrProfile)-flank+1):length(filt_chrProfile)] <- filt_chrProfile[(length(filt_chrProfile)-flank)]
 data.frame(chr = as.character(chrProfilesChIPB[[x]]$chr),
 window = as.integer(chrProfilesChIPB[[x]]$window),
 filt_log2CPM = as.numeric(filt_chrProfile),
 stringsAsFactors = F)
}, mc.cores = length(chrProfilesChIPB))

minCPMB_chrs <- min(unlist(mclapply(seq_along(filt_chrProfilesChIPB),
 function(x) {
 min(c(filt_chrProfilesChIPB[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPB))))-0.025
maxCPMB_chrs <- max(unlist(mclapply(seq_along(filt_chrProfilesChIPB),
 function(x) {
 max(c(filt_chrProfilesChIPB[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPB))))+0.025

minCPMB <- min(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 min(c(filt_chrProfilesChIPB[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPB))))-0.025
maxCPMB <- max(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 max(c(filt_chrProfilesChIPB[[x]]$filt_log2CPM))
}, mc.cores = length(filt_chrProfilesChIPB))))+0.025

Recombination rate (cM/Mb) and feature frequency chromosome profiles
featureA <- read.table("/home/ajt200/analysis/wheat/chromosomeProfiles/cMMb/iwgsc_refseqv1.0_recombination_rate.txt",
 header = T)
colnames(featureA) <- c("chr", "window", "intervalEnd", "nbOfSnps", "filt_feature")
featureB <- read.table(paste0("/home/ajt200/analysis/wheat/chromosomeProfiles/genes/gene_frequency_per_10Mb_step1Mb.txt"),
 header = T)
colnames(featureB) <- c("chr", "window", "filt_feature")

filt_chrProfilesFeatureA <- mclapply(seq_along(chrs), function(x) {
 featureA[featureA$chr == chrs[x],]
}, mc.cores = length(chrs))

filt_chrProfilesFeatureB <- mclapply(seq_along(chrs), function(x) {
 featureB[featureB$chr == chrs[x] &
 featureB$window %in% featureA[featureA$chr == chrs[x],]$window,]
}, mc.cores = length(chrs))

minFeatureA_chrs <- min(unlist(mclapply(seq_along(filt_chrProfilesFeatureA),
 function(x) {
 min(c(filt_chrProfilesFeatureA[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureA))))
maxFeatureA_chrs <- max(unlist(mclapply(seq_along(filt_chrProfilesFeatureA),
 function(x) {
 max(c(filt_chrProfilesFeatureA[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureA))))

minFeatureA <- min(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 min(c(filt_chrProfilesFeatureA[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureA))))
maxFeatureA <- max(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 max(c(filt_chrProfilesFeatureA[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureA))))

minFeatureB_chrs <- min(unlist(mclapply(seq_along(filt_chrProfilesFeatureB),
 function(x) {
 min(c(filt_chrProfilesFeatureB[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureB))))
maxFeatureB_chrs <- max(unlist(mclapply(seq_along(filt_chrProfilesFeatureB),
 function(x) {
 max(c(filt_chrProfilesFeatureB[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureB))))

minFeatureB <- min(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 min(c(filt_chrProfilesFeatureB[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureB))))
maxFeatureB <- max(unlist(mclapply(which(chrs %in% chrName),
 function(x) {
 max(c(filt_chrProfilesFeatureB[[x]]$filt_feature), na.rm = T)
}, mc.cores = length(filt_chrProfilesFeatureB))))

Plot
pdf(paste0(plotDir, "Wheat_", paste0(chrName, collapse = "_"),
 "_log2_", libNameChIPA, "_", libNameControlA,
 "_log2_", libNameChIPB, "_", libNameControlB, "_",
 align, "_featureFreq_chrPlot_winSize", winName, "_smooth", N,
 "_CSxRenan_step1Mb_IWGSCanalysis_v", date, ".pdf"),
 height = 4, width = 10*length(chrName))
par(mfrow = c(1, length(chrName)))
par(mar = c(5.0, 9.0, 2.1, 9.0))
for(x in which(chrs %in% chrName)) {
 chrPartitionPlotCov2_feature2(chrx = which(chrs %in% chrName),
 title = sub("c", "C", chrs[x]),
 cenStart = centromereStart[x],
 cenEnd = centromereEnd[x],
 rug1 = markers[markers$chromosome == chrs[x],]$physicalPosition,
 rug1Col = "grey40",
 xplot1 = filt_chrProfilesChIPA[[x]]$window,
 dat1A = filt_chrProfilesChIPA[[x]]$filt_log2CPM,
 col1A = colourA,
 dat1B = filt_chrProfilesChIPB[[x]]$filt_log2CPM,
 col1B = colourB,
 Ylab1 = bquote("Log"[2]*"(ChIP/control)"),
 min1A = -max((minCPMA*-1), maxCPMA),
 max1A = max((minCPMA*-1), maxCPMA),
 min1B = -max((minCPMB*-1), maxCPMB),
 max1B = max((minCPMB*-1), maxCPMB),
 legendLoc = "bottomright",
 legendLabs = c(sub("_\\w+", "", markChIPA), sub("_\\w+", "", markChIPB), "cM/Mb", "Genes"),
 xplot2 = filt_chrProfilesFeatureA[[x]]$window,
 dat2A = filt_chrProfilesFeatureA[[x]]$filt_feature,
 col2A = "darkorange2",
 dat2B = filt_chrProfilesFeatureB[[x]]$filt_feature,
 col2B = "magenta3",
 Ylab2 = "",
 min2A = 0-maxFeatureA,
 max2A = maxFeatureA,
 min2B = 0-maxFeatureB,
 max2B = maxFeatureB)
}
dev.off()

pdf(paste0(plotDir, "Wheat",
 "_log2_", libNameChIPA, "_", libNameControlA,
 "_log2_", libNameChIPB, "_", libNameControlB, "_",
 align, "_featureFreq_chrPlot_winSize", winName, "_smooth", N,
 "_CSxRenan_step1Mb_IWGSCanalysis_v", date, ".pdf"),
 height = 4*7, width = 8*3)
par(mfrow = c(7, 3))
par(mar = c(5.0, 6.0, 2.1, 6.0))
for(x in which(chrs %in% chrs)) {
 chrPartitionPlotCov2_feature2(chrx = which(chrs %in% chrs),
 title = sub("c", "C", chrs[x]),
 cenStart = centromereStart[x],
 cenEnd = centromereEnd[x],
 rug1 = markers[markers$chromosome == chrs[x],]$physicalPosition,
 rug1Col = "grey40",
 xplot1 = filt_chrProfilesChIPA[[x]]$window,
 dat1A = filt_chrProfilesChIPA[[x]]$filt_log2CPM,
 col1A = colourA,
 dat1B = filt_chrProfilesChIPB[[x]]$filt_log2CPM,
 col1B = colourB,
Ylab1 = bquote("Log"[2]*"(ChIP/control)"),
 Ylab1 = "",
 min1A = -max((minCPMA_chrs*-1), maxCPMA_chrs),
 max1A = max((minCPMA_chrs*-1), maxCPMA_chrs),
 min1B = -max((minCPMB_chrs*-1), maxCPMB_chrs),
 max1B = max((minCPMB_chrs*-1), maxCPMB_chrs),
 legendLoc = "bottomright",
 legendLabs = c(sub("_\\w+", "", markChIPA), sub("_\\w+", "", markChIPB), "cM/Mb", "Genes"),
 xplot2 = filt_chrProfilesFeatureA[[x]]$window,
 dat2A = filt_chrProfilesFeatureA[[x]]$filt_feature,
 col2A = "darkorange2",
 dat2B = filt_chrProfilesFeatureB[[x]]$filt_feature,
 col2B = "magenta3",
 Ylab2 = "",
 min2A = 0-maxFeatureA_chrs,
 max2A = maxFeatureA_chrs,
 min2B = 0-maxFeatureB_chrs,
 max2B = maxFeatureB_chrs)
}
dev.off()

Script: chrProfiles_correlation_matrix.R:
#!/applications/R/R-4.0.0/bin/Rscript

Create and plot correlation matrices of chromosome profiles for
log2(ChIP/input), cM/Mb, MNase, DNA methylation,
and NLR-encoding, defense response and meiotic genes, and TE superfamilies,
genome-wide, subgenome-wide or separated into the following chromosome compartments a.k.a. partitions):
1. R1 and R3 (distal)
2. R2a and R2b (interstitial)
3. C (proximal)
4. "heterochromatin" (interstitial and proximal)
5. centromeric (defined by IWGSC (2018) Science 361 using CENH3 ChIP-seq data from Guo et al. (2016) PLOS Genet. 12)

Usage:
./chrProfiles_correlation_matrix.R 1Mb 1000000 distal 'A,B,D' smoothed

#winName <- "1Mb"
#winSize <- 1000000
#region <- "distal"
#genomeName <- unlist(strsplit("A,B,D",
split = ","))
#smoothing <- "smoothed"

args <- commandArgs(trailingOnly = T)
winName <- args[1]
winSize <- as.numeric(args[2])
region <- args[3]
genomeName <- unlist(strsplit(args[4],
 split = ","))
smoothing <- args[5]

plotDir <- paste0("plots/correlation_matrices/")
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

library(GenomicRanges)
library(Hmisc) # includes rcorr() function which computes significance levels for Pearson and Spearman correlations
library(reshape)
library(ggplot2)
library(ggcorrplot)

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4AL
eftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALef
tmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
if(length(genomeName) == 1) {
 genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]
}

Define region to be analysed
if(region == "distal") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 if(length(genomeName) == 1) {
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
 }
} else if(region == "interstitial") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(chrPartitions$R1_R2a+1,
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrPartitions$R2b_R3-1)),
 strand = "*")
 if(length(genomeName) == 1) {
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
 }
} else if(region == "proximal") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
 if(length(genomeName) == 1) {
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
 }
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 if(length(genomeName) == 1) {
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
 }
} else if(region == "centromeric") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
 if(length(genomeName) == 1) {
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
 }
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 if(length(genomeName) == 1) {
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
 }
} else {
 stop("region is not distal, interstitial, proximal, heterochromatin, centromeric, or genomewide")
}

Define region to be masked out of analysis
if(region == "distal") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 if(length(genomeName) == 1) {
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
 }
} else if(region == "interstitial") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 3),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2a_C+1,
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrPartitions$C_R2b-1,
 chrLens)),
 strand = "*")
 if(length(genomeName) == 1) {
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
 }
} else if(region == "proximal") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
 if(length(genomeName) == 1) {
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
 }
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 if(length(genomeName) == 1) {
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
 }
} else if(region == "centromeric") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
 if(length(genomeName) == 1) {
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
 }
} else if(region == "genomewide") {
 maskGR <- GRanges()
 if(length(genomeName) == 1) {
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
 }
} else {
 stop("region is not distal, interstitial, proximal, heterochromatin, centromeric, or genomewide")
}

ChIPDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/log2ChIPcontrol/"
otherDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/MNase_DNase_input_RNAseq/"
cMMbDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/cMMb/"
geneDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/genes/"
DNAmethDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/DNAmeth/"
superfamDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/TEs/superfamilies/"
subfamDir <- "/home/ajt200/analysis/wheat/chromosomeProfiles/TEs/subfamilies/"

paths <- c(
 paste0(ChIPDir, "log2_DMC1_Rep1_ChIP_H3_input_SRR6350669_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_ASY1_CS_Rep1_ChIP_H3_input_SRR6350669_per_", winName, "_", smoothing, ".txt"),
 paste0(cMMbDir, "cMMb_iwgsc_refseqv1.0_mapping_data_minInterMarkerDist200bp_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K4me1_Rep1_ChIP_SRR8126618_H3_input_SRR6350669_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K4me3_Rep1_ChIP_MNase_Rep1_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K27ac_Rep1_ChIP_SRR8126621_H3_input_SRR6350669_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K27me3_ChIP_SRR6350666_H3_input_SRR6350669_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K36me3_ChIP_SRR6350670_H3_input_SRR6350669_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K9me2_Rep1_ChIP_MNase_Rep1_per_", winName, "_", smoothing, ".txt"),
 paste0(ChIPDir, "log2_H3K27me1_Rep1_ChIP_MNase_Rep1_per_", winName, "_", smoothing, ".txt"),
 paste0(DNAmethDir, "BSseq_Rep8a_SRR6792678_per_", winName, "_", smoothing, ".txt"),
 paste0(otherDir, "MNase_Rep1_per_", winName, "_", smoothing, ".txt"),
 paste0(geneDir, "gene_frequency_per_", winName, "_", smoothing, ".txt"),
 paste0(geneDir, "defense_response_gene_frequency_per_", winName, "_", smoothing, ".txt"),
 paste0(geneDir, "NLR_gene_frequency_per_", winName, "_", smoothing, ".txt"),
 paste0(geneDir, "meiotic_gene_frequency_per_", winName, "_", smoothing, ".txt"),
 paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Mariner_DTT_", smoothing, ".txt"),
paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Unclassified_with_TIRs_DTX_", smoothing, ".txt"),
 paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Mutator_DTM_", smoothing, ".txt"),
 paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Harbinger_DTH_", smoothing, ".txt"),
paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_CACTA_DTC_", smoothing, ".txt"),
paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_hAT_DTA_", smoothing, ".txt"),
paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Helitrons_DHH_", smoothing, ".txt"),
paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_SINE_SIX_", smoothing, ".txt"),
 paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_LINE_RIX_", smoothing, ".txt"),
 paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Copia_LTR_RLC_", smoothing, ".txt"),
 paste0(superfamDir, "TE_frequency_per_", winName, "_superfamily_Gypsy_LTR_RLG_", smoothing, ".txt")
paste0(subfamDir, "TE_frequency_per_", winName, "_superfamily_Gypsy_LTR_RLG_subfamily_RLG_famc8.1_", smoothing, ".txt"),
paste0(subfamDir, "TE_frequency_per_", winName, "_superfamily_Gypsy_LTR_RLG_subfamily_RLG_famc8.2_", smoothing, ".txt"),
paste0(subfamDir, "TE_frequency_per_", winName, "_superfamily_Gypsy_LTR_RLG_subfamily_RLG_famc8.3_", smoothing, ".txt")
)

profileNames <- c(
 "DMC1",
 "ASY1",
 "cM/Mb",
 "H3K4me1",
 "H3K4me3",
 "H3K27ac",
 "H3K27me3",
 "H3K36me3",
 "H3K9me2",
 "H3K27me1",
 "mCG",
 "mCHG",
 "mCHH",
 "MNase",
 "Genes",
 "Defense response",
 "NLR-encoding",
 "Meiotic",
 "Mariner",
"Unclassified with TIRs",
 "Mutator",
 "Harbinger",
"CACTA",
"hAT",
"Helitron",
"SINE",
 "LINE",
 "Copia LTR",
 "Gypsy LTR"
"Gypsy Cereba",
"Gypsy Quinta 1",
"Gypsy Quinta 2"
)

profiles <- lapply(seq_along(paths), function(x) {
 read.table(paths[x], header = T)
})
profilesNew <- lapply(seq_along(profiles), function(x) {
 # Make columns consistent across log2ChIPinput,
 # cMMb, MNase, DNase and gene data sets
 if(dim(profiles[[x]])[2] >= 3 &
 dim(profiles[[x]])[2] < 6) {
 data.frame(chr = profiles[[x]][,1],
 window = profiles[[x]][,2],
 value = profiles[[x]][,dim(profiles[[x]])[2]],
 stringsAsFactors = F)
 # Separate DNA methylation contexts and make columns consistent as above
 } else if(dim(profiles[[x]])[2] == 6) {
 DNAmethList <- list()
 # Exclude average over all 3 contexts
 for(y in 3:5) {
 print(y)
 DNAmethList[[y]] <- data.frame(chr = profiles[[x]][,1],
 window = profiles[[x]][,2],
 value = profiles[[x]][,y],
 stringsAsFactors = F)
 }
 # Remove empty ("NULL") list elements
 DNAmethList[-1:-2]
 }
})

DNAmethList is one list of 3 elements within the 20-element list profilesNew
To make each of these 3 elements its own element within a 22-element list profilesNew2:
profilesNew2 <- profilesNew
for(x in seq_along(profilesNew)) {
 if(class(profilesNew[[x]]) == "list") {
 listLength <- length(profilesNew[[x]])
 for(z in (length(profilesNew) + listLength - 1) : (x+listLength)) {
 profilesNew2[[z]] <- profilesNew[[z - listLength + 1]]
 }
 for(y in 1:3) {
 profilesNew2[[x + y - 1]] <- profilesNew[[x]][[y]]
 }
 }
}

profiles <- profilesNew2

profilesGR <- lapply(seq_along(profiles), function(x) {
 GRanges(seqnames = profiles[[x]]$chr,
 ranges = IRanges(start = profiles[[x]]$window,
 end = profiles[[x]]$window+winSize-1),
 strand = "*",
 value = profiles[[x]]$value)
})
Redefine end coordinate of last window in each chromosome
to be equal to the length of that chromosome
profilesGR_chrs <- lapply(seq_along(profilesGR), function(x) {
 profilesGRx <- lapply(seq_along(chrs), function(i) {
 profilesGRx_chr <- profilesGR[[x]][seqnames(profilesGR[[x]]) == chrs[i]]
 end(profilesGRx_chr)[length(profilesGRx_chr)] <- chrLens[i]
 profilesGRx_chr
 })
 profilesGRx
})

Combine GRanges list elements (1 element for each chromosome)
in one GRanges object for each profile
profilesGR <- lapply(seq_along(profilesGR_chrs), function(x) {
 do.call(c, profilesGR_chrs[[x]])
})

Subset to include only those windows within the genomeName-subgenome
if(length(genomeName) == 1) {
 profilesGR <- lapply(seq_along(profilesGR), function(x) {
 profilesGR[[x]][grep(genomeName,
 seqnames(profilesGR[[x]]))@values]
 })
}
Subset to include only those windows not overlapping masked region (e.g., heterochromatin)
profilesGR <- lapply(seq_along(profilesGR), function(x) {
 mask_profilesGRx_overlap <- findOverlaps(query = maskGR,
 subject = profilesGR[[x]],
 type = "any",
 select = "all",
 ignore.strand = TRUE)
 if(length(mask_profilesGRx_overlap) != 0) {
 profilesGR[[x]][-subjectHits(mask_profilesGRx_overlap)]
 } else {
 profilesGR[[x]]
 }
})

Combine profiles into one data.frame in which each profile is a column
profilesVal <- lapply(seq_along(profilesGR), function(x) {
 profilesGR[[x]]$value
})

profilesDF <- as.data.frame(do.call(cbind, profilesVal),
 stringsAsFactors = F)
colnames(profilesDF) <- profileNames

Create correlation matrix
corMat <- round(cor(profilesDF,
 method = "spearman",
 use = "pairwise.complete.obs"),
 digits = 2)

Set duplicates to NA
for(x in 1:dim(corMat)[1]) {
 corMat[x, x] <- NA
 if(x > 1) {
 corMat[x, 1:x-1] <- NA
 }
}
corMat <- corMat[,-1]

Convert into reshape::melt formatted data.frame
and remove duplicate pairs
corDat <- melt(corMat)
corDat <- corDat[-which(is.na(corDat[,3])),]

Order the data.frame for plotting
profileNamesList <- as.list(profileNames)
names(profileNamesList) <- profileNames
levels(corDat$X1) <- rev(profileNamesList)
levels(corDat$X2) <- profileNamesList[-1]

Get P-values for correlation matrix
corMatSig <- rcorr(as.matrix(profilesDF),
 type = "spearman")$P
Set duplicates to NA
for(x in 1:dim(corMatSig)[1]) {
 corMatSig[x, x] <- NA
 if(x > 1) {
 corMatSig[x, 1:x-1] <- NA
 }
}
corMatSig <- corMatSig[,-1]

Convert into reshape::melt formatted data.frame
and remove duplicate pairs
corDatSig <- melt(corMatSig)
corDatSig <- corDatSig[-which(is.na(corDatSig[,3])),]

Standardise P-values to a sample size of 100 (q-values) as proposed by
Good (1982) Standardized tail-area probabilities. Journal of Computation and Simulation 16: 65-66
and summarised by Woolley (2003):
https://stats.stackexchange.com/questions/22233/how-to-choose-significance-level-for-a-large-data-set
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.518.5341&rep=rep1&type=pdf
Woolley (2003): "Clearly, the meaningfulness of the p-value diminishes as the sample size increases";
Anne Z. (2012, Pearson eCollege, Denver): "In the real world, there are unlikely to be semi-partial correlations
that are exactly zero, which is the null hypothesis in testing significance of a regression coefficient."
Formally, the standardised p-value is defined as:
q = min(0.5, p * sqrt((n/100)))
Woolley (2003): "The value of 0.5 is somewhat arbitrary, though its purpose is to avoid q-values of greater than 1."
n <- dim(profilesDF)[1]
corDatSig$value <- sapply(corDatSig$value, function(x) {
 round(min(0.5, x * sqrt((n/100))),
 digits = 2)
})

Order the data.frame for plotting
levels(corDatSig$X1) <- rev(profileNamesList)
levels(corDatSig$X2) <- profileNamesList[-1]

Plot
ggObj <- ggplot(data = corDat,
 mapping = aes(X2, X1, fill = value)) +
 geom_tile() +
geom_text(mapping = aes(X2, X1, label = value), size = 5) +
 geom_text(data = corDatSig,
 mapping = aes(X2, X1, label = value), size = 8) +
 scale_fill_gradient2(name = bquote("Spearman's" ~ italic(r[s])),
 low = "blue", mid = "white", high = "red",
 midpoint = 0, breaks = seq(-1, 1, by = 0.4), limits = c(-1, 1)) +
 scale_x_discrete(expand = c(0, 0), position = "top") +
 scale_y_discrete(expand = c(0, 0)) +
 labs(x = "", y = "") +
 guides(fill = guide_colourbar(barwidth = 40, barheight = 6,
 title.position = "top", title.hjust = 0.5)) +
 theme_bw() +
 theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust = 0, size = 39, colour = "black"),
 axis.text.y = element_text(angle = 0, vjust = 1, hjust = 1, size = 39, colour = "black"),
 panel.grid.major = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 axis.ticks = element_blank(),
 legend.title = element_text(size = 40),
 legend.text = element_text(size = 40),
 legend.justification = c(1, 0),
 legend.position = c(0.65, 0.05),
 legend.direction = "horizontal",
 legend.background = element_rect(fill = "transparent"),
 plot.margin = unit(c(5.5, 70.5, 5.5, 5.5), "pt"),
 plot.title = element_text(hjust = 0.5, size = 30, colour = "black")) +
 ggtitle(bquote(.(winSize/1e6) * "-Mb Spearman's" ~ italic(r[s]) ~ "for" ~
 .(paste0(genomeName, collapse = "-, ")) * "-genome" ~
 .(region) ~ "regions (" * .(smoothing) * ")"))
ggsave(paste0(plotDir,
 "Spearman_correlation_matrix_", winName,
 "_log2ChIPcontrol_cMMb_MNase_DNAmeth_genes_TEsuperfams_in_",
 paste0(genomeName, collapse = "_"), "_genome_", region, "_", smoothing, "_qVals.pdf"),
 plot = ggObj, height = 20, width = 20)

ChIP-seq peak definition, processing and analysis
Numbered scripts provided below were run sequentially to define and process peaks in ChIP-seq signal.

Script: 1_identify_ChIPseq_peaks.sh:
#!/bin/bash

Call peaks in ChIP-seq signal using the ranger tool from PeakRanger v1.18
(http://ranger.sourceforge.net/manual1.18.html),
providing alignments for an ChIP input library as a background control

Usage:
./1_identify_ChIPseq_peaks.sh DMC1 DMC1_Rep1_ChIP input input_SRR6350669 0.001 0.01 200 48

ChIP=$1
ChIPLibName=$2
control=$3
controlLibName=$4
pval=$5
qval=$6
fragLen=$7
threads=$8

ChIPDir="/home/ajt200/analysis/wheat/"$ChIP"/snakemake_ChIPseq/mapped/both"
controlDir="/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/"$control"/snakemake_ChIPseq/mapped/both"
rangerDir="/home/ajt200/tools/PeakRanger-1.18/bin"

$rangerDir/peakranger ranger -d $ChIPDir/$ChIPLibName"_MappedOn_wheat_v1.0_lowXM_both_sort.bam" \
 -c $controlDir/$controlLibName"_MappedOn_wheat_v1.0_lowXM_both_sort.bam" \
 --format bam -o $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval \
 -p $pval -q $qval -l $fragLen --pad -t $threads --verbose

Script: 2_convert_detailsTOnarrowPeak_format.sh:
#!/bin/bash

Convert PeakRanger ranger peak loci details file into narrowPeak format
However, unlike in narrowPeak format, p-values and q-values are not -log10 transformed
-log10 transformation of these values is done by
the R script 3_narrowPeak_minuslog10PQ_sigVal_log2ChIPreadsControlreads.R

Usage:
./2_convert_detailsTOnarrowPeak_format.sh DMC1_Rep1_ChIP 0.001 0.01

ChIPLibName=$1
pval=$2
qval=$3

tail -n +24 $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_details" \
 > $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead"
grep -v 'chrUn' $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead" \
 > $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead_tmp1"
awk 'BEGIN {OFS="\t"}; {$1 = $1; print}' $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead_tmp1" \
 > $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead_tmp2"
awk 'BEGIN {OFS="\t"}; {print $1, $2, $3, $8, $8, $8, $8, $6, $7, $5, $9, $10}' $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead_tmp2" \
 > $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead_tmp3"
awk 'BEGIN {OFS="\t"}; {$4 = "."; $5 = "."; $6 = "."; $7 = "."; $10 = $10-$2; print}' $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead_tmp3" \
 > $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_Treads_Creads.narrowPeak.UntransformedPQ"
rm $ChIPLibName"_peaks_peakranger_ranger_p"$pval"_q"$qval"_noHead"*

Script: 3_narrowPeak_minuslog10PQ.R:
#!/applications/R/R-3.3.2/bin/Rscript

-log10 transform p-values and q-values for consistency with narrowPeak format conventions,
and to be used for sorting by decreasing values for downstream motif enrichment analyses
Define narrowPeak "signalValue" (column 7) as:
signalValue = log2((region ChIP reads+1)/(region control reads+1))
However, refrain from using this signalValue as it is unknown whether these read counts
are normalized by library size by the PeakRanger ranger tool

Usage:
./3_narrowPeak_minuslog10PQ.R DMC1_Rep1_ChIP 0.001 0.01

args <- commandArgs(trailingOnly = TRUE)
ChIPLibName <- args[1]
pval <- as.character(args[2])
qval <- as.character(args[3])

peaks <- read.table(paste0(ChIPLibName, "_peaks_peakranger_ranger_p",
 pval, "_q", qval,
 "_Treads_Creads.narrowPeak.UntransformedPQ"))
colnames(peaks) <- c("chr", "start0based", "end",
 "name", "score", "strand",
 "signalVal", "pValUntrans", "qValUntrans",
 "summit0based", "treads", "creads")
peaks <- cbind(peaks[,1:6], log2((peaks[,11]+1)/(peaks[,12]+1)),
 -log10(peaks[,8]), -log10(peaks[,9]), peaks[,10])
colnames(peaks) <- c("chr", "start0based", "end",
 "name", "score", "strand",
 "TreadsNormCreads", "pVal", "qVal",
 "summit0based")
peaks$pVal[which(!is.finite(peaks$pVal))] <- 323
peaks$qVal[which(!is.finite(peaks$qVal))] <- 323
head(peaks)
write.table(peaks, file = paste0(ChIPLibName, "_peaks_peakranger_ranger_p",
 pval, "_q", qval,
 "_log2TreadsNormCreads.narrowPeak"),
 col.names = F, row.names = F, sep = "\t", quote = F)

Script: 4_convert_narrowPeakToGRanges_for_regioneR.R:
#!/applications/R/R-3.3.2/bin/Rscript

Convert narrowPeak into GRanges object (with overlapping peaks merged)
to be provided as an input file for genomic feature overlap analyses
with the Bioconductor package regioneR

Usage:
./4_convert_narrowPeakToGRanges_for_regioneR.R DMC1_Rep1_ChIP 0.001 0.01

args <- commandArgs(trailingOnly = TRUE)
ChIPLibName <- args[1]
pval <- as.character(args[2])
qval <- as.character(args[3])

library(GenomicRanges)

rangerPeaks <- read.table(paste0(ChIPLibName,
 "_peaks_peakranger_ranger_p", pval,
 "_q", qval, "_TreadsNormCreads.narrowPeak"))
rangerPeaks <- cbind(rangerPeaks[,1:3],
 rangerPeaks[,7:10])
colnames(rangerPeaks) <- c("chr", "start0based", "end",
 "sigval", "pval", "qval", "summit0based")
rangerPeaks <- data.frame(chr = as.character(rangerPeaks$chr),
 start = as.integer(rangerPeaks$start0based+1),
 end = as.integer(rangerPeaks$end),
 sigval = as.numeric(rangerPeaks$sigval),
 pval = as.numeric(rangerPeaks$pval),
 qval = as.numeric(rangerPeaks$qval),
 summit0based = as.integer(rangerPeaks$summit0based))

Create GRanges objects sorted by decreasing -log10(qval)
rangerPeaksGR <- sort(GRanges(seqnames = rangerPeaks$chr,
 ranges = IRanges(start = rangerPeaks$start,
 end = rangerPeaks$end),
 strand = "*",
 sigval = rangerPeaks$sigval,
 pval = rangerPeaks$pval,
 qval = rangerPeaks$qval,
 summit0based = rangerPeaks$summit0based),
 by = ~ qval, decreasing = T)
Merge overlapping peaks
rangerPeaksGRmergedOverlaps <- reduce(rangerPeaksGR)
save(rangerPeaksGRmergedOverlaps,
 file = paste0(ChIPLibName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p", pval, "_q", qval, "_noMinWidth.RData"))

Script: 5_sort_peaks_by_minuslog10Q_for_weeder2.R:
#!/applications/R/R-3.3.2/bin/Rscript

Extract peaks within given wheat subgenome compartments (a.k.a. partitions)
E.g., "euchromatin" [R1 and R3 (distal)] or "heterochromatin" [R2 (interstitial) and C (proximal)]
Order compartmentalized peaks by decreasing -log10(FDR)
Define peak coordinates as peak summit-100 bp to peak summit+100 bp
so that all peaks have a common width of 201 bp for weeder2 motif enrichment analysis
Generate peak GFF3 and BED files (0-based start coordinates)

Usage:
./5_sort_peaks_by_minuslog10Q_for_weeder2.R DMC1_Rep1_ChIP 'euchromatin' 'A'

library(GenomicRanges)

args <- commandArgs(trailingOnly = T)
libName <- args[1]
region <- args[2]
genomeName <- args[3]

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]

regionDir <- paste0(region, "/")
system(paste0("[-d ", regionDir, "] || mkdir ", regionDir))
regionDir <- paste0(regionDir, "motifs_summits200bp/")
system(paste0("[-d ", regionDir, "] || mkdir ", regionDir))

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "centromeres") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "pericentromeres") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else {
 stop("region is not euchromatin, heterochromatin, centromeres, pericentromeres, or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "centromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "pericentromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else {
 stop("region is not euchromatin, heterochromatin, centromeres, pericentromeres, or genomewide")
}

Import peaks
peaks <- read.table(paste0(libName,
 "_peaks_peakranger_ranger_p0.001_q0.01_log2TreadsNormCreads.narrowPeak"))
peaks <- cbind(peaks[,1:3],
 peaks[,7:10])
colnames(peaks) <- c("chr", "start0based", "end",
 "sigval", "pval", "qval", "summit0based")
peaks <- data.frame(chr = peaks$chr,
 start = peaks$start0based+1,
 end = peaks$end,
 sigval = peaks$sigval,
 pval = peaks$pval,
 qval = peaks$qval,
 summit0based = peaks$summit0based)
peaksGR <- GRanges(seqnames = peaks$chr,
 ranges = IRanges(start = peaks$start,
 end = peaks$end),
 strand = "*",
 sigval = peaks$sigval,
 pval = peaks$pval,
 qval = peaks$qval,
 summit0based = peaks$summit0based)
peaksGR <- peaksGR[grep(genomeName,
 seqnames(peaksGR))@values]
Subset to include only those not overlapping masked region (e.g., heterochromatin)
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = peaksGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
peaksGR <- peaksGR[-subjectHits(mask_peaks_overlap)]
print("***********peaks***********")
print(peaksGR)

Sort by decreasing -log10(qval)
peaksGR <- sort(peaksGR, by = ~ qval, decreasing = T)

Define function to select randomly positioned loci of the same
width distribution as peaksGR
ranLocStartSelect <- function(coordinates, n) {
 sample(x = coordinates,
 size = n,
 replace = FALSE)
}

Disable scientific notation (e.g., 59000000 rather than 5.9e+07)
options(scipen = 100)

Define seed so that random selections are reproducible
set.seed(93750174)

Apply ranLocStartSelect() on a per-chromosome basis so that
ranLocGR contains the same number of loci per chromosome as peaksGR
chrs <- chrs[grep(genomeName, chrs)]
ranLocGR <- GRanges()
for(i in 1:length(chrs)) {
 peaksChrGR <- peaksGR[seqnames(peaksGR) == chrs[i]]
 regionChrGR <- regionGR[seqnames(regionGR) == chrs[i]]
 # Contract regionChrGR so that random loci do not overlap masked region
 # and do not extend beyond chromosome ends
 end(regionChrGR) <- end(regionChrGR)-max(width(peaksChrGR))
 ranLocChrStart <- ranLocStartSelect(coordinates = unlist(as.vector(ranges(regionChrGR))),
 n = length(peaksChrGR))
 ranLocChrIR <- IRanges(start = ranLocChrStart,
 width = width(peaksChrGR))
 ranLocChrGR <- GRanges(seqnames = chrs[i],
 ranges = ranLocChrIR,
 strand = "*")
 ranLocGR <- append(ranLocGR, ranLocChrGR)
}

Convert into GFF3 and BED formats
peaks
peaks <- data.frame(peaksGR)

peaksgff <- data.frame(chr = as.character(peaks$seqnames),
 source = as.character(rep(".")),
 feature = as.character(rep(paste0(libName, "_peak"))),
 start = as.integer(peaks$start),
 end = as.integer(peaks$end),
 qval = as.numeric(peaks$qval),
 strand = as.character(rep(".")),
 frame = as.character(rep(".")),
 summit0based = as.integer(peaks$summit0based))
write.table(peaksgff,
 file = paste0(libName,
 "_rangerPeaksGR_minuslog10Qsorted_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, ".gff"),
 row.names = F, col.names = F, quote = F, sep = "\t")

peaksbed <- data.frame(chr = as.character(peaks$seqnames),
 start = as.integer(peaks$start-1),
 end = as.integer(peaks$end),
 name = as.integer(1:length(peaks$seqnames)),
 qval = as.numeric(peaks$qval),
 summit0based = as.integer(peaks$summit0based))
write.table(peaksbed,
 file = paste0(libName,
 "_rangerPeaksGR_minuslog10Qsorted_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, ".bed"),
 row.names = F, col.names = F, quote = F, sep = "\t")

Function to determine rounded midpoints of GRanges loci and to include
flanking bases (midpoint-leftFlank bases, midpoint, midpoint+rightFlank bases)
locMidpointFlank <- function (x, leftFlank, rightFlank, ...)
{
 if (any(strand(x) == "*"))
 warning("'*' ranges were treated as '+'")
 on_plus <- which(strand(x) == "+" | strand(x) == "*")
 on_plus_start <- start(x)[on_plus]
 on_plus_end <- end(x)[on_plus]
 start(x)[on_plus] <- round(on_plus_start + ((on_plus_end - on_plus_start)/2)) - leftFlank
 end(x)[on_plus] <- round(on_plus_start + ((on_plus_end - on_plus_start)/2)) + rightFlank

 on_minus <- which(strand(x) == "-")
 on_minus_start <- end(x)[on_minus]
 on_minus_end <- start(x)[on_minus]
 start(x)[on_minus] <- round(on_minus_end + ((on_minus_start - on_minus_end)/2)) - rightFlank
 end(x)[on_minus] <- round(on_minus_end + ((on_minus_start - on_minus_end)/2)) + leftFlank

 x
}

Extract peak summits +/- 200 bp for use in weeder2 motif analysis
peaksGR_summits <- GRanges(seqnames = seqnames(peaksGR),
 ranges = IRanges(start = start(peaksGR)+peaksGR$summit0based,
 end = start(peaksGR)+peaksGR$summit0based),
 strand = "*",
 sigval = peaksGR$sigval,
 pval = peaksGR$pval,
 qval = peaksGR$qval,
 summit0based = peaksGR$summit0based)
peaksGR_summits200bp <- locMidpointFlank(x = peaksGR_summits,
 leftFlank = 100,
 rightFlank = 100)
peaks_summits200bp_bed <- data.frame(chr = seqnames(peaksGR_summits200bp),
 start = start(peaksGR_summits200bp)-1,
 end = end(peaksGR_summits200bp),
 name = paste0(as.character(seqnames(peaksGR)),
 ":",
 as.character(start(peaksGR)),
 "-",
 as.character(end(peaksGR))))
write.table(peaks_summits200bp_bed,
 file = paste0(region, "/motifs_summits200bp/", libName,
 "_peaks_minuslog10Qsorted_in_",
 genomeName, "genome_", region, "_summits200bp.bed"),
 row.names = F, col.names = F, quote = F, sep = "\t")

ranLoc
ranLoc <- data.frame(ranLocGR)

ranLocgff <- data.frame(chr = as.character(ranLoc$seqnames),
 source = as.character(rep(".")),
 feature = as.character(rep(paste0(libName, "_peak_ranLoc"))),
 start = as.integer(ranLoc$start),
 end = as.integer(ranLoc$end),
 score = as.character(rep(".")),
 strand = as.character(rep(".")),
 frame = as.character(rep(".")),
 attribute = as.character(rep(".")))
write.table(ranLocgff,
 file = paste0(libName,
 "_rangerPeaksGR_minuslog10Qsorted_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, "_randomLoci.gff"),
 row.names = F, col.names = F, quote = F, sep = "\t")

ranLocbed <- data.frame(chr = as.character(ranLoc$seqnames),
 start = as.integer(ranLoc$start-1),
 end = as.integer(ranLoc$end),
 name = as.integer(1:length(ranLoc$seqnames)),
 score = rep("NA", length(ranLoc$seqnames)),
 strand = as.character(ranLoc$strand))
write.table(ranLocbed,
 file = paste0(libName,
 "_rangerPeaksGR_minuslog10Qsorted_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, "_randomLoci.bed"),
 row.names = F, col.names = F, quote = F, sep = "\t")

Extract ranLoc summits +/- 200 bp for use in weeder2 motif analysis
ranLocGR_summits <- GRanges(seqnames = seqnames(ranLocGR),
 ranges = IRanges(start = start(ranLocGR)+round((end(ranLocGR)-start(ranLocGR))/2),
 end = start(ranLocGR)+round((end(ranLocGR)-start(ranLocGR))/2)),
 strand = "*")
ranLocGR_summits200bp <- locMidpointFlank(x = ranLocGR_summits,
 leftFlank = 100,
 rightFlank = 100)
ranLoc_summits200bp_bed <- data.frame(chr = seqnames(ranLocGR_summits200bp),
 start = start(ranLocGR_summits200bp)-1,
 end = end(ranLocGR_summits200bp),
 name = paste0(as.character(seqnames(ranLocGR)),
 ":",
 as.character(start(ranLocGR)),
 "-",
 as.character(end(ranLocGR))))
write.table(ranLoc_summits200bp_bed,
 file = paste0(region, "/motifs_summits200bp/", libName,
 "_peaks_minuslog10Qsorted_in_",
 genomeName, "genome_", region, "_summits200bp_randomLoci.bed"),
 row.names = F, col.names = F, quote = F, sep = "\t")

Script: 6_get_peaks_in_compartments_for_metaprofiling.R:
#!/applications/R/R-3.5.0/bin/Rscript

Extract peaks within given wheat subgenome compartments (a.k.a. partitions); e.g.,
1. R1 and R3 (distal or "euchromatin")
2. R2a and R2b (interstitial)
3. C (proximal)
4. heterochromatin (interstitial and proximal)
5. centromeres (defined by IWGSC (2018) Science 361 using CENH3 ChIP-seq data from Guo et al. (2016) PLOS Genet. 12)
Write in GFF and BED formats

Usage:
./6_get_peaks_in_compartments_for_metaprofiling.R DMC1_Rep1_ChIP 'distal' 'A'

args <- commandArgs(trailingOnly = T)
libName <- args[1]
region <- args[2]
genomeName <- args[3]

library(GenomicRanges)

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "distal") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "interstitial") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(chrPartitions$R1_R2a+1,
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrPartitions$R2b_R3-1)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "proximal") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "centromeres") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else {
 stop("region is not distal, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Define region to be masked out of analysis
if(region == "distal") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "interstitial") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 3),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2a_C+1,
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrPartitions$C_R2b-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "proximal") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "centromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else {
 stop("region is not distal, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Import peaks as GRanges object
load(paste0(libName, "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth.RData"))
peaksGR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
peaksGR <- peaksGR[grep(genomeName,
 seqnames(peaksGR))@values]
Subset to include only those not overlapping masked region (e.g., heterochromatin)
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = peaksGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
peaksGR <- peaksGR[-subjectHits(mask_peaks_overlap)]
strand(peaksGR) <- "*"
print("***********peaks***********")
print(peaksGR)

Define function to select randomly positioned loci of the same
width distribution as peaksGR
ranLocStartSelect <- function(coordinates, n) {
 sample(x = coordinates,
 size = n,
 replace = FALSE)
}

Disable scientific notation (e.g., 59000000 rather than 5.9e+07)
options(scipen = 100)

Define seed so that random selections are reproducible
set.seed(93750174)

Apply ranLocStartSelect() on a per-chromosome basis so that
ranLocGR contains the same number of loci per chromosome as peaksGR
chrs <- chrs[grep(genomeName, chrs)]
ranLocGR <- GRanges()
for(i in 1:length(chrs)) {
 peaksChrGR <- peaksGR[seqnames(peaksGR) == chrs[i]]
 regionChrGR <- regionGR[seqnames(regionGR) == chrs[i]]
 # Contract regionChrGR so that random loci do not overlap masked region
 # and do not extend beyond chromosome ends
 end(regionChrGR) <- end(regionChrGR)-max(width(peaksChrGR))
 ranLocChrStart <- ranLocStartSelect(coordinates = unlist(lapply(seq_along(regionChrGR), function(x) {
 start(regionChrGR[x]) : end(regionChrGR[x])
 })),
 n = length(peaksChrGR))
 ranLocChrIR <- IRanges(start = ranLocChrStart,
 width = width(peaksChrGR))
 ranLocChrGR <- GRanges(seqnames = chrs[i],
 ranges = ranLocChrIR,
 strand = "*")
 ranLocGR <- append(ranLocGR, ranLocChrGR)
}

Convert into GFF3 and BED formats
peaks
peaks <- data.frame(peaksGR)

peaksgff <- data.frame(chr = as.character(peaks$seqnames),
 source = as.character(rep(".")),
 feature = as.character(rep(paste0(libName, "_", region, "_peak"))),
 start = as.integer(peaks$start),
 end = as.integer(peaks$end),
 score = as.character(rep(".")),
 strand = as.character(rep(".")),
 frame = as.character(rep(".")),
 attribute = as.character(rep(".")))
write.table(peaksgff,
 file = paste0(libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, ".gff"),
 row.names = F, col.names = F, quote = F, sep = "\t")

peaksbed <- data.frame(chr = as.character(peaks$seqnames),
 start = as.integer(peaks$start-1),
 end = as.integer(peaks$end),
 name = as.integer(1:length(peaks$seqnames)),
 score = rep("NA", length(peaks$seqnames)),
 strand = as.character(peaks$strand))
write.table(peaksbed,
 file = paste0(libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, ".bed"),
 row.names = F, col.names = F, quote = F, sep = "\t")

ranLoc
ranLoc <- data.frame(ranLocGR)

ranLocgff <- data.frame(chr = as.character(ranLoc$seqnames),
 source = as.character(rep(".")),
 feature = as.character(rep(paste0(libName, "_", region, "_ranLoc"))),
 start = as.integer(ranLoc$start),
 end = as.integer(ranLoc$end),
 score = as.character(rep(".")),
 strand = as.character(rep(".")),
 frame = as.character(rep(".")),
 attribute = as.character(rep(".")))
write.table(ranLocgff,
 file = paste0(libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, "_randomLoci.gff"),
 row.names = F, col.names = F, quote = F, sep = "\t")

ranLocbed <- data.frame(chr = as.character(ranLoc$seqnames),
 start = as.integer(ranLoc$start-1),
 end = as.integer(ranLoc$end),
 name = as.integer(1:length(ranLoc$seqnames)),
 score = rep("NA", length(ranLoc$seqnames)),
 strand = as.character(ranLoc$strand))
write.table(ranLocbed,
 file = paste0(libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, "_randomLoci.bed"),
 row.names = F, col.names = F, quote = F, sep = "\t")

Scripts for evaluating ChIP-seq peak overlaps with other features are provided below.

Script: DMC1_peaks_overlap_permTests_otherFeatures.R:
#!/applications/R/R-3.3.2/bin/Rscript

Use permutation test function in regioneR to determine if
DMC1 ChIP-seq peaks overlap features of interest
(e.g., peaks in other ChIP-seq data sets , genes, TEs)
more or less than expected by chance

Usage:
/applications/R/R-3.3.2/bin/Rscript DMC1_peaks_overlap_permTests_otherFeatures.R DMC1_Rep1_ChIP 10000 'euchromatin' 'A'"

args <- commandArgs(trailingOnly = TRUE)
libNameChIP <- args[1]
perms <- as.numeric(args[2])
region <- args[3]
genomeName <- args[4]

library(regioneR)

plotDir <- "plots/"
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4AL
eftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else {
 stop("region is not euchromatin, heterochromatin or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else {
 stop("region is not euchromatin, heterochromatin or genomewide")
}

Import peaks as GRanges object
load(paste0(libNameChIP,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth.RData"))
peaksGR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
peaksGR <- peaksGR[grep(genomeName,
 seqnames(peaksGR))@values]
Subset to include only those not overlapping masked region (e.g., heterochromatin)
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = peaksGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
peaksGR <- peaksGR[-subjectHits(mask_peaks_overlap)]
strand(peaksGR) <- "*"
print("***********peaks***********")
print(peaksGR)

ASY1
load("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/ASY1_CS_Rep1_ChIP_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth.RData")
ASY1GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
ASY1GR <- ASY1GR[grep(genomeName,
 seqnames(ASY1GR))@values]
Subset to include only those not overlapping masked region (e.g., heterochromatin)
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = ASY1GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
ASY1GR <- ASY1GR[-subjectHits(mask_peaks_overlap)]
strand(ASY1GR) <- "*"
print("***********ASY1***********")
print(ASY1GR)

H3K4me3
load("/home/ajt200/analysis/wheat/H3K4me3/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K4me3_Rep1_ChIP_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K4me3GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K4me3GR <- H3K4me3GR[grep(genomeName,
 seqnames(H3K4me3GR))@values]
Subset to include only those not overlapping masked region
mask_H3K4me3_overlap <- findOverlaps(query = maskGR,
 subject = H3K4me3GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K4me3GR <- H3K4me3GR[-subjectHits(mask_H3K4me3_overlap)]
strand(H3K4me3GR) <- "*"
print("***********H3K4me3***********")
print(H3K4me3GR)

H3K9me2
load("/home/ajt200/analysis/wheat/H3K9me2/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K9me2_Rep1_ChIP_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K9me2GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K9me2GR <- H3K9me2GR[grep(genomeName,
 seqnames(H3K9me2GR))@values]
Subset to include only those not overlapping masked region
mask_H3K9me2_overlap <- findOverlaps(query = maskGR,
 subject = H3K9me2GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K9me2GR <- H3K9me2GR[-subjectHits(mask_H3K9me2_overlap)]
strand(H3K9me2GR) <- "*"
print("***********H3K9me2***********")
print(H3K9me2GR)

H3K27me1
load("/home/ajt200/analysis/wheat/H3K27me1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K27me1_Rep1_ChIP_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K27me1GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K27me1GR <- H3K27me1GR[grep(genomeName,
 seqnames(H3K27me1GR))@values]
Subset to include only those not overlapping masked region
mask_H3K27me1_overlap <- findOverlaps(query = maskGR,
 subject = H3K27me1GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K27me1GR <- H3K27me1GR[-subjectHits(mask_H3K27me1_overlap)]
strand(H3K27me1GR) <- "*"
print("***********H3K27me1***********")
print(H3K27me1GR)

H3K27me3
load("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/H3K27me3/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K27me3_ChIP_SRR6350666_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K27me3GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K27me3GR <- H3K27me3GR[grep(genomeName,
 seqnames(H3K27me3GR))@values]
Subset to include only those not overlapping masked region
mask_H3K27me3_overlap <- findOverlaps(query = maskGR,
 subject = H3K27me3GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K27me3GR <- H3K27me3GR[-subjectHits(mask_H3K27me3_overlap)]
strand(H3K27me3GR) <- "*"
print("***********H3K27me3***********")
print(H3K27me3GR)

H3K36me3
load("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/H3K36me3/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K36me3_ChIP_SRR6350670_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K36me3GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K36me3GR <- H3K36me3GR[grep(genomeName,
 seqnames(H3K36me3GR))@values]
Subset to include only those not overlapping masked region
mask_H3K36me3_overlap <- findOverlaps(query = maskGR,
 subject = H3K36me3GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K36me3GR <- H3K36me3GR[-subjectHits(mask_H3K36me3_overlap)]
strand(H3K36me3GR) <- "*"
print("***********H3K36me3***********")
print(H3K36me3GR)

H3K9ac
load("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/H3K9ac/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K9ac_ChIP_SRR6350667_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K9acGR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K9acGR <- H3K9acGR[grep(genomeName,
 seqnames(H3K9acGR))@values]
Subset to include only those not overlapping masked region
mask_H3K9ac_overlap <- findOverlaps(query = maskGR,
 subject = H3K9acGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K9acGR <- H3K9acGR[-subjectHits(mask_H3K9ac_overlap)]
strand(H3K9acGR) <- "*"
print("***********H3K9ac***********")
print(H3K9acGR)

H3K4me1
load("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/H3K4me1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K4me1_Rep1_ChIP_SRR8126618_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K4me1GR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K4me1GR <- H3K4me1GR[grep(genomeName,
 seqnames(H3K4me1GR))@values]
Subset to include only those not overlapping masked region
mask_H3K4me1_overlap <- findOverlaps(query = maskGR,
 subject = H3K4me1GR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K4me1GR <- H3K4me1GR[-subjectHits(mask_H3K4me1_overlap)]
strand(H3K4me1GR) <- "*"
print("***********H3K4me1***********")
print(H3K4me1GR)

H3K27ac
load("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/H3K27ac/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.05_q0.05/H3K27ac_Rep1_ChIP_SRR8126621_rangerPeaksGRmergedOverlaps_minuslog10_p0.05_q0.05_noMinWidth.RData")
H3K27acGR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
H3K27acGR <- H3K27acGR[grep(genomeName,
 seqnames(H3K27acGR))@values]
Subset to include only those not overlapping masked region
mask_H3K27ac_overlap <- findOverlaps(query = maskGR,
 subject = H3K27acGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
H3K27acGR <- H3K27acGR[-subjectHits(mask_H3K27ac_overlap)]
strand(H3K27acGR) <- "*"
print("***********H3K27ac***********")
print(H3K27acGR)

MNase
load("/home/ajt200/analysis/wheat/MNase/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/MNase_Rep1_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth.RData")
MNaseGR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
MNaseGR <- MNaseGR[grep(genomeName,
 seqnames(MNaseGR))@values]
Subset to include only those not overlapping masked region
mask_MNase_overlap <- findOverlaps(query = maskGR,
 subject = MNaseGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
MNaseGR <- MNaseGR[-subjectHits(mask_MNase_overlap)]
strand(MNaseGR) <- "*"
print("***********MNase***********")
print(MNaseGR)

genes
genes <- read.table("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA.gff3",
 colClasses = c(NA,
 rep("NULL", 2),
 rep(NA, 2),
 "NULL", NA, "NULL", NA))
colnames(genes) <- c("chr", "start", "end", "strand", "geneID")
genes <- genes[genes$chr != "chrUn",]
genesGR <- GRanges(seqnames = genes$chr,
 ranges = IRanges(start = genes$start,
 end = genes$end),
 strand = genes$strand)
genesGR <- genesGR[grep(genomeName,
 seqnames(genesGR))@values]
Subset to include only those not overlapping masked region
mask_genes_overlap <- findOverlaps(query = maskGR,
 subject = genesGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
genesGR <- genesGR[-subjectHits(mask_genes_overlap)]
Retain strand information until after obtaining promoters, etc.

Obtain 1000-bp gene promoters
promotersGR <- promoters(genesGR, upstream = 1000, downstream = 0)
strand(promotersGR) <- "*"
print(promotersGR)

Obtain regions immediately downstream of gene TSSs (TSS to TSS+499 bp)
TSSsGR <- promoters(genesGR, upstream = 0, downstream = 500)
strand(TSSsGR) <- "*"
print(TSSsGR)

Obtain regions immediately upstream of gene TTSs (TTS to TTS-499 bp)
source("/projects/ajt200/Rfunctions/TTSplus.R")
TTSsGR <- TTSplus(genesGR, upstream = 499, downstream = 0)
strand(TTSsGR) <- "*"
print(TTSsGR)

Obtain 1000-bp gene terminators
terminatorsGR <- TTSplus(genesGR, upstream = -1, downstream = 1000)
strand(terminatorsGR) <- "*"
print(terminatorsGR)

Remove strand information from genesGR
strand(genesGR) <- "*"
print(genesGR)

NLRs
NLRs <- read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/",
 "NLRs_Steuernagel_Wulff_2020_Plant_Physiol/NLR_genes_complete_representative_mRNA.gff3"),
 colClasses = c(NA,
 rep("NULL", 2),
 rep(NA, 2),
 "NULL", NA, "NULL", NA))
NLRs$V9 <- sub(pattern = "\\.\\d+", replacement = "",
 x = NLRs$V9)
colnames(NLRs) <- c("chr", "start", "end", "strand", "geneID")
NLRs <- NLRs[NLRs$chr != "chrUn",]
geneIDs <- sub(pattern = "\\.\\d+", replacement = "",
 x = genes$geneID)
NLRs <- NLRs[NLRs$geneID %in% geneIDs,]
NLRsGR <- GRanges(seqnames = NLRs$chr,
 ranges = IRanges(start = NLRs$start,
 end = NLRs$end),
 strand = NLRs$strand)
NLRsGR <- NLRsGR[grep(genomeName,
 seqnames(NLRsGR))@values]
Subset to include only those not overlapping masked region
mask_NLRs_overlap <- findOverlaps(query = maskGR,
 subject = NLRsGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
NLRsGR <- NLRsGR[-subjectHits(mask_NLRs_overlap)]
Retain strand information until after obtaining promoters, etc.

Obtain 1000-bp gene promoters
NLRpromotersGR <- promoters(NLRsGR, upstream = 1000, downstream = 0)
strand(NLRpromotersGR) <- "*"
print(NLRpromotersGR)

Obtain regions immediately downstream of gene TSSs (TSS to TSS+499 bp)
NLRTSSsGR <- promoters(NLRsGR, upstream = 0, downstream = 500)
strand(NLRTSSsGR) <- "*"
print(NLRTSSsGR)

Obtain regions immediately upstream of gene TTSs (TTS to TTS-499 bp)
source("/projects/ajt200/Rfunctions/TTSplus.R")
NLRTTSsGR <- TTSplus(NLRsGR, upstream = 499, downstream = 0)
strand(NLRTTSsGR) <- "*"
print(NLRTTSsGR)

Obtain 1000-bp gene terminators
NLRterminatorsGR <- TTSplus(NLRsGR, upstream = -1, downstream = 1000)
strand(NLRterminatorsGR) <- "*"
print(NLRterminatorsGR)

Remove strand information from NLRsGR
strand(NLRsGR) <- "*"
print(NLRsGR)

meio
Note: these two sets of meiotic genes share 271 common genes that are assigned to a chromosome
meio1 <- read.table("/home/ajt200/analysis/wheat/RNAseq_meiocyte_Alabdullah_Moore_2019_FrontPlantSci/Table_S4_meiotic_GO_genes.tsv",
 header = T, stringsAsFactors = F)$Gene.ID
meio2 <- read.table("/home/ajt200/analysis/wheat/RNAseq_meiocyte_Alabdullah_Moore_2019_FrontPlantSci/Table_S4_meiotic_gene_orthologs.tsv",
 header = T, sep = "\t", stringsAsFactors = F)$Gene.ID
meio <- unique(c(meio1, meio2))
print(length(meio))
#[1] 1063
meio <- genes[sub(pattern = "\\.\\d+", replacement = "",
 x = genes$geneID) %in% meio,]
print(dim(meio))
#[1] 1059 5
Redundant but does no harm
meio <- meio[meio$chr != "chrUn",]
print(dim(meio))
#[1] 1059 5
Convert into GRanges
meioGR <- GRanges(seqnames = meio$chr,
 ranges = IRanges(start = meio$start,
 end = meio$end),
 strand = meio$strand)
meioGR <- meioGR[grep(genomeName,
 seqnames(meioGR))@values]
Subset to include only those not overlapping masked region
mask_meio_overlap <- findOverlaps(query = maskGR,
 subject = meioGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
meioGR <- meioGR[-subjectHits(mask_meio_overlap)]
Retain strand information until after obtaining promoters, etc.

Obtain 1000-bp gene promoters
meiopromotersGR <- promoters(meioGR, upstream = 1000, downstream = 0)
strand(meiopromotersGR) <- "*"
print(meiopromotersGR)

Obtain regions immediately downstream of gene TSSs (TSS to TSS+499 bp)
meioTSSsGR <- promoters(meioGR, upstream = 0, downstream = 500)
strand(meioTSSsGR) <- "*"
print(meioTSSsGR)

Obtain regions immediately upstream of gene TTSs (TTS to TTS-499 bp)
source("/projects/ajt200/Rfunctions/TTSplus.R")
meioTTSsGR <- TTSplus(meioGR, upstream = 499, downstream = 0)
strand(meioTTSsGR) <- "*"
print(meioTTSsGR)

Obtain 1000-bp gene terminators
meioterminatorsGR <- TTSplus(meioGR, upstream = -1, downstream = 1000)
strand(meioterminatorsGR) <- "*"
print(meioterminatorsGR)

Remove strand information from meioGR
strand(meioGR) <- "*"
print(meioGR)

TEs
#TEdir <- "/home/ajt200/analysis/wheat/featureProfiles/TEs/"
#TEs <- read.table(paste0(TEdir,
"iwgsc_refseqv1.0_TransposableElements_2017Mar13.bed"),
header = F)
#TEsGR <- GRanges(seqnames = TEs$V1,
ranges = IRanges(start = TEs$V2+1,
end = TEs$V3),
strand = "*")
#TEsGR <- TEsGR[grep(genomeName,
seqnames(TEsGR))@values]
Subset to include only those not overlapping masked region
#mask_TEs_overlap <- findOverlaps(query = maskGR,
subject = TEsGR,
type = "any",
select = "all",
ignore.strand = TRUE)
#TEsGR <- TEsGR[-subjectHits(mask_TEs_overlap)]
#print(TEsGR)
#
#otherNames2 <- c(
"CACTA_DTC",
"Harbinger_DTH",
"hAT_DTA",
"Helitrons_DHH",
"Mariner_DTT",
"Mutator_DTM",
"Unclassified_class_2_DXX",
"Unclassified_with_TIRs_DTX",
"MITE_DMI",
"Copia_LTR_RLC",
"Gypsy_LTR_RLG",
"LINE_RIX",
"SINE_SIX",
"Unclassified_LTR_RLX",
"Unclassified_repeats_XXX"
)
#TEfamNames <- c(
"CACTA_DTC",
"Harbinger_DTH",
"hAT_DTA",
"Helitrons_DHH",
"Mariner_DTT",
"Mutator_DTM",
"Unclassified_class_2_DXX",
"Unclassified_with_TIRs_DTX",
"MITE_DMI",
"Copia_LTR_RLC",
"Gypsy_LTR_RLG",
"LINE_RIX",
"SINE_SIX",
"Unclassified_LTR_RLX",
"Unclassified_repeats_XXX"
)
#
#TEdir2 <- "/home/ajt200/analysis/wheat/featureProfiles/TEs/superfamilies/"
#
TEs
#othersGRL2 <- lapply(seq_along(TEfamNames), function(x) {
TEs <- read.table(paste0(TEdir,
"iwgsc_refseqv1.0_TransposableElements_2017Mar13_superfamily_",
TEfamNames[x], ".bed"), header = F)
TEsGRtmp <- GRanges(seqnames = TEs$V1,
ranges = IRanges(start = TEs$V2+1,
end = TEs$V3),
strand = "*")
TEsGRtmp <- TEsGRtmp[grep(genomeName,
seqnames(TEsGRtmp))@values]
Subset to include only those not overlapping masked region
mask_TEstmp_overlap <- findOverlaps(query = maskGR,
subject = TEsGRtmp,
type = "any",
select = "all",
ignore.strand = TRUE)
TEsGRtmp[-subjectHits(mask_TEstmp_overlap)]
#})

Create vector of other-feature names
otherNames <- c(
 "ASY1",
 "H3K4me3",
 "H3K9me2",
 "H3K27me1",
 "H3K27me3",
 "H3K36me3",
 "H3K9ac",
 "H3K4me1",
 "H3K27ac",
 "MNase",
 "genes",
 "promoters",
 "TSSsPlus500bp",
 "TTSsMinus500bp",
 "terminators",
 "NLRs",
 "NLRpromoters",
 "NLRTSSsPlus500bp",
 "NLRTTSsMinus500bp",
 "NLRterminators",
 "meio",
 "meiopromoters",
 "meioTSSsPlus500bp",
 "meioTTSsMinus500bp",
 "meioterminators"
)
Create GRangesList of other features
othersGRL <- c(
 "ASY1GR" = ASY1GR,
 "H3K4me3GR" = H3K4me3GR,
 "H3K9me2GR" = H3K9me2GR,
 "H3K27me1GR" = H3K27me1GR,
 "H3K27me3GR" = H3K27me3GR,
 "H3K36me3GR" = H3K36me3GR,
 "H3K9acGR" = H3K9acGR,
 "H3K4me1GR" = H3K4me1GR,
 "H3K27acGR" = H3K27acGR,
 "MNaseGR" = MNaseGR,
 "genesGR" = genesGR,
 "promotersGR" = promotersGR,
 "TSSsGR" = TSSsGR,
 "TTSsGR" = TTSsGR,
 "terminatorsGR" = terminatorsGR,
 "NLRsGR" = NLRsGR,
 "NLRpromotersGR" = NLRpromotersGR,
 "NLRTSSsGR" = NLRTSSsGR,
 "NLRTTSsGR" = NLRTTSsGR,
 "NLRterminatorsGR" = NLRterminatorsGR,
 "meioGR" = meioGR,
 "meiopromotersGR" = meiopromotersGR,
 "meioTSSsGR" = meioTSSsGR,
 "meioTTSsGR" = meioTTSsGR,
 "meioterminatorsGR" = meioterminatorsGR
)

Perform permutation tests with randomized regions generated on a per chromosome basis;
same per-chromosome number and size of regions in B as in A
set.seed(845934)
ptPeaksOtherPerChrom <- lapply(seq_along(othersGRL), function(x) {
 permTest(A = peaksGR,
 B = othersGRL[[x]],
 genome = genomeGR,
 mask = maskGR,
 randomize.function = randomizeRegions,
 allow.overlaps = TRUE,
 per.chromosome = TRUE,
 evaluate.function = numOverlaps,
 count.once = TRUE,
 ntimes = perms,
 mc.set.seed = FALSE,
 mc.cores = detectCores())
})

for(i in 1:length(ptPeaksOtherPerChrom)) {
 assign(paste0(otherNames[i]), ptPeaksOtherPerChrom[[i]])
}
save(ptPeaksOtherPerChrom,
 file = paste0("permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_vs_others_in_",
 genomeName, "genome_", region,
 ".RData"))

Summarise results in a table
featureName <- NULL
noOfFeatures <- NULL
expected <- NULL
observed <- NULL
pval <- NULL
zscore <- NULL
for(i in 1:length(ptPeaksOtherPerChrom)) {
 featureNamei <- print(otherNames[i])
 featureName <- c(featureName, featureNamei)
 noOfFeaturesi <- print(length(othersGRL[[i]]))
 noOfFeatures <- c(noOfFeatures, noOfFeaturesi)
 expectedi <- print(round(mean(ptPeaksOtherPerChrom[[i]]$numOverlaps$permuted)))
 expected <- c(expected, expectedi)
 observedi <- print(ptPeaksOtherPerChrom[[i]]$numOverlaps$observed)
 observed <- c(observed, observedi)
 pvali <- print(round(ptPeaksOtherPerChrom[[i]]$numOverlaps$pval, 4))
 pval <- c(pval, pvali)
 zscorei <- print(round(ptPeaksOtherPerChrom[[i]]$numOverlaps$zscore, 4))
 zscore <- c(zscore, zscorei)
}
ptPeaksOtherPerChromDataFrame <- cbind(featureName, noOfFeatures, expected, observed, pval, zscore)
colnames(ptPeaksOtherPerChromDataFrame) <- c("feature", "n", "expected", "observed", "pval", "zscore")
write.table(ptPeaksOtherPerChromDataFrame,
 file = paste0("permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_vs_others_in_",
 genomeName, "genome_", region,
 "_DataFrame.txt"),
 sep = "\t", quote = F, row.names = F)

plot graphical summaries of results
for(i in 1:length(ptPeaksOtherPerChrom)) {
 pdf(paste0(plotDir, otherNames[i],
 "_permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_in_",
 genomeName, "genome_", region,
 "_perChrom.pdf"),
 width = 10, height = 7)
 plot(ptPeaksOtherPerChrom[[i]], main = paste0(libNameChIP, " peaks vs ", otherNames[i]), xlab = "Number of overlaps", ylab = "Density")
 dev.off()

 # Using the localZScore() function, evaluate whether the association between peaks and other is highly dependent on their exact position
 lz_1kb <- localZScore(pt = ptPeaksOtherPerChrom[[i]], A = peaksGR, B = othersGRL[[i]],
 window = 1000, step = 50, count.once = TRUE)
 lz_10kb <- localZScore(pt = ptPeaksOtherPerChrom[[i]], A = peaksGR, B = othersGRL[[i]],
 window = 10000, step = 500, count.once = TRUE)
 lz_custom <- localZScore(pt = ptPeaksOtherPerChrom[[i]], A = peaksGR, B = othersGRL[[i]],
 window = 10*mean(width(peaksGR)), step = mean(width(peaksGR))/2, count.once = TRUE)
 win <- as.character(round((10*mean(width(peaksGR)))/1000))
 step <- as.character(round(mean(width(peaksGR))/2))
 pdf(paste0(plotDir, otherNames[i],
 "_localZscore_permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_in_",
 genomeName, "genome_", region,
 "_w1kb_s50bp_w10kb_s500bp_w",
 win ,"kb_s", step, "bp_perChrom.pdf"))
 par(mar=c(5.1, 4.1, 4.1, 2.1))
 plot(lz_1kb, main = paste0(libNameChIP, " peaks vs ", otherNames[i], " (1-kb shift)"))
 mtext(side = 3, at = 2, text = paste0(libNameChIP, " peaks vs ", otherNames[i], " (1-kb shift)"))
 plot(lz_10kb, main = paste0(libNameChIP, " peaks vs ", otherNames[i], " (10-kb shift)"))
 mtext(side = 3, at = 2, text = paste0(libNameChIP, " peaks vs ", otherNames[i], " (10-kb shift)"))
 plot(lz_custom, main = paste0(libNameChIP, " peaks vs ", otherNames[i], " (~", win, "-kb shift)"))
 mtext(side = 3, at = 2, text = paste0(libNameChIP, " peaks vs ", otherNames[i], " (~", win, "-kb shift)"))
 dev.off()
}

Script: DMC1_peaks_overlap_permTests_TEsuperfams.R:
#!/applications/R/R-3.3.2/bin/Rscript

Use permutation test function in regioneR to determine if
DMC1 ChIP-seq peaks overlap elements within each transposon superfamily
more or less than expected by chance

Usage:
/applications/R/R-3.3.2/bin/Rscript DMC1_peaks_overlap_permTests_TEsuperfams.R DMC1_Rep1_ChIP 10000 'euchromatin' 'A'"

args <- commandArgs(trailingOnly = TRUE)
libNameChIP <- args[1]
perms <- as.numeric(args[2])
region <- args[3]
genomeName <- args[4]

library(regioneR)

plotDir <- "plots/"
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4AL
eftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else {
 stop("region is not euchromatin, heterochromatin or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else {
 stop("region is not euchromatin, heterochromatin or genomewide")
}

Import peaks as GRanges object
load(paste0(libNameChIP,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth.RData"))
peaksGR <- rangerPeaksGRmergedOverlaps
rangerPeaksGRmergedOverlaps <- NULL
peaksGR <- peaksGR[grep(genomeName,
 seqnames(peaksGR))@values]
Subset to include only those not overlapping masked region (e.g., heterochromatin)
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = peaksGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
peaksGR <- peaksGR[-subjectHits(mask_peaks_overlap)]
strand(peaksGR) <- "*"
print("***********peaks***********")
print(peaksGR)

TE superfamilies
otherNames <- c(
 "CACTA_DTC",
 "Harbinger_DTH",
 "hAT_DTA",
 "Helitrons_DHH",
 "Mariner_DTT",
 "Mutator_DTM",
 "Unclassified_class_2_DXX",
 "Unclassified_with_TIRs_DTX",
 "Copia_LTR_RLC",
 "Gypsy_LTR_RLG",
 "LINE_RIX",
 "SINE_SIX",
 "Unclassified_LTR_RLX",
 "Unclassified_repeats_XXX"
)

TEdir <- "/home/ajt200/analysis/wheat/featureProfiles/TEs/superfamilies/"

othersGRL <- lapply(seq_along(otherNames), function(x) {
 TEs <- read.table(paste0(TEdir,
 "iwgsc_refseqv1.0_TransposableElements_2017Mar13_superfamily_",
 otherNames[x], ".bed"), header = F)
 TEsGRtmp <- GRanges(seqnames = TEs$V1,
 ranges = IRanges(start = TEs$V2+1,
 end = TEs$V3),
 strand = "*")
 TEsGRtmp <- TEsGRtmp[grep(genomeName,
 seqnames(TEsGRtmp))@values]
 # Subset to include only those not overlapping masked region
 mask_TEstmp_overlap <- findOverlaps(query = maskGR,
 subject = TEsGRtmp,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
 TEsGRtmp[-subjectHits(mask_TEstmp_overlap)]
})

Perform permutation tests with randomized regions generated on a per chromosome basis;
same per-chromosome number and size of regions in B as in A
set.seed(845934)
ptPeaksOtherPerChrom <- lapply(seq_along(othersGRL), function(x) {
 permTest(A = peaksGR,
 B = othersGRL[[x]],
 genome = genomeGR,
 mask = maskGR,
 randomize.function = randomizeRegions,
 allow.overlaps = TRUE,
 per.chromosome = TRUE,
 evaluate.function = numOverlaps,
 count.once = TRUE,
 ntimes = perms,
 mc.set.seed = FALSE,
 mc.cores = detectCores())
})

for(i in 1:length(ptPeaksOtherPerChrom)) {
 assign(paste0(otherNames[i]), ptPeaksOtherPerChrom[[i]])
}
save(ptPeaksOtherPerChrom,
 file = paste0("permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_vs_TEfams_in_",
 genomeName, "genome_", region,
 ".RData"))

Summarise results in a table
featureName <- NULL
noOfFeatures <- NULL
expected <- NULL
observed <- NULL
pval <- NULL
zscore <- NULL
for(i in 1:length(ptPeaksOtherPerChrom)) {
 featureNamei <- print(otherNames[i])
 featureName <- c(featureName, featureNamei)
 noOfFeaturesi <- print(length(othersGRL[[i]]))
 noOfFeatures <- c(noOfFeatures, noOfFeaturesi)
 expectedi <- print(round(mean(ptPeaksOtherPerChrom[[i]]$numOverlaps$permuted)))
 expected <- c(expected, expectedi)
 observedi <- print(ptPeaksOtherPerChrom[[i]]$numOverlaps$observed)
 observed <- c(observed, observedi)
 pvali <- print(round(ptPeaksOtherPerChrom[[i]]$numOverlaps$pval, 4))
 pval <- c(pval, pvali)
 zscorei <- print(round(ptPeaksOtherPerChrom[[i]]$numOverlaps$zscore, 4))
 zscore <- c(zscore, zscorei)
}
ptPeaksOtherPerChromDataFrame <- cbind(featureName, noOfFeatures, expected, observed, pval, zscore)
colnames(ptPeaksOtherPerChromDataFrame) <- c("feature", "n", "expected", "observed", "pval", "zscore")
write.table(ptPeaksOtherPerChromDataFrame,
 file = paste0("permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_vs_TEfams_in_",
 genomeName, "genome_", region,
 "_DataFrame.txt"),
 sep = "\t", quote = F, row.names = F)

plot graphical summaries of results
for(i in 1:length(ptPeaksOtherPerChrom)) {
 pdf(paste0(plotDir, otherNames[i],
 "_permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_in_",
 genomeName, "genome_", region,
 "_perChrom.pdf"),
 width = 10, height = 7)
 plot(ptPeaksOtherPerChrom[[i]], main = paste0(libNameChIP, " peaks vs ", otherNames[i]), xlab = "Number of overlaps", ylab = "Density")
 dev.off()

 # Using the localZScore() function, evaluate whether the association between peaks and other is highly dependent on their exact position
 lz_1kb <- localZScore(pt = ptPeaksOtherPerChrom[[i]], A = peaksGR, B = othersGRL[[i]],
 window = 1000, step = 50, count.once = TRUE)
 lz_10kb <- localZScore(pt = ptPeaksOtherPerChrom[[i]], A = peaksGR, B = othersGRL[[i]],
 window = 10000, step = 500, count.once = TRUE)
 lz_custom <- localZScore(pt = ptPeaksOtherPerChrom[[i]], A = peaksGR, B = othersGRL[[i]],
 window = 10*mean(width(peaksGR)), step = mean(width(peaksGR))/2, count.once = TRUE)
 win <- as.character(round((10*mean(width(peaksGR)))/1000))
 step <- as.character(round(mean(width(peaksGR))/2))
 pdf(paste0(plotDir, otherNames[i],
 "_localZscore_permTest_", as.character(perms), "perms_",
 libNameChIP, "_peaks_in_",
 genomeName, "genome_", region,
 "_w1kb_s50bp_w10kb_s500bp_w",
 win ,"kb_s", step, "bp_perChrom.pdf"))
 par(mar=c(5.1, 4.1, 4.1, 2.1))
 plot(lz_1kb, main = paste0(libNameChIP, " peaks vs ", otherNames[i], " (1-kb shift)"))
 mtext(side = 3, at = 2, text = paste0(libNameChIP, " peaks vs ", otherNames[i], " (1-kb shift)"))
 plot(lz_10kb, main = paste0(libNameChIP, " peaks vs ", otherNames[i], " (10-kb shift)"))
 mtext(side = 3, at = 2, text = paste0(libNameChIP, " peaks vs ", otherNames[i], " (10-kb shift)"))
 plot(lz_custom, main = paste0(libNameChIP, " peaks vs ", otherNames[i], " (~", win, "-kb shift)"))
 mtext(side = 3, at = 2, text = paste0(libNameChIP, " peaks vs ", otherNames[i], " (~", win, "-kb shift)"))
 dev.off()
}

Scripts for identifying enriched DNA sequence motifs among ChIP-seq peaks are provided below.

Script: motifs_summits200bp/bedtools_getfasta.sh:
#!/bin/bash

Extract nucleotide sequence at given coordinates (specified in a BED file)
in the genome in fasta format

Note that BED files use 0-based half-open coordinates;
start coordinates are 0-based and end coordinates are 1-based,
such that a feature START coordinate that cooresponds to the first base in
a chromosome is numbered 0, while a feature END coordinate that corresponds
to the second base in a chromosome is numbered 2 in the BED file:
see https://genome.ucsc.edu/FAQ/FAQformat.html#format1

Usage:
./bedtools_getfasta.sh wheat_v1.0.fa DMC1_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp

genome=$1
prefix=$2

/home/ajt200/anaconda3/bin/bedtools getfasta -fi ${genome} \
 -bed ${prefix}.bed \
 -fo ${prefix}.fa \
 -name

Script: w2frequency_maker_ranLoc_200bpseq.sh:
#!/bin/bash

Generate background oligonucleotide frequency files for Weeder v2.0 analyses,
based on the sequences of randomly positioned loci within the same
subgenomic compartments as the peak sets to be analyzed

Usage:
./w2frequency_maker_ranLoc_200bpseq.sh ASY1_CS_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp

prefix=$1
toolDir="/home/ajt200/tools/Weeder2.0"

[-d FreqFiles] || mkdir FreqFiles

$toolDir/w2frequency_maker ${prefix}_randomLoci.fa TA ds

mv *.freq FreqFiles

Script: motifs_summits200bp/w2_summits200bpseq.sh:
#!/bin/bash

Evaluate the top 10,000 compartmentalized DMC1 ChIP-seq peaks
in each subgenome (ordered by decreasing -log10(ranger-assigned FDR))
for over-representation of DNA sequence motifs using Weeder v2.0

Usage:
./w2_summits200bpseq.sh DMC1_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp

prefix=$1
toolDir="/home/ajt200/tools/Weeder2.0"

$toolDir/weeder2 -f ${prefix}.fa \
 -O TA -chipseq -top 10000

Script: split_pwm.py:
#!/home/ajt200/anaconda3/bin/python3

Parse weeder2-generated sequence of position weight matrices (PWMs)
and split into individual PWM files

Usage:
python3 ./split_pwm.py ./DMC1_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp.fa.matrix.w2

import os
from os import path
import sys

Set/get current working directory
#os.chdir("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/euchromatin/motifs_summits200bp/weeder2_bg_ranLoc_200bpseq/A/top10000")
print(os.getcwd())
#infile = open("./DMC1_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp.fa.matrix.w2")
#matrix_file = "./DMC1_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp.fa.matrix.w2"
infile = open(sys.argv[1])
matrix_file = sys.argv[1]

#path = matrix_file.split('/')[0]
path = sys.argv[1].split('/')[0]

print('\n' + "matrix file: " + matrix_file + '\n')
num_pwms = 'grep "^>" %s | wc -l' % (matrix_file)
print("Number of pwms in matrix file = ")
os.system(num_pwms)

Assume outfile is not open
opened = False

for line_matrix in infile:
 # If line begins with ">"
 if line_matrix[0] == ">":
 # Close the preceding outfile if it is open (see below and follow loop)
 if(opened):
 outfile.close()
 # Set opened to True to represent an opened outfile
 opened = True
 # Extract pwm name: remove ">", extract pwm string (replacing tab with underscore),
 # and remove any spaces or new lines
 # (e.g., ">MAT1 TACATTTTTT" will become "MAT1_TACATTTTTT")
 pwm_name = line_matrix[1:].rstrip().replace("\t", "_")
 print("pwm: " + pwm_name)
 print("Name of outfile: " + path + "/" + str(pwm_name) + ".pwm")
 outfile = open(path + "/" + str(pwm_name) + ".pwm", 'w')
 # Write the line to the file.
 # If the line begins with ">" (at position 0; i.e., is a PWM name),
 # a new outfile is created and opened, ready to be written to.
 # Subsequent lines (i.e., the rows of the PWMs containing base relative frequencies)
 # are each successively written to the outfile with each loop.
 # Only when the for-loop reaches a new line beginning with ">" is the outfile closed,
 # and a new outfile with a new name is created and opened.
 outfile.write(line_matrix)
outfile.close()
print("Finished")

Script: seqLogo.R:
#!/applications/R/R-3.5.0/bin/Rscript

Convert weeder2 position weight matrices (PWMs)
(that have been split into separate files using split_pwm.py)
into sequence logos using seqLogo Bioconductor package

Usage:
./seqLogo.R DMC1_Rep1_ChIP_peaks_minuslog10Qsorted_in_Agenome_euchromatin_summits200bp

args <- commandArgs(trailingOnly = T)
featurePrefix <- args[1]

library(seqLogo)

seqLogoDir <- "seqLogo/"
system(paste0("[-d ", seqLogoDir, "] || mkdir ", seqLogoDir))

Get number of PWMs in current working directory
num_pwm <- as.numeric(system("ls -1 MAT*.pwm | wc -l",
 intern = T))

Create individual motif logo files in EPS format
for(i in 1:num_pwm) {
 pwm_name <- system(paste0("ls MAT", i, "_*.pwm"),
 intern = T)
 pwm_name <- sub(pattern = ".pwm",
 replacement = "",
 x = pwm_name)
 pwm <- read.table(system(paste0("ls MAT", i, "_*.pwm"),
 intern = T),
 skip = 1, row.names = 1)
 print(head(pwm))
 postscript(paste0(seqLogoDir,
 "MAT", i, ".eps"))
 seqLogo(pwm, xfontsize = 60, yfontsize = 60)
 dev.off()
}

pwm_list <- lapply(1:num_pwm, function(i) {
 read.table(system(paste0("ls MAT", i, "_*.pwm"),
 intern = T),
 skip = 1, row.names = 1)
})

Edit seqLogo command to allow logos to be combined in one PDF
See https://support.bioconductor.org/p/35240/
mySeqLogo <- seqLogo::seqLogo

bad <- (sapply(body(mySeqLogo), "==", "grid.newpage()") |
 sapply(body(mySeqLogo), "==", "par(ask = FALSE)"))
body(mySeqLogo)[bad] <- NULL

pdf(paste0(seqLogoDir, featurePrefix,
 "_weeder2_motif_seqLogos.pdf"), height = 5*length(pwm_list), width = 10)
grid.newpage()
for(i in 1:length(pwm_list)) {
 pushViewport(viewport(x = 0.5,
 y = 1-(i/length(pwm_list))+((1/length(pwm_list))/2),
 width = 1, height = 1/length(pwm_list)))
 mySeqLogo(pwm_list[[i]],
 xaxis = F, yaxis = T,
 xfontsize = 60, yfontsize = 60)
 grid.text(sprintf("Motif %d", i),
 x = 0.6, y = 0.9,
 gp = gpar(fontsize = 60))
 popViewport()
}
dev.off()

A Snakemake workflow for creating a matrix of windowed coverage values within ChIP-seq peaks and in flanking regions is provided below.

Additionally, R scripts are provided for creating a matrix of windowed SNP (1000exomes_SNP_profiles_around_peaks_commandArgs.R) or transposable element (TE_superfamily_profiles_around_peaks_commandArgs.R) frequency values within ChIP-seq peaks and in flanking regions.

Requirements:
· Installation of Snakemake and optionally conda
· Snakefile in this repository. This contains "rules" that each execute a step in the workflow
· config.yaml in this repository. This contains customizable parameters including reference, which should be the reference genome file name without the .fa extension (e.g., wheat_v1.0)
· Optional: environment.yaml in scripts/read_alignment/snakemake_ChIPseq_MNaseseq/, used to create the software environment if conda is used
· If conda is not used, deepTools must be installed and specified in the PATH variable
· Peak coordinates and, separately, random locus coordinates in BED6 format: column 1 = chromosome ID; column 2 = 0-based start coordinates; column 3 = 1-based end coordinates; column 4 = sequential or otherwise unique numbers (this speeds up computation; see comment from dpryan79 on 13/09/2018 under GitHub issue computeMatrix has problem with multi processors #760]); column 5 = fill with NA; column 6 = fill with *
· A bigWig coverage file (generated using deepTools bamCoverage as part of the snakemake_ChIPseq_MNaseseq/ pipeline), to be used for calculating coverage profiles around peaks and random loci (e.g., DMC1_Rep1_ChIP_MappedOn_wheat_v1.0_lowXM_both_sort_norm.bw)
· A variant call format (VCF) file containing ~3 million exome sequencing-derived SNP sites (all.GP08_mm75_het3_publication01142019.vcf), from He et al. (2019) Nat. Genet. 51. DOI: 10.1038/s41588-019-0382-2
· Transposable elements (TEs) from the IWGSC RefSeq v1.0 annotation, with genomic coordinates for elements in each of 14 superfamilies in BED6 format, including strand information (one BED6-format file for each TE superfamily and for each set of randomly positioned loci)
Creating the conda environment:

conda env create --file environment.yaml --name ChIPseq_mapping

Usage:

In a Unix shell, navigate to the base directory containing Snakefile and config.yaml. Then run the following commands in the base directory (--cores should match the THREADS parameter in config.yaml):

conda activate ChIPseq_mapping
snakemake -p --cores 48
conda deactivate

Script: config.yaml:
THREADS: 48
SAMPLE: ["DMC1_Rep1_ChIP"]
FEATURES:
 genomeRegionName: ["Agenome_euchromatin",
 "Bgenome_euchromatin",
 "Dgenome_euchromatin",
 "Agenome_heterochromatin",
 "Bgenome_heterochromatin",
 "Dgenome_heterochromatin"]
MAPPING:
 mode: "both"
 reference: "data/index/wheat_v1.0"
COVERAGE:
 bodyLength: 400
 startLabel: "Start"
 endLabel: "End"
 upstream: 2000
 downstream: 2000
 flankName: "2kb"
 binSize: 20
 binName: "20bp"
 sortRegions: "keep"

Script: Snakefile:
Snakemake workflow for creating a matrix of windowed
coverage values for genomic features and flanking regions

Usage ("--cores" should match the "THREADS" parameter in config.yaml, and reflect available threads):
conda activate ChIPseq_mapping
snakemake -p --cores 48
conda deactivate

import os

Specify config file parameters
configfile: "config.yaml"
sample = config["SAMPLE"]
genomeRegionName = config["FEATURES"]["genomeRegionName"]
reference = config["MAPPING"]["reference"]
refbase = os.path.basename(reference)
mode = config["MAPPING"]["mode"]
flankName = config["COVERAGE"]["flankName"]
binName = config["COVERAGE"]["binName"]

Specify the desired end target file(s)
rule all:
 input:
 expand("matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.tab",
 sample = sample,
 refbase = refbase,
 mode = mode,
 genomeRegionName = genomeRegionName,
 binName = binName,
 flankName = flankName),
 expand("matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.tab",
 sample = sample,
 refbase = refbase,
 mode = mode,
 genomeRegionName = genomeRegionName,
 binName = binName,
 flankName = flankName)

Use computeMatrix function from deepTools to create a matrix of
coverage values for genomic features and flanking regions, and
for equivalent random loci and flanking regions
rule compute_matrix_genomeRegionFeatures:
 """Create matrices of coverage values for genomic features and random loci"""
 input:
 featuresFile = "/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/DMC1_Rep1_ChIP_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_{genomeRegionName}.bed",
 ranLocFile = "/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/DMC1_Rep1_ChIP_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_{genomeRegionName}_randomLoci.bed",
 BW = "../{mode}/bw/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm.bw"
 output:
 featuresGZ = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.gz",
 featuresTAB = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.tab",
 ranLocGZ = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.gz",
 ranLocTAB = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.tab"
 params:
 bodyLength = config["COVERAGE"]["bodyLength"],
 startLabel = config["COVERAGE"]["startLabel"],
 endLabel = config["COVERAGE"]["endLabel"],
 upstream = config["COVERAGE"]["upstream"],
 downstream = config["COVERAGE"]["downstream"],
 binSize = config["COVERAGE"]["binSize"],
 sortRegions = config["COVERAGE"]["sortRegions"]
 log:
 features = "logs/computeMatrix/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.log",
 ranLoc = "logs/computeMatrix/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_DMC1_peaks_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.log"
 threads:
 config["THREADS"]
 shell:
 "(computeMatrix scale-regions"
 " --regionsFileName {input.featuresFile}"
 " --scoreFileName {input.BW}"
 " --outFileName {output.featuresGZ}"
 " --outFileNameMatrix {output.featuresTAB}"
 " --regionBodyLength {params.bodyLength}"
 " --startLabel {params.startLabel}"
 " --endLabel {params.endLabel}"
 " --upstream {params.upstream}"
 " --downstream {params.downstream}"
 " --binSize {params.binSize}"
 " --sortRegions {params.sortRegions}"
 " --numberOfProcessors {threads}) 2> {log.features}; "
 "(computeMatrix scale-regions"
 " --regionsFileName {input.ranLocFile}"
 " --scoreFileName {input.BW}"
 " --outFileName {output.ranLocGZ}"
 " --outFileNameMatrix {output.ranLocTAB}"
 " --regionBodyLength {params.bodyLength}"
 " --startLabel {params.startLabel}"
 " --endLabel {params.endLabel}"
 " --upstream {params.upstream}"
 " --downstream {params.downstream}"
 " --binSize {params.binSize}"
 " --sortRegions {params.sortRegions}"
 " --numberOfProcessors {threads}) 2> {log.ranLoc}"

Script: 1000exomes_SNP_profiles_around_peaks_commandArgs.R:
#!/applications/R/R-3.4.0/bin/Rscript

Profile SNP frequency around compartmentalised peaks and random loci

Wheat subgenome compartments (a.k.a. partitions):
1. R1 and R3 (distal or "euchromatin")
2. R2a and R2b (interstitial)
3. C (proximal)
4. heterochromatin (interstitial and proximal)
5. centromeres (defined by IWGSC (2018) Science 361 using CENH3 ChIP-seq data from Guo et al. (2016) PLOS Genet. 12)

Usage:
/applications/R/R-3.4.0/bin/Rscript ./1000exomes_SNP_profiles_around_peaks_commandArgs.R DMC1_Rep1_ChIP euchromatin A 400 2000 2kb 20

#libName <- "DMC1_Rep1_ChIP"
#region <- "euchromatin"
#genomeName <- "A"
#bodyLength <- 400
#flankSize <- 2000
#flankName <- "2kb"
#winSize <- 20

args <- commandArgs(trailingOnly = T)
libName <- args[1]
region <- args[2]
genomeName <- args[3]
bodyLength <- as.numeric(args[4])
flankSize <- as.numeric(args[5])
flankName <- as.character(args[6])
winSize <- as.numeric(args[7])

library(EnrichedHeatmap)

matDir <- paste0("matrices/")
system(paste0("[-d ", matDir, "] || mkdir ", matDir))

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "interstitial") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(chrPartitions$R1_R2a+1,
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrPartitions$R2b_R3-1)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "proximal") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "centromeres") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else {
 stop("region is not euchromatin, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "interstitial") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 3),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2a_C+1,
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrPartitions$C_R2b-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "proximal") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "centromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else {
 stop("region is not euchromatin, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Load peaks in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
peaks <- read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, ".bed"),
 header = F)
colnames(peaks) <- c("chr", "start", "end", "name", "score", "strand")
peaksGR <- GRanges(seqnames = peaks$chr,
 ranges = IRanges(start = peaks$start+1,
 end = peaks$end),
 strand = peaks$strand,
 number = peaks$name)
peaksGR <- peaksGR[seqnames(peaksGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = peaksGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_peaks_overlap) > 0) {
 peaksGR <- peaksGR[-subjectHits(mask_peaks_overlap)]
}
Load ranLoc in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
ranLoc <- read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, "_randomLoci.bed"),
 header = F)
colnames(ranLoc) <- c("chr", "start", "end", "name", "score", "strand")
ranLocGR <- GRanges(seqnames = ranLoc$chr,
 ranges = IRanges(start = ranLoc$start+1,
 end = ranLoc$end),
 strand = ranLoc$strand,
 number = ranLoc$name)
ranLocGR <- ranLocGR[seqnames(ranLocGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_ranLoc_overlap <- findOverlaps(query = maskGR,
 subject = ranLocGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_ranLoc_overlap) > 0) {
 ranLocGR <- ranLocGR[-subjectHits(mask_ranLoc_overlap)]
}

Load exome sequencing-derived SNPs from He et al. (2019) Nat. Genet. 51. DOI: 10.1038/s41588-019-0382-2
~3 million SNP sites, available at: http://wheatgenomics.plantpath.ksu.edu/1000EC/
SNPs <- read.table("all.GP08_mm75_het3_publication01142019.vcf",
 header = F, skip = 31,
 colClasses = c(rep(NA, 2),
 "NULL",
 rep(NA, 2),
 rep("NULL", 2),
 NA,
 rep("NULL", 812)))
colnames(SNPs) <- c("chr", "pos", "ref", "alt", "info")
all exome SNPs
SNPsGR <- GRanges(seqnames = SNPs$chr,
 ranges = IRanges(start = SNPs$pos,
 end = SNPs$pos),
 strand = "*",
 coverage = rep(1, dim(SNPs)[1]))

Define matrix and column mean frequency outfile (mean profiles)
outDF <- list(paste0(matDir,
 "exome_all_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, ".tab"),
 paste0(matDir,
 "exome_all_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, ".tab"))
outDFcolMeans <- list(paste0(matDir,
 "exome_all_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"),
 paste0(matDir,
 "exome_all_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"))

Function to create SNP frequency matrices for
feature loci and random loci (incl. flanking regions)
and to calculate mean profiles across all feature loci and random loci
covMatrix <- function(signal,
 feature,
 ranLoc,
 featureSize,
 flankSize,
 winSize,
 outDF,
 outDFcolMeans) {
 # feature loci
 set.seed(2840)
 feature_smoothed <- normalizeToMatrix(signal = signal,
 target = feature,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("feature_smoothed")
 print(feature_smoothed)
 print("feature_smoothed rows = ")
 print(length(feature_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 feature_smoothed_DF <- data.frame(feature_smoothed)
 feature_smoothed_DF_colMeans <- as.vector(colMeans(feature_smoothed_DF,
 na.rm = T))
 write.table(feature_smoothed_DF,
 file = outDF[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(feature_smoothed_DF_colMeans,
 file = outDFcolMeans[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)

 # random loci
 set.seed(8472)
 ranLoc_smoothed <- normalizeToMatrix(signal = signal,
 target = ranLoc,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("ranLoc_smoothed")
 print(ranLoc_smoothed)
 print("ranLoc_smoothed rows = ")
 print(length(ranLoc_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 ranLoc_smoothed_DF <- data.frame(ranLoc_smoothed)
 ranLoc_smoothed_DF_colMeans <- as.vector(colMeans(ranLoc_smoothed_DF,
 na.rm = T))
 write.table(ranLoc_smoothed_DF,
 file = outDF[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(ranLoc_smoothed_DF_colMeans,
 file = outDFcolMeans[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
}

Run covMatrix() function on each coverage GRanges object to obtain matrices
containing frequency values around target and random loci
covMatrix(signal = SNPsGR,
 feature = peaksGR,
 ranLoc = ranLocGR,
 featureSize = bodyLength,
 flankSize = flankSize,
 winSize = winSize,
 outDF = outDF,
 outDFcolMeans = outDFcolMeans)
print(paste0(genomeName, "-genome ", region, " ", libName, " peaks exome all SNP frequency profile calculation complete"))

transition
SNPs_transition <- SNPs[(SNPs$ref == "A" | SNPs$ref == "G") & (SNPs$alt == "G" | SNPs$alt == "A") |
 (SNPs$ref == "C" | SNPs$ref == "T") & (SNPs$alt == "T" | SNPs$alt == "C"),]
SNPsGR <- GRanges(seqnames = SNPs_transition$chr,
 ranges = IRanges(start = SNPs_transition$pos,
 end = SNPs_transition$pos),
 strand = "*",
 coverage = rep(1, dim(SNPs_transition)[1]))

Define matrix and column mean frequency outfile (mean profiles)
outDF <- list(paste0(matDir,
 "exome_transition_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, ".tab"),
 paste0(matDir,
 "exome_transition_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, ".tab"))
outDFcolMeans <- list(paste0(matDir,
 "exome_transition_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"),
 paste0(matDir,
 "exome_transition_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"))

Run covMatrix() function on each coverage GRanges object to obtain matrices
containing frequency values around target and random loci
covMatrix(signal = SNPsGR,
 feature = peaksGR,
 ranLoc = ranLocGR,
 featureSize = bodyLength,
 flankSize = flankSize,
 winSize = winSize,
 outDF = outDF,
 outDFcolMeans = outDFcolMeans)
print(paste0(genomeName, "-genome ", region, " ", libName, " peaks exome transition SNP frequency profile calculation complete"))

transversion
SNPs_transversion <- SNPs[(SNPs$ref == "A" | SNPs$ref == "G") & (SNPs$alt == "C" | SNPs$alt == "T") |
 (SNPs$ref == "C" | SNPs$ref == "T") & (SNPs$alt == "A" | SNPs$alt == "G"),]
stopifnot((dim(SNPs_transition)[1] +
 dim(SNPs_transversion)[1]) ==
 dim(SNPs)[1])
SNPsGR <- GRanges(seqnames = SNPs_transversion$chr,
 ranges = IRanges(start = SNPs_transversion$pos,
 end = SNPs_transversion$pos),
 strand = "*",
 coverage = rep(1, dim(SNPs_transversion)[1]))

Define matrix and column mean frequency outfile (mean profiles)
outDF <- list(paste0(matDir,
 "exome_transversion_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, ".tab"),
 paste0(matDir,
 "exome_transversion_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, ".tab"))
outDFcolMeans <- list(paste0(matDir,
 "exome_transversion_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"),
 paste0(matDir,
 "exome_transversion_SNPs_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"))

Run covMatrix() function on each coverage GRanges object to obtain matrices
containing frequency values around target and random loci
covMatrix(signal = SNPsGR,
 feature = peaksGR,
 ranLoc = ranLocGR,
 featureSize = bodyLength,
 flankSize = flankSize,
 winSize = winSize,
 outDF = outDF,
 outDFcolMeans = outDFcolMeans)
print(paste0(genomeName, "-genome ", region, " ", libName, " peaks exome transversion SNP frequency profile calculation complete"))

Script: TE_superfamily_profiles_around_peaks_commandArgs.R:
#!/applications/R/R-3.4.0/bin/Rscript

Profile TE frequency around compartmentalised peaks and random loci

Wheat subgenome compartments (a.k.a. partitions):
1. R1 and R3 (distal or "euchromatin")
2. R2a and R2b (interstitial)
3. C (proximal)
4. heterochromatin (interstitial and proximal)
5. centromeres (defined by IWGSC (2018) Science 361 using CENH3 ChIP-seq data from Guo et al. (2016) PLOS Genet. 12)

Usage:
/applications/R/R-3.4.0/bin/Rscript ./TE_superfamily_profiles_around_peaks_commandArgs.R DMC1_Rep1_ChIP euchromatin A 400 2000 2kb 20

#libName <- "DMC1_Rep1_ChIP"
#region <- "euchromatin"
#genomeName <- "A"
#bodyLength <- 400
#flankSize <- 2000
#flankName <- "2kb"
#winSize <- 20

args <- commandArgs(trailingOnly = T)
libName <- args[1]
region <- args[2]
genomeName <- args[3]
bodyLength <- as.numeric(args[4])
flankSize <- as.numeric(args[5])
flankName <- as.character(args[6])
winSize <- as.numeric(args[7])

library(EnrichedHeatmap)
library(parallel)

matDir <- paste0("matrices/")
system(paste0("[-d ", matDir, "] || mkdir ", matDir))

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(genomeName,
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "interstitial") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(chrPartitions$R1_R2a+1,
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrPartitions$R2b_R3-1)),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "proximal") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "centromeres") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(genomeName,
 seqnames(regionGR))@values]
} else {
 stop("region is not euchromatin, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "interstitial") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 3),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2a_C+1,
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrPartitions$C_R2b-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "proximal") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "centromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(genomeName,
 seqnames(maskGR))@values]
} else {
 stop("region is not euchromatin, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Load peaks in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
peaks <- read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, ".bed"),
 header = F)
colnames(peaks) <- c("chr", "start", "end", "name", "score", "strand")
peaksGR <- GRanges(seqnames = peaks$chr,
 ranges = IRanges(start = peaks$start+1,
 end = peaks$end),
 strand = peaks$strand,
 number = peaks$name)
peaksGR <- peaksGR[seqnames(peaksGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_peaks_overlap <- findOverlaps(query = maskGR,
 subject = peaksGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_peaks_overlap) > 0) {
 peaksGR <- peaksGR[-subjectHits(mask_peaks_overlap)]
}
Load ranLoc in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
ranLoc <- read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 genomeName, "genome_", region, "_randomLoci.bed"),
 header = F)
colnames(ranLoc) <- c("chr", "start", "end", "name", "score", "strand")
ranLocGR <- GRanges(seqnames = ranLoc$chr,
 ranges = IRanges(start = ranLoc$start+1,
 end = ranLoc$end),
 strand = ranLoc$strand,
 number = ranLoc$name)
ranLocGR <- ranLocGR[seqnames(ranLocGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_ranLoc_overlap <- findOverlaps(query = maskGR,
 subject = ranLocGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_ranLoc_overlap) > 0) {
 ranLocGR <- ranLocGR[-subjectHits(mask_ranLoc_overlap)]
}

Load TE superfamily BED files
superfamCode <- c("RLG",
 "RLC",
 "RLX",
 "RIX",
 "SIX",
 "DTC",
 "DTM",
 "DTX",
 "DTH",
 "DTT",
 "DXX",
 "DTA",
 "DHH",
 "XXX")
superfamName <- c("Gypsy_LTR",
 "Copia_LTR",
 "Unclassified_LTR",
 "LINE",
 "SINE",
 "CACTA",
 "Mutator",
 "Unclassified_with_TIRs",
 "Harbinger",
 "Mariner",
 "Unclassified_class_2",
 "hAT",
 "Helitrons",
 "Unclassified_repeats")

superfamListGR <- mclapply(seq_along(superfamName), function(x) {
 superfam <- read.table(paste0("iwgsc_refseqv1.0_TransposableElements_2017Mar13_superfamily_",
 superfamName[x], "_", superfamCode[x], ".bed"),
 header = F)
 colnames(superfam) <- c("chr", "start", "end", "name", "score", "strand")
 superfamGR <- GRanges(seqnames = superfam$chr,
 ranges = IRanges(start = superfam$start+1,
 end = superfam$end),
 strand = "*",
 number = superfam$name,
 coverage = rep(1, dim(superfam)[1]))
 superfamGR <- superfamGR[seqnames(superfamGR) != "chrUn"]
 # Subset to include only those not overlapping masked region
 mask_superfam_overlap <- findOverlaps(query = maskGR,
 subject = superfamGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
 if(length(mask_superfam_overlap) > 0) {
 superfamGR <- superfamGR[-subjectHits(mask_superfam_overlap)]
 }
 superfamGR
}, mc.cores = length(superfamName))

Define matrix and column mean outfiles
outDF <- lapply(seq_along(superfamName), function(x) {
 list(paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, ".tab"),
 paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, ".tab"))
})
outDFcolMeans <- lapply(seq_along(superfamName), function(x) {
 list(paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"),
 paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_DMC1_peaks_in_", genomeName, "genome_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"))
})

Function to create TE frequency matrices for
feature loci and random loci (incl. flanking regions)
and to calculate mean profiles across all feature loci and random loci
covMatrix <- function(signal,
 feature,
 ranLoc,
 featureSize,
 flankSize,
 winSize,
 outDF,
 outDFcolMeans) {
 # feature loci
 set.seed(2840)
 feature_smoothed <- normalizeToMatrix(signal = signal,
 target = feature,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("feature_smoothed")
 print(feature_smoothed)
 print("feature_smoothed rows = ")
 print(length(feature_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 feature_smoothed_DF <- data.frame(feature_smoothed)
 feature_smoothed_DF_colMeans <- as.vector(colMeans(feature_smoothed_DF,
 na.rm = T))
 write.table(feature_smoothed_DF,
 file = outDF[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(feature_smoothed_DF_colMeans,
 file = outDFcolMeans[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)

 # random loci
 set.seed(8472)
 ranLoc_smoothed <- normalizeToMatrix(signal = signal,
 target = ranLoc,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("ranLoc_smoothed")
 print(ranLoc_smoothed)
 print("ranLoc_smoothed rows = ")
 print(length(ranLoc_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 ranLoc_smoothed_DF <- data.frame(ranLoc_smoothed)
 ranLoc_smoothed_DF_colMeans <- as.vector(colMeans(ranLoc_smoothed_DF,
 na.rm = T))
 write.table(ranLoc_smoothed_DF,
 file = outDF[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(ranLoc_smoothed_DF_colMeans,
 file = outDFcolMeans[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
}

Run covMatrix() function on each feature GRanges object to obtain matrices
containing normalised feature frequency values around target and random loci
mclapply(seq_along(superfamName), function(x) {
 covMatrix(signal = superfamListGR[[x]],
 feature = peaksGR,
 ranLoc = ranLocGR,
 featureSize = bodyLength,
 flankSize = flankSize,
 winSize = winSize,
 outDF = outDF[[x]],
 outDFcolMeans = outDFcolMeans[[x]])
 print(paste0(superfamName[x], "_", superfamCode[x],
 "_around_DMC1_peaks_in_", genomeName, "genome_", region,
 " profile calculation complete"))
}, mc.cores = length(superfamName))

The R script group_peaks_into_cMMb_quantiles.R was used to divide ChIP-seq peaks into four groups corresponding to those in the 100th–75th (Quantile 1), 75th–50th (Quantile 2), 50th–25th (Quantile 3) and 25th–0th (Quantile 4) percentiles with regard to their mean crossover recombination rate (cM/Mb) values, derived from a Chinese Spring × Renan genetic map. This script extends ChIP-seq peak boundaries by 1 kb on each side, and computes mean cM/Mb values within these intervals using previously calculated mean recombination rates in 10-Mb sliding windows with a 1-Mb step (iwgsc_refseqv1.0_recombination_rate.txt, available as part of the IWGSC RefSeq v1.0 annotation). group_peaks_into_cMMb_quantiles.R requires peak coordinates and, separately, random locus coordinates in BED6 format: column 1 = chromosome ID; column 2 = 0-based start coordinate; column 3 = 1-based end coordinates; column 4 = sequential or otherwise unique numbers (this will speed up computation; see comment from dpryan79 on 13/09/2018 under GitHub issue computeMatrix has problem with multi processors #760]); column 5 = fill with NA; column 6 = fill with *.

Script: group_peaks_into_cMMb_quantiles.R:
#!/applications/R/R-3.5.0/bin/Rscript

Divide ChIP-seq peaks into four groups corresponding to those within the
100th--75th (Quantile 1), 75th--50th (Quantile 2),
50th--25th (Quantile 3) and 25th--0th (Quantile 4) percentiles
with regard to their mean crossover recombination rate (cM/Mb) values,
derived from a Chinese Spring × Renan genetic map.
#
This script extends ChIP-seq peak boundaries by 1 kb on each side,
and computes mean cM/Mb values within these intervals using previously
calculated mean recombination rates in 10-Mb sliding windows with a 1-Mb step
(iwgsc_refseqv1.0_recombination_rate.txt), available as part of the IWGSC RefSeq v1.0 annotation:
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/
#
It requires peak coordinates and, separately, random locus coordinates in BED6 format:
column 1 = chromosome ID; column 2 = 0-based start coordinate; column 3 = 1-based end coordinates;
column 4 = sequential or otherwise unique numbers (this will speed up computation; see comment from dpryan79 on 13/09/2018 under GitHub issue [computeMatrix has problem with multi processors #760](https://github.com/deeptools/deepTools/issues/760)]);
column 5 = fill with NA; column 6 = fill with *.

Extract and save feature IDs for each quantile for further analyses
(e.g., mean and 95% CI metaprofile calculation and plotting).

Usage:
/applications/R/R-3.5.0/bin/Rscript group_peaks_into_cMMb_quantiles.R DMC1_Rep1_ChIP DMC1 'Agenome_euchromatin,Bgenome_euchromatin,Dgenome_euchromatin' 4

#libName <- "DMC1_Rep1_ChIP"
#dirName <- "DMC1"
#featureName <- unlist(strsplit("Agenome_euchromatin,Bgenome_euchromatin,Dgenome_euchromatin",
split = ","))
#quantiles <- 4

args <- commandArgs(trailingOnly = T)
libName <- args[1]
dirName <- args[2]
featureName <- unlist(strsplit(args[3],
 split = ","))
quantiles <- as.numeric(args[4])

library(GenomicRanges)
library(dplyr)
library(parallel)

Load features in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
features <- lapply(seq_along(featureName), function(y) {
 tmp <- read.table(paste0("/home/ajt200/analysis/wheat/", dirName,
 "/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 featureName[y], ".bed"),
 header = F)
 data.frame(tmp,
 V7 = paste0(featureName[y], "_", tmp$V4),
 stringsAsFactors = F)
})
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature data.frames
if(length(featureName) > 1) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
colnames(features) <- c("chr", "start", "end", "name", "score", "strand", "featureID")
featuresGR <- GRanges(seqnames = features$chr,
 ranges = IRanges(start = features$start+1,
 end = features$end),
 strand = features$strand,
 featureID = features$featureID)
Extend feature boundaries to include 1000 bp upstream
and downstream for calculation of mean cM/Mb around loci
featuresGR_ext <- GRanges(seqnames = seqnames(featuresGR),
 ranges = IRanges(start = start(featuresGR)-1000,
 end = end(featuresGR)+1000),
 strand = strand(featuresGR),
 featureID = featuresGR$featureID)
print(featuresGR_ext)

Load ranLocs in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
ranLocs <- lapply(seq_along(featureName), function(y) {
 tmp <- read.table(paste0("/home/ajt200/analysis/wheat/", dirName,
 "/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 featureName[y], "_randomLoci.bed"),
 header = F)
 data.frame(tmp,
 V7 = paste0(featureName[y], "_", tmp$V4),
 stringsAsFactors = F)
})
If ranLocs from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding ranLoc data.frames
if(length(featureName) > 1) {
 ranLocs <- do.call(rbind, ranLocs)
} else {
 ranLocs <- ranLocs[[1]]
}
colnames(ranLocs) <- c("chr", "start", "end", "name", "score", "strand", "ranLocID")
ranLocsGR <- GRanges(seqnames = ranLocs$chr,
 ranges = IRanges(start = ranLocs$start+1,
 end = ranLocs$end),
 strand = ranLocs$strand,
 ranLocID = ranLocs$ranLocID)
Extend ranLoc boundaries to include 1000 bp upstream
and downstream for calculation of mean cM/Mb around loci
ranLocsGR_ext <- GRanges(seqnames = seqnames(ranLocsGR),
 ranges = IRanges(start = start(ranLocsGR)-1000,
 end = end(ranLocsGR)+1000),
 strand = strand(ranLocsGR),
 ranLocID = ranLocsGR$ranLocID)
print(ranLocsGR_ext)

Convert windowed recombination rate into GRanges
cMMb <- read.table("iwgsc_refseqv1.0_recombination_rate.txt",
 header = T)
cMMbGR <- GRanges(seqnames = cMMb$chromosome,
 ranges = IRanges(start = cMMb$intervalStart,
 end = cMMb$intervalEnd),
 strand = "*",
 cMMb = cMMb$recombinationRate)

Obtain cMMb values for each feature extended by 1000 bp on each side
Where features overlap more than one winName window, calculate mean cMMb
feature_cMMb_overlaps <- findOverlaps(query = featuresGR_ext,
 subject = cMMbGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
feature_cMMb_overlapsList <- lapply(seq_along(featuresGR_ext), function(x) {
 subjectHits(feature_cMMb_overlaps)[queryHits(feature_cMMb_overlaps) == x]
})
feature_cMMb <- sapply(feature_cMMb_overlapsList,
 function(x) mean(cMMbGR$cMMb[x], na.rm = TRUE))
featuresGR <- GRanges(featuresGR,
 featureID = featuresGR$featureID,
 cMMb = feature_cMMb)

Obtain cMMb values for each ranLoc extended by 1000 bp on each side
Where ranLocs overlap more than one winName window, calculate mean cMMb
ranLoc_cMMb_overlaps <- findOverlaps(query = ranLocsGR_ext,
 subject = cMMbGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
ranLoc_cMMb_overlapsList <- lapply(seq_along(ranLocsGR_ext), function(x) {
 subjectHits(ranLoc_cMMb_overlaps)[queryHits(ranLoc_cMMb_overlaps) == x]
})
ranLoc_cMMb <- sapply(ranLoc_cMMb_overlapsList,
 function(x) mean(cMMbGR$cMMb[x], na.rm = TRUE))
ranLocsGR <- GRanges(ranLocsGR,
 ranLocID = ranLocsGR$ranLocID,
 cMMb = ranLoc_cMMb)

Define orderingFactor to be used for grouping features into quantiles
orderingFactor <- "cMMb"
outDir <- paste0("quantiles_by_", orderingFactor, "/")
plotDir_list <- lapply(seq_along(outDir), function(w) {
 paste0(outDir[w], "plots/")
})

sapply(seq_along(outDir), function(w) {
 system(paste0("[-d ", outDir[w], "] || mkdir ", outDir[w]))
})
sapply(seq_along(outDir), function(w) {
 system(paste0("[-d ", plotDir_list[[w]], "] || mkdir ", plotDir_list[[w]]))
})

For each population, divide features into quantiles based on decreasing orderingFactor
all subgenomes
featuresDF <- data.frame(featuresGR,
 quantile = as.character(""),
 stringsAsFactors = F)
mclapply(seq_along(orderingFactor), function(w) {
 print(orderingFactor[w])
 # Assign 0s to NA values only for coverage data
 if(grepl("_in_", orderingFactor[w])) {
 featuresDF[,which(colnames(featuresDF) == orderingFactor[w])][which(is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]))] <- 0
 }
 if(grepl("HudsonRM", orderingFactor[w])) {
 quantiles <- 2
 }
 quantilesStats <- data.frame()
 for(k in 1:quantiles) {
 # First quantile should span 1 to greater than, e.g., 0.75 proportions of features
 if(k < quantiles) {
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) > 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 } else {
 # Final quantile should span 0 to, e.g., 0.25 proportions of features
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) >= 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 }
 write.table(featuresDF[featuresDF$quantile == paste0("Quantile ", k),],
 file = paste0(outDir[w],
 "quantile", k, "_of_", quantiles,
 "_by_", orderingFactor[w],
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 stats <- data.frame(quantile = as.integer(k),
 n = as.integer(dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]),
 mean_width = as.integer(round(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T))),
 total_width = as.integer(sum(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T)),
 mean_orderingFactor = as.numeric(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,which(colnames(featuresDF) == orderingFactor[w])], na.rm = T)))
 quantilesStats <- rbind(quantilesStats, stats)
 }
 write.table(quantilesStats,
 file = paste0(outDir[w],
 "summary_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 write.table(featuresDF,
 file = paste0(outDir[w],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

 # Divide ranLocs into quantiles based on feature quantile indices
 ranLocsDF <- data.frame(ranLocsGR,
 random = as.character(""),
 stringsAsFactors = F)
 # Get row indices for each feature quantile
 quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
 })
 for(k in 1:quantiles) {
 ranLocsDF[quantileIndices[[k]],]$random <- paste0("Random ", k)
 }
 write.table(ranLocsDF,
 file = paste0(outDir[w],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), "_ranLocs.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
}, mc.cores = length(orderingFactor), mc.preschedule = F)

peak_cMMb_quantile_metaprofiles.R calculates and plots metaprofiles of ChIP-seq, MNase-seq and RNA-seq signals, DNA methylation proportions, and SNP and transposon frequencies (peak windowed means and 95% confidence intervals, CIs) for each group of peaks, defined either by decreasing recombination rate or randomly.

Script: peak_cMMb_quantile_metaprofiles.R:
#!/applications/R/R-3.5.0/bin/Rscript

Calculate and plot metaprofiles of ChIP-seq, MNase-seq and RNA-seq signals,
DNA methylation proportions, and SNP and transposon frequencies
(peak windowed means and 95% confidence intervals, CIs)
for each group of peaks, defined either by
decreasing recombination rate (cM/Mb) or randomly

Usage:
/applications/R/R-3.5.0/bin/Rscript peak_cMMb_quantile_metaprofiles.R DMC1_Rep1_ChIP DMC1 'Agenome_euchromatin,Bgenome_euchromatin,Dgenome_euchromatin' cMMb 4 both 400 2000 2kb 20 '0.02,0.96'

#libName <- "DMC1_Rep1_ChIP"
#dirName <- "DMC1"
#featureName <- unlist(strsplit("Agenome_euchromatin,Bgenome_euchromatin,Dgenome_euchromatin",
split = ","))
#orderingFactor <- "cMMb"
#quantiles <- 4
#align <- "both"
#bodyLength <- 400
#upstream <- 2000
#downstream <- 2000
#flankName <- "2 kb"
#binSize <- 20
top left
#legendPos <- as.numeric(unlist(strsplit("0.02,0.96",
split = ",")))
top centre
#legendPos <- as.numeric(unlist(strsplit("0.38,0.96",
split = ",")))
top right
#legendPos <- as.numeric(unlist(strsplit("0.75,0.96",
split = ",")))
bottom left
#legendPos <- as.numeric(unlist(strsplit("0.02,0.30",
split = ",")))
args <- commandArgs(trailingOnly = T)
libName <- args[1]
dirName <- args[2]
featureName <- unlist(strsplit(args[3],
 split = ","))
orderingFactor <- args[4]
quantiles <- as.numeric(args[5])
align <- args[6]
bodyLength <- as.numeric(args[7])
upstream <- as.numeric(args[8])
downstream <- as.numeric(args[8])
flankName <- args[9]
binSize <- as.numeric(args[10])
legendPos <- as.numeric(unlist(strsplit(args[11],
 split = ",")))

library(parallel)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggthemes)
library(grid)
library(gridExtra)
library(extrafont)

outDir <- paste0("quantiles_by_", orderingFactor, "/")
plotDir <- paste0(outDir, "plots/")
system(paste0("[-d ", outDir, "] || mkdir ", outDir))
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Define plot titles
if(orderingFactor == "cMMb") {
 featureNamePlot <- paste0(substr(orderingFactor, start = 1, stop = 2), "/",
 substr(orderingFactor, start = 3, stop = 4), " ",
 sub("_\\w+", "", libName), " peaks")
}
ranFeatNamePlot <- paste0("Random ",
 sub("_\\w+", "", libName), " peaks")
ranLocNamePlot <- "Random loci"

Define quantile colours
quantileColours <- c("red", "purple", "blue", "navy")

Define feature start and end labels for plotting
featureStartLab <- "Start"
featureEndLab <- "End"

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]

Load table of features grouped into quantiles
by decreasing cM/Mb
featuresDF <- read.table(paste0(outDir,
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".txt"),
 header = T, sep = "\t", row.names = NULL, stringsAsFactors = F)

Load features to confirm feature (row) ordering in "featuresDF" is the same
as in "features" (which was used for generating the coverage matrices)
features <- lapply(seq_along(featureName), function(y) {
 tmp <- read.table(paste0("/home/ajt200/analysis/wheat/", dirName,
 "/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 featureName[y], ".bed"),
 header = F)
 data.frame(tmp,
 V7 = paste0(featureName[y], "_", tmp$V4),
 stringsAsFactors = F)
})
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature data.frames
if(length(featureName) > 1) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
colnames(features) <- c("chr", "start", "end", "name", "score", "strand", "featureID")
stopifnot(identical(as.character(featuresDF$featureID),
 as.character(features$featureID)))
rm(features); gc()

Get row indices for each feature quantile
quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
})

Random feature quantiles
Define function to randomly select n rows from
a data.frame
selectRandomFeatures <- function(features, n) {
 return(features[sample(x = dim(features)[1],
 size = n,
 replace = FALSE),])
}

Define seed so that random selections are reproducible
set.seed(93750174)

Divide features into random sets of equal number,
with the same number of peaks per chromosome as
above-defined orderingFactor-defined feature quantiles
randomPCIndices <- lapply(1:quantiles, function(k) {
 randomPCIndicesk <- NULL
 for(i in 1:length(chrs)) {
 randomPCfeatureskChr <- selectRandomFeatures(features = featuresDF[featuresDF$seqnames == chrs[i],],
 n = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k) &
 featuresDF$seqnames == chrs[i],])[1])
 randomPCIndicesk <- c(randomPCIndicesk, as.integer(rownames(randomPCfeatureskChr)))
 }
 randomPCIndicesk
})
Confirm per-chromosome feature numbers are the same for quantiles and random groupings
lapply(seq_along(1:quantiles), function(k) {
 sapply(seq_along(chrs), function(x) {
 if(!identical(dim(featuresDF[randomPCIndices[[k]],][featuresDF[randomPCIndices[[k]],]$seqnames == chrs[x],]),
 dim(featuresDF[quantileIndices[[k]],][featuresDF[quantileIndices[[k]],]$seqnames == chrs[x],]))) {
 stop("Quantile features and random features do not consist of the same number of features per chromosome")
 }
 })
})

Load feature matrices for each chromatin dataset, calculate log2(ChIP/control),
and sort by decreasing log2mat1RegionRowMeans
ChIPNames <- c(
 "DMC1_Rep1_ChIP",
 "ASY1_CS_Rep1_ChIP",
 "H3K4me3_Rep1_ChIP",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621",
 "H3K27me3_ChIP_SRR6350666",
 "H3K9me2_Rep1_ChIP",
 "H3K27me1_Rep1_ChIP"
)
ChIPNamesDir <- c(
 "DMC1",
 "ASY1_CS",
 "H3K4me3",
 "H3K4me1",
 "H3K27ac",
 "H3K27me3",
 "H3K9me2",
 "H3K27me1"
)
log2ChIPNamesPlot <- c(
 "DMC1",
 "ASY1",
 "H3K4me3",
 "H3K4me1",
 "H3K27ac",
 "H3K27me3",
 "H3K9me2",
 "H3K27me1"
)
log2ChIPColours <- c(
 "green2",
 "purple4",
 "dodgerblue",
 "forestgreen",
 "goldenrod1",
 "orange",
 "navy",
 "magenta3",
 "firebrick1"
)
ChIPDirs <- sapply(seq_along(ChIPNames), function(x) {
 if(ChIPNames[x] %in% c("H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "CENH3_ChIP_SRR1686799")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 } else if(ChIPNames[x] %in% c("H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 } else {
 paste0("/home/ajt200/analysis/wheat/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 }
})

controlNames <- c(
 "input_SRR6350669",
 "MNase_Rep1"
)
controlNamesDir <- c(
 "input",
 "MNase"
)
controlNamesPlot <- c(
 "Input",
 "MNase"
)
controlColours <- c(
 "grey40",
 "darkcyan"
)
controlDirs <- sapply(seq_along(controlNames), function(x) {
 if(controlNames[x] == "input_SRR6350669") {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 controlNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 } else if(controlNames[x] == "MNase_Rep1") {
 paste0("/home/ajt200/analysis/wheat/",
 controlNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 } else {
 if(!(controlNames %in% c("input_SRR6350669", "MNase_Rep1"))) {
 stop(paste0("controlNames[", x, "] is neither input_SRR6350669 nor MNase_Rep1"))
 }
 }
})

otherNames <- c(
 "MNase_Rep1",
 "DNaseI_Rep1_SRR8447247",
 "WT_RNAseq_Rep1_ERR2402974",
 "WT_RNAseq_Rep2_ERR2402973",
 "WT_RNAseq_Rep3_ERR2402972"
)
otherNamesDir <- c(
 "MNase",
 "DNaseI",
 "RNAseq_meiocyte_Martin_Moore_2018_FrontPlantSci",
 "RNAseq_meiocyte_Martin_Moore_2018_FrontPlantSci",
 "RNAseq_meiocyte_Martin_Moore_2018_FrontPlantSci"
)
otherNamesPlot <- c(
 "MNase",
 "DNaseI",
 "RNA-seq Rep1",
 "RNA-seq Rep2",
 "RNA-seq Rep3"
)
otherColours <- c(
 "darkcyan",
 "purple",
 "red4",
 "red4",
 "red4"
)
otherDirs <- sapply(seq_along(otherNames), function(x) {
 if(otherNames[x] %in% c("MNase_Rep1")) {
 paste0("/home/ajt200/analysis/wheat/",
 otherNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 } else if(otherNames[x] %in% c("DNaseI_Rep1_SRR8447247")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 otherNamesDir[x], "/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/")
 } else if(grepl("RNAseq", otherNames[x])) {
 paste0("/home/ajt200/analysis/wheat/",
 otherNamesDir[x], "/snakemake_RNAseq_HISAT2/mapped/DMC1peakProfiles/matrices/")
 } else {
 stop(paste0("otherNames[", x, "] is not compatible with the specified coverage matrix paths"))
 }
})

DNAmethNames <- c(
 "BSseq_Rep8a_SRR6792678"
)
DNAmethNamesDir <- c(
 "BSseq"
)
DNAmethContexts <- c(
 "CpG",
 "CHG",
 "CHH"
)
DNAmethNamesPlot <- c(
 "mCG",
 "mCHG",
 "mCHH"
)
DNAmethColours <- c(
 "navy",
 "blue",
 "deepskyblue1"
)
DNAmethDirs <- sapply(seq_along(DNAmethNames), function(x) {
 if(DNAmethNames[x] %in% c("BSseq_Rep8a_SRR6792678")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 DNAmethNamesDir[x],
 "/snakemake_BSseq/coverage/DMC1peakProfiles/matrices/")
 } else {
 stop(paste0("DNAmethNames[", x, "] is not compatible with the specified coverage matrix paths"))
 }
})

control
feature
control_featureMats <- mclapply(seq_along(controlNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(controlDirs[x],
 controlNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 dirName, "_peaks_in_", featureName[y], "_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(controlNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
control_featureMats <- mclapply(seq_along(control_featureMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, control_featureMats[[x]])
 } else {
 control_featureMats[[x]][[1]]
 }
}, mc.cores = length(control_featureMats))

ranLoc
control_ranLocMats <- mclapply(seq_along(controlNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(controlDirs[x],
 controlNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 dirName, "_peaks_in_", featureName[y], "_ranLoc_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(controlNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
control_ranLocMats <- mclapply(seq_along(control_ranLocMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, control_ranLocMats[[x]])
 } else {
 control_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(control_ranLocMats))

ChIP
feature
ChIP_featureMats <- mclapply(seq_along(ChIPNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(ChIPDirs[x],
 ChIPNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 dirName, "_peaks_in_", featureName[y], "_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(ChIPNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
ChIP_featureMats <- mclapply(seq_along(ChIP_featureMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, ChIP_featureMats[[x]])
 } else {
 ChIP_featureMats[[x]][[1]]
 }
}, mc.cores = length(ChIP_featureMats))

Conditionally calculate log2(ChIP/input) or log2(ChIP/MNase)
for each matrix depending on library
log2ChIP_featureMats <- mclapply(seq_along(ChIP_featureMats), function(x) {
 if(ChIPNames[x] %in% c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621"
)) {
 print(paste0(ChIPNames[x], " was sonication-based; using ", controlNames[1], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_featureMats[[x]]+1)/(control_featureMats[[1]]+1))
 } else {
 print(paste0(ChIPNames[x], " was MNase-based; using ", controlNames[2], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_featureMats[[x]]+1)/(control_featureMats[[2]]+1))
 }
}, mc.cores = length(ChIP_featureMats))

ranLoc
ChIP_ranLocMats <- mclapply(seq_along(ChIPNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(ChIPDirs[x],
 ChIPNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 dirName, "_peaks_in_", featureName[y], "_ranLoc_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(ChIPNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
ChIP_ranLocMats <- mclapply(seq_along(ChIP_ranLocMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, ChIP_ranLocMats[[x]])
 } else {
 ChIP_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(ChIP_ranLocMats))

Conditionally calculate log2(ChIP/input) or log2(ChIP/MNase)
for each matrix depending on library
log2ChIP_ranLocMats <- mclapply(seq_along(ChIP_ranLocMats), function(x) {
 if(ChIPNames[x] %in% c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621"
)) {
 print(paste0(ChIPNames[x], " was sonication-based; using ", controlNames[1], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_ranLocMats[[x]]+1)/(control_ranLocMats[[1]]+1))
 } else {
 print(paste0(ChIPNames[x], " was MNase-based; using ", controlNames[2], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_ranLocMats[[x]]+1)/(control_ranLocMats[[2]]+1))
 }
}, mc.cores = length(ChIP_ranLocMats))

Add column names
for(x in seq_along(log2ChIP_featureMats)) {
 colnames(log2ChIP_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(log2ChIP_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
log2ChIP_mats_quantiles <- mclapply(seq_along(log2ChIP_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 log2ChIP_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 log2ChIP_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 log2ChIP_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(log2ChIP_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_log2ChIP <- mclapply(seq_along(log2ChIP_mats_quantiles), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(log2ChIP_mats_quantiles[[x]][[y]][[k]]),
 t(log2ChIP_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(log2ChIP_mats_quantiles))

Convert into tidy data.frame (long format)
tidyDFfeature_list_log2ChIP <- mclapply(seq_along(wideDFfeature_list_log2ChIP), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_log2ChIP[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_log2ChIP))

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_log2ChIP)) {
 for(y in seq_along(log2ChIP_mats_quantiles[[x]])) {
 for(k in seq_along(log2ChIP_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_log2ChIP[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_log2ChIP <- mclapply(seq_along(tidyDFfeature_list_log2ChIP), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_log2ChIP[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_log2ChIP))

for(x in seq_along(summaryDFfeature_list_log2ChIP)) {
 for(y in seq_along(log2ChIP_mats_quantiles[[x]])) {
 for(k in seq_along(log2ChIP_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_log2ChIP[[x]][[y]][[k]]$window))
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_log2ChIP[[x]][[y]][[k]])[1])
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sem <- summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sem
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_log2ChIP)) {
 # feature quantiles
 names(summaryDFfeature_list_log2ChIP[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_log2ChIP[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_log2ChIP[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_log2ChIP into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_log2ChIP <- mclapply(seq_along(summaryDFfeature_list_log2ChIP), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_log2ChIP[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_log2ChIP))
for(x in seq_along(summaryDFfeature_log2ChIP)) {
 # feature quantiles
 summaryDFfeature_log2ChIP[[x]][[1]]$quantile <- factor(summaryDFfeature_log2ChIP[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_log2ChIP[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_log2ChIP[[x]][[2]]$quantile <- factor(summaryDFfeature_log2ChIP[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_log2ChIP[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_log2ChIP[[x]][[3]]$quantile <- factor(summaryDFfeature_log2ChIP[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_log2ChIP[[x]][[3]]))
}

Define y-axis limits
ymin_list_log2ChIP <- lapply(seq_along(summaryDFfeature_log2ChIP), function(x) {
 min(c(summaryDFfeature_log2ChIP[[x]][[1]]$CI_lower,
 summaryDFfeature_log2ChIP[[x]][[2]]$CI_lower,
 summaryDFfeature_log2ChIP[[x]][[3]]$CI_lower))
})
ymax_list_log2ChIP <- lapply(seq_along(summaryDFfeature_log2ChIP), function(x) {
 max(c(summaryDFfeature_log2ChIP[[x]][[1]]$CI_upper,
 summaryDFfeature_log2ChIP[[x]][[2]]$CI_upper,
 summaryDFfeature_log2ChIP[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_log2ChIP <- mclapply(seq_along(log2ChIPNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_log2ChIP[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_log2ChIP[[x]], ymax_list_log2ChIP[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_log2ChIP[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = log2ChIPNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = log2ChIPColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(log2ChIPNamesPlot))

ranFeat
ggObj2_combined_log2ChIP <- mclapply(seq_along(log2ChIPNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_log2ChIP[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_log2ChIP[[x]], ymax_list_log2ChIP[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_log2ChIP[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = log2ChIPNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = log2ChIPColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(log2ChIPNamesPlot))

ranLoc
ggObj3_combined_log2ChIP <- mclapply(seq_along(log2ChIPNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_log2ChIP[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_log2ChIP[[x]], ymax_list_log2ChIP[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_log2ChIP[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 "Start",
 "End",
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = log2ChIPNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = log2ChIPColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(log2ChIPNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_log2ChIP,
 ggObj2_combined_log2ChIP,
 ggObj3_combined_log2ChIP
),
 layout_matrix = cbind(
 1:length(c(log2ChIPNamesPlot)),
 (length(c(log2ChIPNamesPlot))+1):(length(c(log2ChIPNamesPlot))*2),
 ((length(c(log2ChIPNamesPlot))*2)+1):(length(c(log2ChIPNamesPlot))*3)
))
ggsave(paste0(plotDir,
 "log2ChIPcontrol_avgProfiles_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(log2ChIPNamesPlot)), width = 21, limitsize = FALSE)

Free up memory by removing no longer required objects
rm(
 ChIP_featureMats, ChIP_ranLocMats,
 control_featureMats, control_ranLocMats,
 log2ChIP_featureMats, log2ChIP_ranLocMats,
 log2ChIP_mats_quantiles,
 wideDFfeature_list_log2ChIP,
 tidyDFfeature_list_log2ChIP,
 summaryDFfeature_list_log2ChIP,
 summaryDFfeature_log2ChIP
)
gc()
#####

other
feature
other_featureMats <- mclapply(seq_along(otherNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 otherFile <- system(paste0("ls ", otherDirs[x],
 otherNames[x],
 "_MappedOn_wheat_v1.0*", align, "_sort_norm_",
 dirName, "_peaks_in_", featureName[y], "_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 intern = T)
 as.matrix(read.table(otherFile,
 header = F, skip = 3))
 })
}, mc.cores = length(otherNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
other_featureMats <- mclapply(seq_along(other_featureMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, other_featureMats[[x]])
 } else {
 other_featureMats[[x]][[1]]
 }
}, mc.cores = length(other_featureMats))

ranLoc
other_ranLocMats <- mclapply(seq_along(otherNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 otherFile <- system(paste0("ls ", otherDirs[x],
 otherNames[x],
 "_MappedOn_wheat_v1.0*", align, "_sort_norm_",
 dirName, "_peaks_in_", featureName[y], "_ranLoc_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 intern = T)
 as.matrix(read.table(otherFile,
 header = F, skip = 3))
 })
}, mc.cores = length(otherNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
other_ranLocMats <- mclapply(seq_along(other_ranLocMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, other_ranLocMats[[x]])
 } else {
 other_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(other_ranLocMats))

Add column names
for(x in seq_along(other_featureMats)) {
 colnames(other_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(other_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
other_mats_quantiles <- mclapply(seq_along(other_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 other_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 other_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 other_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(other_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_other <- mclapply(seq_along(other_mats_quantiles), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(other_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(other_mats_quantiles[[x]][[y]][[k]]),
 t(other_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(other_mats_quantiles))

Convert into tidy data.frame (long format)
tidyDFfeature_list_other <- mclapply(seq_along(wideDFfeature_list_other), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(other_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_other[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_other))

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_other)) {
 for(y in seq_along(other_mats_quantiles[[x]])) {
 for(k in seq_along(other_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_other[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_other[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_other <- mclapply(seq_along(tidyDFfeature_list_other), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(other_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_other[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_other[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_other[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_other[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_other))

for(x in seq_along(summaryDFfeature_list_other)) {
 for(y in seq_along(other_mats_quantiles[[x]])) {
 for(k in seq_along(other_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_other[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_other[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_other[[x]][[y]][[k]]$window))
 summaryDFfeature_list_other[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_other[[x]][[y]][[k]])[1])
 summaryDFfeature_list_other[[x]][[y]][[k]]$sem <- summaryDFfeature_list_other[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_other[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_other[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_other[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_other[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_other[[x]][[y]][[k]]$sem
 summaryDFfeature_list_other[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_other[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_other[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_other[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_other)) {
 # feature quantiles
 names(summaryDFfeature_list_other[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_other[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_other[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_other into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_other <- mclapply(seq_along(summaryDFfeature_list_other), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_other[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_other))
for(x in seq_along(summaryDFfeature_other)) {
 # feature quantiles
 summaryDFfeature_other[[x]][[1]]$quantile <- factor(summaryDFfeature_other[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_other[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_other[[x]][[2]]$quantile <- factor(summaryDFfeature_other[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_other[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_other[[x]][[3]]$quantile <- factor(summaryDFfeature_other[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_other[[x]][[3]]))
}

Define y-axis limits
ymin_list_other <- lapply(seq_along(summaryDFfeature_other), function(x) {
 min(c(summaryDFfeature_other[[x]][[1]]$CI_lower,
 summaryDFfeature_other[[x]][[2]]$CI_lower,
 summaryDFfeature_other[[x]][[3]]$CI_lower))
})
ymax_list_other <- lapply(seq_along(summaryDFfeature_other), function(x) {
 max(c(summaryDFfeature_other[[x]][[1]]$CI_upper,
 summaryDFfeature_other[[x]][[2]]$CI_upper,
 summaryDFfeature_other[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_other <- mclapply(seq_along(otherNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_other[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_other[[x]], ymax_list_other[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_other[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = otherNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = otherColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(otherNamesPlot))

ranFeat
ggObj2_combined_other <- mclapply(seq_along(otherNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_other[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_other[[x]], ymax_list_other[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_other[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = otherNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = otherColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(otherNamesPlot))

ranLoc
ggObj3_combined_other <- mclapply(seq_along(otherNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_other[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_other[[x]], ymax_list_other[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_other[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 "Start",
 "End",
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = otherNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = otherColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(otherNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_other,
 ggObj2_combined_other,
 ggObj3_combined_other
),
 layout_matrix = cbind(
 1:length(c(otherNamesPlot)),
 (length(c(otherNamesPlot))+1):(length(c(otherNamesPlot))*2),
 ((length(c(otherNamesPlot))*2)+1):(length(c(otherNamesPlot))*3)
))
ggsave(paste0(plotDir,
 "other_avgProfiles_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(otherNamesPlot)), width = 21, limitsize = FALSE)

Free up memory by removing no longer required objects
rm(
 other_featureMats, other_ranLocMats,
 other_mats_quantiles,
 wideDFfeature_list_other,
 tidyDFfeature_list_other,
 summaryDFfeature_list_other,
 summaryDFfeature_other
)
gc()
#####

DNAmeth
feature
DNAmeth_featureMats <- mclapply(seq_along(DNAmethContexts), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(DNAmethDirs,
 DNAmethNames,
 "_MappedOn_wheat_v1.0_incl_organelles_controls_dedup_", DNAmethContexts[x], "_",
 dirName, "_peaks_in_", featureName[y], "_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(DNAmethContexts))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
DNAmeth_featureMats <- mclapply(seq_along(DNAmeth_featureMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, DNAmeth_featureMats[[x]])
 } else {
 DNAmeth_featureMats[[x]][[1]]
 }
}, mc.cores = length(DNAmeth_featureMats))

ranLoc
DNAmeth_ranLocMats <- mclapply(seq_along(DNAmethContexts), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(DNAmethDirs,
 DNAmethNames,
 "_MappedOn_wheat_v1.0_incl_organelles_controls_dedup_", DNAmethContexts[x], "_",
 dirName, "_peaks_in_", featureName[y], "_ranLoc_matrix_bin", binSize,
 "bp_flank", sub(" ", "", flankName), ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(DNAmethContexts))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
DNAmeth_ranLocMats <- mclapply(seq_along(DNAmeth_ranLocMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, DNAmeth_ranLocMats[[x]])
 } else {
 DNAmeth_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(DNAmeth_ranLocMats))

Add column names
for(x in seq_along(DNAmeth_featureMats)) {
 colnames(DNAmeth_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(DNAmeth_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
DNAmeth_mats_quantiles <- mclapply(seq_along(DNAmeth_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 DNAmeth_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 DNAmeth_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 DNAmeth_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(DNAmeth_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_DNAmeth <- mclapply(seq_along(DNAmeth_mats_quantiles), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(DNAmeth_mats_quantiles[[x]][[y]][[k]]),
 t(DNAmeth_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(DNAmeth_mats_quantiles))

Convert into tidy data.frame (long format)
tidyDFfeature_list_DNAmeth <- mclapply(seq_along(wideDFfeature_list_DNAmeth), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_DNAmeth[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_DNAmeth))

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_DNAmeth)) {
 for(y in seq_along(DNAmeth_mats_quantiles[[x]])) {
 for(k in seq_along(DNAmeth_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_DNAmeth[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_DNAmeth <- mclapply(seq_along(tidyDFfeature_list_DNAmeth), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_DNAmeth[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_DNAmeth))

for(x in seq_along(summaryDFfeature_list_DNAmeth)) {
 for(y in seq_along(DNAmeth_mats_quantiles[[x]])) {
 for(k in seq_along(DNAmeth_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_DNAmeth[[x]][[y]][[k]]$window))
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_DNAmeth[[x]][[y]][[k]])[1])
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sem <- summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sem
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_DNAmeth)) {
 # feature quantiles
 names(summaryDFfeature_list_DNAmeth[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_DNAmeth[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_DNAmeth[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_DNAmeth into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_DNAmeth <- mclapply(seq_along(summaryDFfeature_list_DNAmeth), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_DNAmeth[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_DNAmeth))
for(x in seq_along(summaryDFfeature_DNAmeth)) {
 # feature quantiles
 summaryDFfeature_DNAmeth[[x]][[1]]$quantile <- factor(summaryDFfeature_DNAmeth[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_DNAmeth[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_DNAmeth[[x]][[2]]$quantile <- factor(summaryDFfeature_DNAmeth[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_DNAmeth[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_DNAmeth[[x]][[3]]$quantile <- factor(summaryDFfeature_DNAmeth[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_DNAmeth[[x]][[3]]))
}

Define y-axis limits
ymin_list_DNAmeth <- lapply(seq_along(summaryDFfeature_DNAmeth), function(x) {
 min(c(summaryDFfeature_DNAmeth[[x]][[1]]$CI_lower,
 summaryDFfeature_DNAmeth[[x]][[2]]$CI_lower,
 summaryDFfeature_DNAmeth[[x]][[3]]$CI_lower))
})
ymax_list_DNAmeth <- lapply(seq_along(summaryDFfeature_DNAmeth), function(x) {
 max(c(summaryDFfeature_DNAmeth[[x]][[1]]$CI_upper,
 summaryDFfeature_DNAmeth[[x]][[2]]$CI_upper,
 summaryDFfeature_DNAmeth[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_DNAmeth <- mclapply(seq_along(DNAmethNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_DNAmeth[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_DNAmeth[[x]], ymax_list_DNAmeth[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_DNAmeth[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = DNAmethNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = DNAmethColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(DNAmethNamesPlot))

ranFeat
ggObj2_combined_DNAmeth <- mclapply(seq_along(DNAmethNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_DNAmeth[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_DNAmeth[[x]], ymax_list_DNAmeth[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_DNAmeth[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = DNAmethNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = DNAmethColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(DNAmethNamesPlot))

ranLoc
ggObj3_combined_DNAmeth <- mclapply(seq_along(DNAmethNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_DNAmeth[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_DNAmeth[[x]], ymax_list_DNAmeth[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_DNAmeth[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 "Start",
 "End",
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = DNAmethNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = DNAmethColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(DNAmethNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_DNAmeth,
 ggObj2_combined_DNAmeth,
 ggObj3_combined_DNAmeth
),
 layout_matrix = cbind(
 1:length(c(DNAmethNamesPlot)),
 (length(c(DNAmethNamesPlot))+1):(length(c(DNAmethNamesPlot))*2),
 ((length(c(DNAmethNamesPlot))*2)+1):(length(c(DNAmethNamesPlot))*3)
))
ggsave(paste0(plotDir,
 "DNAmeth_avgProfiles_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(DNAmethNamesPlot)), width = 21, limitsize = FALSE)

Free up memory by removing no longer required objects
rm(
 DNAmeth_featureMats, DNAmeth_ranLocMats,
 DNAmeth_mats_quantiles,
 wideDFfeature_list_DNAmeth,
 tidyDFfeature_list_DNAmeth,
 summaryDFfeature_list_DNAmeth,
 summaryDFfeature_DNAmeth
)
gc()
#####

exome SNPclasses
SNPclassNames <- c(
 "all",
 "transition",
 "transversion"
)
SNPclassNamesPlot <- c(
 "Exome SNPs",
 "Transitions",
 "Transversions"
)

feature
SNPclass_featureMats <- mclapply(seq_along(SNPclassNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/",
 "exome_", SNPclassNames[x],
 "_SNPs_around_", dirName, "_peaks_in_", featureName[y],
 "_matrix_bin", binSize, "bp_flank", sub(" ", "", flankName), ".tab"),
 header = T))
 })
}, mc.cores = length(SNPclassNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
SNPclass_featureMats <- mclapply(seq_along(SNPclass_featureMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, SNPclass_featureMats[[x]])
 } else {
 SNPclass_featureMats[[x]][[1]]
 }
}, mc.cores = length(SNPclass_featureMats))

ranLoc
SNPclass_ranLocMats <- mclapply(seq_along(SNPclassNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/",
 "exome_", SNPclassNames[x],
 "_SNPs_around_", dirName, "_peaks_in_", featureName[y],
 "_ranLoc_matrix_bin", binSize, "bp_flank", sub(" ", "", flankName), ".tab"),
 header = T))
 })
}, mc.cores = length(SNPclassNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
SNPclass_ranLocMats <- mclapply(seq_along(SNPclass_ranLocMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, SNPclass_ranLocMats[[x]])
 } else {
 SNPclass_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(SNPclass_ranLocMats))

Add column names
for(x in seq_along(SNPclass_featureMats)) {
 colnames(SNPclass_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(SNPclass_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
SNPclass_mats_quantiles <- mclapply(seq_along(SNPclass_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 SNPclass_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 SNPclass_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 SNPclass_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(SNPclass_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_SNPclass <- mclapply(seq_along(SNPclass_mats_quantiles), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(SNPclass_mats_quantiles[[x]][[y]][[k]]),
 t(SNPclass_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(SNPclass_mats_quantiles)/2)

Convert into tidy data.frame (long format)
tidyDFfeature_list_SNPclass <- mclapply(seq_along(wideDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_SNPclass[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_SNPclass)/2)

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_SNPclass)) {
 for(y in seq_along(SNPclass_mats_quantiles[[x]])) {
 for(k in seq_along(SNPclass_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_SNPclass <- mclapply(seq_along(tidyDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_SNPclass)/2)

for(x in seq_along(summaryDFfeature_list_SNPclass)) {
 for(y in seq_along(SNPclass_mats_quantiles[[x]])) {
 for(k in seq_along(SNPclass_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window))
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_SNPclass[[x]][[y]][[k]])[1])
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_SNPclass)) {
 # feature quantiles
 names(summaryDFfeature_list_SNPclass[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_SNPclass[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_SNPclass[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_SNPclass into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_SNPclass <- mclapply(seq_along(summaryDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_SNPclass[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_SNPclass))
for(x in seq_along(summaryDFfeature_SNPclass)) {
 # feature quantiles
 summaryDFfeature_SNPclass[[x]][[1]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_SNPclass[[x]][[2]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_SNPclass[[x]][[3]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[3]]))
}

Define y-axis limits
ymin_list_SNPclass <- lapply(seq_along(summaryDFfeature_SNPclass), function(x) {
 min(c(summaryDFfeature_SNPclass[[x]][[1]]$CI_lower,
 summaryDFfeature_SNPclass[[x]][[2]]$CI_lower,
 summaryDFfeature_SNPclass[[x]][[3]]$CI_lower))
})
ymax_list_SNPclass <- lapply(seq_along(summaryDFfeature_SNPclass), function(x) {
 max(c(summaryDFfeature_SNPclass[[x]][[1]]$CI_upper,
 summaryDFfeature_SNPclass[[x]][[2]]$CI_upper,
 summaryDFfeature_SNPclass[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = SNPclassNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ranFeat
ggObj2_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = SNPclassNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ranLoc
ggObj3_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 "Start",
 "End",
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = SNPclassNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_SNPclass,
 ggObj2_combined_SNPclass,
 ggObj3_combined_SNPclass
),
 layout_matrix = cbind(
 1:length(c(SNPclassNamesPlot)),
 (length(c(SNPclassNamesPlot))+1):(length(c(SNPclassNamesPlot))*2),
 ((length(c(SNPclassNamesPlot))*2)+1):(length(c(SNPclassNamesPlot))*3)
))
ggsave(paste0(plotDir,
 "1000exomesSNPclass_avgProfiles_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(SNPclassNamesPlot)), width = 21, limitsize = FALSE)

Free up memory by removing no longer required objects
rm(
 SNPclass_featureMats, SNPclass_ranLocMats,
 SNPclass_mats_quantiles,
 wideDFfeature_list_SNPclass,
 tidyDFfeature_list_SNPclass,
 summaryDFfeature_list_SNPclass,
 summaryDFfeature_SNPclass
)
gc()
#####

TE superfams
superfamCodes <- c("RLG",
 "RLC",
 "RLX",
 "RIX",
 "SIX",
 "DTC",
 "DTM",
 "DTX",
 "DTH",
 "DTT",
 "DXX",
 "DTA",
 "DHH",
 "XXX")
superfamNames <- c("Gypsy_LTR",
 "Copia_LTR",
 "Unclassified_LTR",
 "LINE",
 "SINE",
 "CACTA",
 "Mutator",
 "Unclassified_with_TIRs",
 "Harbinger",
 "Mariner",
 "Unclassified_class_2",
 "hAT",
 "Helitrons",
 "Unclassified_repeats")
superfamNamesPlot <- c("Gypsy LTR",
 "Copia LTR",
 "Unclassified LTR",
 "LINE",
 "SINE",
 "CACTA",
 "Mutator",
 "Unclassified with TIRs",
 "Harbinger",
 "Mariner",
 "Unclassified class 2",
 "hAT",
 "Helitrons",
 "Unclassified repeats")

feature
superfam_featureMats <- mclapply(seq_along(superfamNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/",
 superfamNames[x], "_", superfamCodes[x],
 "_around_", dirName, "_peaks_in_", featureName[y],
 "_matrix_bin", binSize, "bp_flank", sub(" ", "", flankName), ".tab"),
 header = T))
 })
}, mc.cores = length(superfamNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
superfam_featureMats <- mclapply(seq_along(superfam_featureMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, superfam_featureMats[[x]])
 } else {
 superfam_featureMats[[x]][[1]]
 }
}, mc.cores = length(superfam_featureMats))

ranLoc
superfam_ranLocMats <- mclapply(seq_along(superfamNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/DMC1/snakemake_ChIPseq/mapped/DMC1peakProfiles/matrices/",
 superfamNames[x], "_", superfamCodes[x],
 "_around_", dirName, "_peaks_in_", featureName[y],
 "_ranLoc_matrix_bin", binSize, "bp_flank", sub(" ", "", flankName), ".tab"),
 header = T))
 })
}, mc.cores = length(superfamNames))
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature coverage matrices
superfam_ranLocMats <- mclapply(seq_along(superfam_ranLocMats), function(x) {
 if(length(featureName) > 1) {
 do.call(rbind, superfam_ranLocMats[[x]])
 } else {
 superfam_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(superfam_ranLocMats))

Add column names
for(x in seq_along(superfam_featureMats)) {
 colnames(superfam_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(superfam_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
superfam_mats_quantiles <- mclapply(seq_along(superfam_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 superfam_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 superfam_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 superfam_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(superfam_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_superfam <- mclapply(seq_along(superfam_mats_quantiles), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(superfam_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(superfam_mats_quantiles[[x]][[y]][[k]]),
 t(superfam_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(superfam_mats_quantiles)/3)

Convert into tidy data.frame (long format)
tidyDFfeature_list_superfam <- mclapply(seq_along(wideDFfeature_list_superfam), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(superfam_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_superfam[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_superfam)/3)

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_superfam)) {
 for(y in seq_along(superfam_mats_quantiles[[x]])) {
 for(k in seq_along(superfam_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_superfam[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_superfam[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_superfam <- mclapply(seq_along(tidyDFfeature_list_superfam), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(superfam_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_superfam[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_superfam[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_superfam[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_superfam[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_superfam)/3)

for(x in seq_along(summaryDFfeature_list_superfam)) {
 for(y in seq_along(superfam_mats_quantiles[[x]])) {
 for(k in seq_along(superfam_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_superfam[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_superfam[[x]][[y]][[k]]$window))
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_superfam[[x]][[y]][[k]])[1])
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$sem <- summaryDFfeature_list_superfam[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_superfam[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_superfam[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_superfam[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_superfam[[x]][[y]][[k]]$sem
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_superfam[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_superfam[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_superfam[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_superfam)) {
 # feature quantiles
 names(summaryDFfeature_list_superfam[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_superfam[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_superfam[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_superfam into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_superfam <- mclapply(seq_along(summaryDFfeature_list_superfam), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_superfam[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_superfam))
for(x in seq_along(summaryDFfeature_superfam)) {
 # feature quantiles
 summaryDFfeature_superfam[[x]][[1]]$quantile <- factor(summaryDFfeature_superfam[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_superfam[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_superfam[[x]][[2]]$quantile <- factor(summaryDFfeature_superfam[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_superfam[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_superfam[[x]][[3]]$quantile <- factor(summaryDFfeature_superfam[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_superfam[[x]][[3]]))
}

Define y-axis limits
ymin_list_superfam <- lapply(seq_along(summaryDFfeature_superfam), function(x) {
 min(c(summaryDFfeature_superfam[[x]][[1]]$CI_lower,
 summaryDFfeature_superfam[[x]][[2]]$CI_lower,
 summaryDFfeature_superfam[[x]][[3]]$CI_lower))
})
ymax_list_superfam <- lapply(seq_along(summaryDFfeature_superfam), function(x) {
 max(c(summaryDFfeature_superfam[[x]][[1]]$CI_upper,
 summaryDFfeature_superfam[[x]][[2]]$CI_upper,
 summaryDFfeature_superfam[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_superfam <- mclapply(seq_along(superfamNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_superfam[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_superfam[[x]], ymax_list_superfam[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_superfam[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = superfamNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(superfamNamesPlot))

ranFeat
ggObj2_combined_superfam <- mclapply(seq_along(superfamNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_superfam[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_superfam[[x]], ymax_list_superfam[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_superfam[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 featureStartLab,
 featureEndLab,
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = superfamNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(superfamNamesPlot))

ranLoc
ggObj3_combined_superfam <- mclapply(seq_along(superfamNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_superfam[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_superfam[[x]], ymax_list_superfam[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_superfam[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankName),
 "Start",
 "End",
 paste0("+", flankName))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = superfamNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(superfamNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_superfam,
 ggObj2_combined_superfam,
 ggObj3_combined_superfam
),
 layout_matrix = cbind(
 1:length(c(superfamNamesPlot)),
 (length(c(superfamNamesPlot))+1):(length(c(superfamNamesPlot))*2),
 ((length(c(superfamNamesPlot))*2)+1):(length(c(superfamNamesPlot))*3)
))
ggsave(paste0(plotDir,
 "TEsuperfam_avgProfiles_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(superfamNamesPlot)), width = 21, limitsize = FALSE)

Free up memory by removing no longer required objects
rm(
 superfam_featureMats, superfam_ranLocMats,
 superfam_mats_quantiles,
 wideDFfeature_list_superfam,
 tidyDFfeature_list_superfam,
 summaryDFfeature_list_superfam,
 summaryDFfeature_superfam
)
gc()
#####

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_log2ChIP,
 ggObj1_combined_other,
 ggObj1_combined_DNAmeth,
 ggObj1_combined_SNPclass,
 ggObj1_combined_superfam,
 ggObj2_combined_log2ChIP,
 ggObj2_combined_other,
 ggObj2_combined_DNAmeth,
 ggObj2_combined_SNPclass,
 ggObj2_combined_superfam,
 ggObj3_combined_log2ChIP,
 ggObj3_combined_other,
 ggObj3_combined_DNAmeth,
 ggObj3_combined_SNPclass,
 ggObj3_combined_superfam
),
 layout_matrix = cbind(
 1:length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot)),
 (length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))+1):(length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))*2),
 ((length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))*2)+1):(length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))*3)
))
ggsave(paste0(plotDir,
 "combined_avgProfiles_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot)), width = 21, limitsize = FALSE)

peak_cMMb_quantile_cMMb_density_mean_95CI_plot.R plots density and means with 95% CIs of recombination rate for each group of peaks.

Script: peak_cMMb_quantile_cMMb_density_mean_95CI_plot.R:
#!/applications/R/R-3.5.0/bin/Rscript

Plot density and means with 95% confidence intervals (CIs)
of recombination rate (cM/Mb) for each group of peaks

Usage:
/applications/R/R-3.5.0/bin/Rscript peak_cMMb_quantile_cMMb_density_mean_95CI_plot.R cMMb DMC1_Rep1_ChIP DMC1 'Agenome_euchromatin,Bgenome_euchromatin,Dgenome_euchromatin' 4

#orderingFactor <- "cMMb"
#libName <- "DMC1_Rep1_ChIP"
#dirName <- "DMC1"
#featureName <- unlist(strsplit("Agenome_euchromatin,Bgenome_euchromatin,Dgenome_euchromatin",
split = ","))
#quantiles <- 4

args <- commandArgs(trailingOnly = T)
orderingFactor <- args[1]
libName <- args[2]
dirName <- args[3]
featureName <- unlist(strsplit(args[4],
 split = ","))
quantiles <- as.numeric(args[5])

library(parallel)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggbeeswarm)
library(ggthemes)
library(grid)
library(gridExtra)
library(extrafont)

if(orderingFactor == "cMMb") {
outDir <- paste0("quantiles_by_", orderingFactor, "/")
} else {
outDir <- paste0("quantiles_by_log2_", orderingFactor,
 "_control_in_", region, "/")
}
plotDir <- paste0(outDir, "plots/")
system(paste0("[-d ", outDir, "] || mkdir ", outDir))
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Define plot titles
if(orderingFactor == "cMMb") {
 featureNamePlot <- paste0("cM/Mb ",
 gsub("_\\w+$", "", libName),
 " peak quantiles")
}
ranFeatNamePlot <- paste0("Random ",
 gsub("_\\w+$", "", libName),
 " peak quantiles")
#ranLocNamePlot <- "Random locus quantiles"

Define quantile colours
quantileColours <- c("red", "purple", "blue", "navy")
makeTransparent <- function(thisColour, alpha = 250)
{
 newColour <- col2rgb(thisColour)
 apply(newColour, 2, function(x) {
 rgb(red = x[1], green = x[2], blue = x[3],
 alpha = alpha, maxColorValue = 255)
 })
}
quantileColours <- makeTransparent(quantileColours)

Genomic definitions
chrs <- paste0(rep("chr", 21), rep(1:7, 3),
 c(rep("A", 7), rep("B", 7), rep("D", 7)))

Load table of features grouped into quantiles
by decreasing cM/Mb
featuresDF <- read.table(paste0(outDir,
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"), ".txt"),
 header = T, sep = "\t", row.names = NULL, stringsAsFactors = F)

Load features to confirm feature (row) ordering in "featuresDF" is the same
as in "features" (which was used for generating the coverage matrices)
features <- lapply(seq_along(featureName), function(y) {
 tmp <- read.table(paste0("/home/ajt200/analysis/wheat/", dirName,
 "/snakemake_ChIPseq/mapped/both/peaks/PeakRanger1.18/ranger/p0.001_q0.01/",
 libName,
 "_rangerPeaksGRmergedOverlaps_minuslog10_p0.001_q0.01_noMinWidth_in_",
 featureName[y], ".bed"),
 header = F)
 data.frame(tmp,
 V7 = paste0(featureName[y], "_", tmp$V4),
 stringsAsFactors = F)
})
If features from multiple subgenomes and/or compartments are to be analysed,
concatenate the corresponding feature data.frames
if(length(featureName) > 1) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
colnames(features) <- c("chr", "start", "end", "name", "score", "strand", "featureID")
stopifnot(identical(as.character(featuresDF$featureID),
 as.character(features$featureID)))
rm(features); gc()

Get row indices for each feature quantile
quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
})

Random feature quantiles
Define function to randomly select n rows from
a data.frame
selectRandomFeatures <- function(features, n) {
 return(features[sample(x = dim(features)[1],
 size = n,
 replace = FALSE),])
}

Define seed so that random selections are reproducible
set.seed(93750174)
#set.seed(453838430)

Divide features into random sets of equal number,
with the same number of genes per chromosome as
above-defined orderingFactor-defined feature quantiles
randomPCIndices <- lapply(1:quantiles, function(k) {
 randomPCIndicesk <- NULL
 for(i in 1:length(chrs)) {
 randomPCfeatureskChr <- selectRandomFeatures(features = featuresDF[featuresDF$seqnames == chrs[i],],
 n = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k) &
 featuresDF$seqnames == chrs[i],])[1])
 randomPCIndicesk <- c(randomPCIndicesk, as.integer(rownames(randomPCfeatureskChr)))
 }
 randomPCIndicesk
})
Confirm per-chromosome feature numbers are the same for quantiles and random groupings
lapply(seq_along(1:quantiles), function(k) {
 sapply(seq_along(chrs), function(x) {
 if(!identical(dim(featuresDF[randomPCIndices[[k]],][featuresDF[randomPCIndices[[k]],]$seqnames == chrs[x],]),
 dim(featuresDF[quantileIndices[[k]],][featuresDF[quantileIndices[[k]],]$seqnames == chrs[x],]))) {
 stop("Quantile features and random features do not consist of the same number of features per chromosome")
 }
 })
})

featuresDFtmp <- data.frame(featuresDF,
 random = as.character(""),
 stringsAsFactors = F)
ranFeatsDF <- data.frame()
for(k in 1:quantiles) {
 featuresDFtmp[randomPCIndices[[k]],]$random <- paste0("Random ", k)
 ranFeatsDFk <- featuresDFtmp[featuresDFtmp$random == paste0("Random ", k),]
 ranFeatsDF <- rbind(ranFeatsDF, ranFeatsDFk)
}

Calculate means, SDs, SEMs and 95% CIs
and create dataframe of summary statistics for plotting
featuresDF_quantileMean <- sapply(1:quantiles, function(k) {
 mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$cMMb, na.rm = T)
})
featuresDF_quantileSD <- sapply(1:quantiles, function(k) {
 sd(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$cMMb, na.rm = T)
})
featuresDF_quantileSEM <- sapply(1:quantiles, function(k) {
 featuresDF_quantileSD[k] / sqrt((dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1] - 1))
})
featuresDF_quantileCIlower <- sapply(1:quantiles, function(k) {
 featuresDF_quantileMean[k] -
 (qt(0.975, df = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]-1) *
 featuresDF_quantileSEM[k])
})
featuresDF_quantileCIupper <- sapply(1:quantiles, function(k) {
 featuresDF_quantileMean[k] +
 (qt(0.975, df = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]-1) *
 featuresDF_quantileSEM[k])
})
featuresDF_summary_stats <- data.frame(quantile = paste0("Quantile ", 1:quantiles),
 Mean = featuresDF_quantileMean,
 SD = featuresDF_quantileSD,
 SEM = featuresDF_quantileSEM,
 CIlower = featuresDF_quantileCIlower,
 CIupper = featuresDF_quantileCIupper,
 stringsAsFactors = F)

ranFeatsDF_randomMean <- sapply(1:quantiles, function(k) {
 mean(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),]$cMMb, na.rm = T)
})
ranFeatsDF_randomSD <- sapply(1:quantiles, function(k) {
 sd(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),]$cMMb, na.rm = T)
})
ranFeatsDF_randomSEM <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomSD[k] / sqrt((dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1] - 1))
})
ranFeatsDF_randomCIlower <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomMean[k] -
 (qt(0.975, df = dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1]-1) *
 ranFeatsDF_randomSEM[k])
})
ranFeatsDF_randomCIupper <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomMean[k] +
 (qt(0.975, df = dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1]-1) *
 ranFeatsDF_randomSEM[k])
})
ranFeatsDF_summary_stats <- data.frame(random = paste0("Random ", 1:quantiles),
 Mean = ranFeatsDF_randomMean,
 SD = ranFeatsDF_randomSD,
 SEM = ranFeatsDF_randomSEM,
 CIlower = ranFeatsDF_randomCIlower,
 CIupper = ranFeatsDF_randomCIupper,
 stringsAsFactors = F)
summary_stats_min <- min(c(featuresDF_summary_stats$CIlower, ranFeatsDF_summary_stats$CIlower), na.rm = T)
summary_stats_max <- max(c(featuresDF_summary_stats$CIupper, ranFeatsDF_summary_stats$CIupper), na.rm = T)

Take top 95% of data to aid visualisation in density plots
featuresDF <- featuresDF[which(featuresDF$cMMb <=
 quantile(featuresDF$cMMb,
 probs = 0.99, na.rm = T)),]
ranFeatsDF <- ranFeatsDF[which(ranFeatsDF$cMMb <=
 quantile(ranFeatsDF$cMMb,
 probs = 0.99, na.rm = T)),]

xmin <- min(c(
 featuresDF[unlist(quantileIndices),]$cMMb,
 featuresDF[unlist(randomPCIndices),]$cMMb
), na.rm = T)
xmax <- max(c(
 featuresDF[unlist(quantileIndices),]$cMMb,
 featuresDF[unlist(randomPCIndices),]$cMMb
), na.rm = T)
minDensity <- 0
maxDensity <- max(density(featuresDF[featuresDF$quantile == "Quantile 4",]$cMMb,
 na.rm = T)$y)+0.04
maxDensity <- max(
 c(
 sapply(1:quantiles, function(k) {
 max(c(max(density(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$cMMb,
 na.rm = T)$y),
 max(density(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),]$cMMb,
 na.rm = T)$y)))
 })
)
)+0.04

Define legend labels
legendLabs_feature <- lapply(1:quantiles, function(x) {
 grobTree(textGrob(bquote(.(paste0("Quantile ", 1:quantiles)[x])),
 x = 0.65, y = 0.90-((x-1)*0.07), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 22)))
})
legendLabs_ranFeat <- lapply(1:quantiles, function(x) {
 grobTree(textGrob(bquote(.(paste0("Random ", 1:quantiles)[x])),
 x = 0.65, y = 0.90-((x-1)*0.07), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 22)))
})

Recombination rate (cM/Mb) density plot function
cMMb_plotFun <- function(lociDF,
 parameter,
 parameterLab,
 featureGroup,
 featureNamePlot,
 legendLabs,
 quantileColours) {
 ggplot(data = lociDF,
 mapping = aes(x = get(parameter),
 colour = reorder(x = get(featureGroup), X = desc(get(featureGroup))),
 group = reorder(x = get(featureGroup), X = desc(get(featureGroup))))) +
 scale_colour_manual(values = rev(quantileColours)) +
 geom_density(size = 1.5) +
 scale_x_continuous(limits = c(xmin, xmax),
 labels = function(x) sprintf("%1.1f", x)) +
 scale_y_continuous(limits = c(minDensity, maxDensity),
 labels = function(x) sprintf("%1.1f", x)) +
 labs(x = parameterLab,
 y = "Density") +
 annotation_custom(legendLabs[[1]]) +
 annotation_custom(legendLabs[[2]]) +
 annotation_custom(legendLabs[[3]]) +
 annotation_custom(legendLabs[[4]]) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 2.0, colour = "black"),
 axis.line.x = element_line(size = 2.0, colour = "black"),
 axis.ticks.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.x = element_line(size = 2.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.text.x = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 26, colour = "black"),
 legend.position = "none",
TEST WITH THIS WAY OF PLOTTING LEGEND LABELS TO CHECK THAT QUANTILES CORRESPOND TO EXPECTED COLOURS
legend.position = c(0.8, 0.8),
legend.text = element_text(size = 22, colour = "black"),
legend.key.size = unit(1, "cm"),
legend.title = element_blank(),
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.3,0.3),"cm"),
 plot.title = element_text(hjust = 0.5, size = 30)) +
 ggtitle(bquote(.(featureNamePlot)))
}

Plot means and 95% confidence intervals
cMMb_meanCIs <- function(dataFrame,
 parameterLab,
 featureGroup,
 featureNamePlot,
 quantileColours) {
 ggplot(data = dataFrame,
 mapping = aes(x = get(featureGroup),
 y = Mean,
 colour = get(featureGroup))) +
 labs(colour = "") +
 geom_point(shape = 19, size = 6, position = position_dodge(width = 0.2)) +
 geom_errorbar(mapping = aes(ymin = CIlower,
 ymax = CIupper),
 width = 0.2, size = 2, position = position_dodge(width = 0.2)) +
 scale_colour_manual(values = quantileColours) +
 scale_y_continuous(limits = c(summary_stats_min, summary_stats_max),
 labels = function(x) sprintf("%1.2f", x)) +
scale_x_discrete(breaks = as.vector(dataFrame$quantile),
labels = as.vector(dataFrame$quantile)) +
 labs(x = "",
 y = parameterLab) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.x = element_blank(),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.text.x = element_text(size = 22, colour = quantileColours, hjust = 1.0, vjust = 1.0, angle = 45),
 axis.title = element_text(size = 26, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.1,0.3),"cm"),
 plot.title = element_text(hjust = 0.5, size = 30)) +
 ggtitle(bquote(.(featureNamePlot)))
}

ggObjGA_feature <- cMMb_plotFun(lociDF = featuresDF,
 parameter = "cMMb",
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "quantile",
 featureNamePlot = featureNamePlot,
 legendLabs = legendLabs_feature,
 quantileColours = quantileColours
)
ggObjGA_ranFeat <- cMMb_plotFun(lociDF = ranFeatsDF,
 parameter = "cMMb",
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "random",
 featureNamePlot = ranFeatNamePlot,
 legendLabs = legendLabs_ranFeat,
 quantileColours = quantileColours
)
ggObjGA_feature_mean <- cMMb_meanCIs(dataFrame = featuresDF_summary_stats,
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "quantile",
 featureNamePlot = featureNamePlot,
 quantileColours = quantileColours
)
ggObjGA_ranFeat_mean <- cMMb_meanCIs(dataFrame = ranFeatsDF_summary_stats,
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "random",
 featureNamePlot = ranFeatNamePlot,
 quantileColours = quantileColours
)
ggObjGA_combined <- grid.arrange(ggObjGA_feature,
 ggObjGA_feature_mean,
 ggObjGA_ranFeat,
 ggObjGA_ranFeat_mean,
 ncol = 2, as.table = F)
ggsave(paste0(plotDir,
 "cMMb_around_", quantiles, "quantiles",
 "_by_", orderingFactor,
 "_of_", libName, "_peaks_in_",
 paste0(featureName,
 collapse = "_"),
 "_v050620.pdf"),
 plot = ggObjGA_combined,
 height = 13, width = 14)

Gene analysis
A Snakemake workflow for creating a matrix of windowed coverage values within genes and in flanking regions is provided below.

Additionally, R scripts are provided for creating a matrix of windowed SNP (1000exomes_SNP_profiles_around_genes_commandArgs.R) or transposable element (TE_superfamily_profiles_around_genes_commandArgs.R) frequency values within genes and in flanking regions.

Scripts for defining and evaluating groups of genes are also provided.

Requirements:
· Installation of Snakemake and optionally conda
· Snakefile in this repository. This contains "rules" that each execute a step in the workflow
· config.yaml in this repository. This contains customizable parameters including reference, which should be the reference genome file name without the .fa extension (e.g., wheat_v1.0)
· Optional: environment.yaml in scripts/read_alignment/snakemake_ChIPseq_MNaseseq/, used to create the software environment if conda is used
· If conda is not used, deepTools must be installed and specified in the PATH variable
· Coordinates for representative gene models from the IWGSC RefSeq v1.1 annotation and, separately, random loci in BED6 format: column 1 = chromosome ID; column 2 = 0-based start coordinates; column 3 = 1-based end coordinates; column 4 = sequential or otherwise unique numbers (this speeds up computation; see comment from dpryan79 on 13/09/2018 under GitHub issue computeMatrix has problem with multi processors #760]); column 5 = fill with NA; column 6 = strand
· A bigWig coverage file (generated using deepTools bamCoverage as part of the snakemake_ChIPseq_MNaseseq/ pipeline), to be used for calculating coverage profiles around genes and random loci (e.g., DMC1_Rep1_ChIP_MappedOn_wheat_v1.0_lowXM_both_sort_norm.bw)
· A variant call format (VCF) file containing ~3 million exome sequencing-derived SNP sites (all.GP08_mm75_het3_publication01142019.vcf), from He et al. (2019) Nat. Genet. 51. DOI: 10.1038/s41588-019-0382-2. SNPs were annotated with their predicted impact on protein function using SnpEff v4.3t, after building a SnpEff database for the IWGSC RefSeq v1.0 Chinese Spring genome assembly with the IWGSC RefSeq v1.1 gene annotation
· Transposable elements (TEs) from the IWGSC RefSeq v1.0 annotation, with genomic coordinates for elements in each of 14 superfamilies in BED6 format, including strand information (one BED6-format file for each TE superfamily and for each set of randomly positioned loci)
Creating the conda environment:

conda env create --file environment.yaml --name ChIPseq_mapping

Usage:

In a Unix shell, navigate to the base directory containing Snakefile and config.yaml. Then run the following commands in the base directory (--cores should match the THREADS parameter in config.yaml):

conda activate ChIPseq_mapping
snakemake -p --cores 48
conda deactivate

Script: config.yaml:
THREADS: 32
SAMPLE: ["DMC1_Rep1_ChIP"]
FEATURES:
 genomeRegionName: ["Agenome_genomewide",
 "Bgenome_genomewide",
 "Dgenome_genomewide"]
MAPPING:
 mode: "both"
 reference: "data/index/wheat_v1.0"
COVERAGE:
 bodyLength: 3500
 startLabel: "TSS"
 endLabel: "TTS"
 upstream: 2000
 downstream: 2000
 flankName: "2kb"
 binSize: 20
 binName: "20bp"
 sortRegions: "keep"

Script: Snakefile:
Snakemake workflow for creating a matrix of windowed
coverage values for genomic features and flanking regions

Usage ("--cores" should match the "THREADS" parameter in config.yaml, and reflect available threads):
conda activate ChIPseq_mapping
snakemake -p --cores 48
conda deactivate

import os

Specify config file parameters
configfile: "config.yaml"
sample = config["SAMPLE"]
genomeRegionName = config["FEATURES"]["genomeRegionName"]
reference = config["MAPPING"]["reference"]
refbase = os.path.basename(reference)
mode = config["MAPPING"]["mode"]
flankName = config["COVERAGE"]["flankName"]
binName = config["COVERAGE"]["binName"]

Specify the desired end target file(s)
rule all:
 input:
 expand("matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.tab",
 sample = sample,
 refbase = refbase,
 mode = mode,
 genomeRegionName = genomeRegionName,
 binName = binName,
 flankName = flankName),
 expand("matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.tab",
 sample = sample,
 refbase = refbase,
 mode = mode,
 genomeRegionName = genomeRegionName,
 binName = binName,
 flankName = flankName)

Use computeMatrix function from deepTools to create a matrix of
coverage values for genomic features and flanking regions, and
for equivalent random loci and flanking regions
rule compute_matrix_genomeRegionFeatures:
 """Create matrices of coverage values for genomic features and random loci"""
 input:
 featuresFile = "/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_{genomeRegionName}.bed",
 ranLocFile = "/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_{genomeRegionName}_randomLoci.bed",
 BW = "../{mode}/bw/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm.bw"
 output:
 featuresGZ = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.gz",
 featuresTAB = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.tab",
 ranLocGZ = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.gz",
 ranLocTAB = "matrices/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.tab"
 params:
 bodyLength = config["COVERAGE"]["bodyLength"],
 startLabel = config["COVERAGE"]["startLabel"],
 endLabel = config["COVERAGE"]["endLabel"],
 upstream = config["COVERAGE"]["upstream"],
 downstream = config["COVERAGE"]["downstream"],
 binSize = config["COVERAGE"]["binSize"],
 sortRegions = config["COVERAGE"]["sortRegions"]
 log:
 features = "logs/computeMatrix/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_matrix_bin{binName}_flank{flankName}.log",
 ranLoc = "logs/computeMatrix/{sample}_MappedOn_{refbase}_lowXM_{mode}_sort_norm_genes_in_{genomeRegionName}_ranLoc_matrix_bin{binName}_flank{flankName}.log"
 threads:
 config["THREADS"]
 shell:
 "(computeMatrix scale-regions"
 " --regionsFileName {input.featuresFile}"
 " --scoreFileName {input.BW}"
 " --outFileName {output.featuresGZ}"
 " --outFileNameMatrix {output.featuresTAB}"
 " --regionBodyLength {params.bodyLength}"
 " --startLabel {params.startLabel}"
 " --endLabel {params.endLabel}"
 " --upstream {params.upstream}"
 " --downstream {params.downstream}"
 " --binSize {params.binSize}"
 " --sortRegions {params.sortRegions}"
 " --numberOfProcessors {threads}) 2> {log.features}; "
 "(computeMatrix scale-regions"
 " --regionsFileName {input.ranLocFile}"
 " --scoreFileName {input.BW}"
 " --outFileName {output.ranLocGZ}"
 " --outFileNameMatrix {output.ranLocTAB}"
 " --regionBodyLength {params.bodyLength}"
 " --startLabel {params.startLabel}"
 " --endLabel {params.endLabel}"
 " --upstream {params.upstream}"
 " --downstream {params.downstream}"
 " --binSize {params.binSize}"
 " --sortRegions {params.sortRegions}"
 " --numberOfProcessors {threads}) 2> {log.ranLoc}"

Script: 1000exomes_SNP_profiles_around_genes_commandArgs.R:
#!/applications/R/R-3.5.0/bin/Rscript

Profile SNP frequency around genes and random loci

Wheat subgenome compartments (a.k.a. partitions):
1. R1 and R3 (distal or "euchromatin")
2. R2a and R2b (interstitial)
3. C (proximal)
4. heterochromatin (interstitial and proximal)
5. centromeres (defined by IWGSC (2018) Science 361 using CENH3 ChIP-seq data from Guo et al. (2016) PLOS Genet. 12)

Usage:
/applications/R/R-3.5.0/bin/Rscript ./1000exomes_SNP_profiles_around_genes_commandArgs.R genes_in_Agenome genomewide 3500 2000 2kb 20

#featureName <- "genes_in_Agenome"
#region <- "genomewide"
#bodyLength <- 3500
#flankSize <- 2000
#flankName <- "2kb"
#winSize <- 20

args <- commandArgs(trailingOnly = T)
featureName <- args[1]
region <- args[2]
bodyLength <- as.numeric(args[3])
flankSize <- as.numeric(args[4])
flankName <- as.character(args[5])
winSize <- as.numeric(args[6])

library(EnrichedHeatmap)
library(parallel)

matDir <- paste0("matrices/")
system(paste0("[-d ", matDir, "] || mkdir ", matDir))

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(substr(featureName, 10, 10),
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 regionGR <- regionGR[grep(substr(featureName, 10, 10),
 seqnames(regionGR))@values]
} else if(region == "interstitial") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(chrPartitions$R1_R2a+1,
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrPartitions$R2b_R3-1)),
 strand = "*")
 regionGR <- regionGR[grep(substr(featureName, 10, 10),
 seqnames(regionGR))@values]
} else if(region == "proximal") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
 regionGR <- regionGR[grep(substr(featureName, 10, 10),
 seqnames(regionGR))@values]
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 regionGR <- regionGR[grep(substr(featureName, 10, 10),
 seqnames(regionGR))@values]
} else if(region == "centromeres") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
 regionGR <- regionGR[grep(substr(featureName, 10, 10),
 seqnames(regionGR))@values]
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
 regionGR <- regionGR[grep(substr(featureName, 10, 10),
 seqnames(regionGR))@values]
} else {
 stop("region is not euchromatin, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
 maskGR <- maskGR[grep(substr(featureName, 10, 10),
 seqnames(maskGR))@values]
} else if(region == "interstitial") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 3),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2a_C+1,
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrPartitions$C_R2b-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(substr(featureName, 10, 10),
 seqnames(maskGR))@values]
} else if(region == "proximal") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(substr(featureName, 10, 10),
 seqnames(maskGR))@values]
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(substr(featureName, 10, 10),
 seqnames(maskGR))@values]
} else if(region == "centromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
 maskGR <- maskGR[grep(substr(featureName, 10, 10),
 seqnames(maskGR))@values]
} else if(region == "genomewide") {
 maskGR <- GRanges()
 maskGR <- maskGR[grep(substr(featureName, 10, 10),
 seqnames(maskGR))@values]
} else {
 stop("region is not euchromatin, interstitial, proximal, heterochromatin, centromeres, or genomewide")
}

Load genes in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
genes <- read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 substring(featureName, first = 10, last = 16), "_", region, ".bed"),
 header = F)
colnames(genes) <- c("chr", "start", "end", "name", "score", "strand")
genesGR <- GRanges(seqnames = genes$chr,
 ranges = IRanges(start = genes$start+1,
 end = genes$end),
 strand = genes$strand,
 number = genes$name)
genesGR <- genesGR[seqnames(genesGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_genes_overlap <- findOverlaps(query = maskGR,
 subject = genesGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_genes_overlap) > 0) {
 genesGR <- genesGR[-subjectHits(mask_genes_overlap)]
}
Load ranLoc in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
ranLoc <- read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 substring(featureName, first = 10, last = 16), "_", region, "_randomLoci.bed"),
 header = F)
colnames(ranLoc) <- c("chr", "start", "end", "name", "score", "strand")
ranLocGR <- GRanges(seqnames = ranLoc$chr,
 ranges = IRanges(start = ranLoc$start+1,
 end = ranLoc$end),
 strand = ranLoc$strand,
 number = ranLoc$name)
ranLocGR <- ranLocGR[seqnames(ranLocGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_ranLoc_overlap <- findOverlaps(query = maskGR,
 subject = ranLocGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_ranLoc_overlap) > 0) {
 ranLocGR <- ranLocGR[-subjectHits(mask_ranLoc_overlap)]
}

Load exome sequencing-derived SNPs from He et al. (2019) Nat. Genet. 51. DOI: 10.1038/s41588-019-0382-2
~3 million SNP sites, available at: http://wheatgenomics.plantpath.ksu.edu/1000EC/
SNPs were annotated with their predicted impact on protein function using SnpEff v4.3t,
after building a SnpEff database for the IWGSC RefSeq v1.0 Chinese Spring genome assembly with the RefSeq v1.1 gene annotation.
SNPs <- read.table("all.GP08_mm75_het3_publication01142019.ann.vcf",
 header = F, skip = 31,
 colClasses = c(rep(NA, 2),
 "NULL",
 rep(NA, 2),
 rep("NULL", 2),
 NA))
Add this line when working with complete VCF including per-accession genotype columns
rep("NULL", 812)))
colnames(SNPs) <- c("chr", "pos", "ref", "alt", "info")
all exome SNPs
SNPsGR <- GRanges(seqnames = SNPs$chr,
 ranges = IRanges(start = SNPs$pos,
 end = SNPs$pos),
 strand = "*",
 coverage = rep(1, dim(SNPs)[1]))

Subset SNPs by class (grep-ing for "A" within VCF "info" field returns all SNPs)
SNPclass <- c(
 "A",
 "upstream_gene_variant",
 "downstream_gene_variant",
 "missense_variant",
 "synonymous_variant",
 "HIGH",
 "MODERATE",
 "LOW",
 "MODIFIER",
 "intron_variant",
 "intergenic"
)
SNPsListGR <- mclapply(seq_along(SNPclass), function(x) {
 classSNPs <- SNPs[grep(SNPclass[x], SNPs$info),]
 GRanges(seqnames = classSNPs$chr,
 ranges = IRanges(start = classSNPs$pos,
 end = classSNPs$pos),
 strand = "*",
 coverage = rep(1, dim(classSNPs)[1]))
}, mc.cores = length(SNPclass))

transition
SNPs_transition <- SNPs[(SNPs$ref == "A" | SNPs$ref == "G") & (SNPs$alt == "G" | SNPs$alt == "A") |
 (SNPs$ref == "C" | SNPs$ref == "T") & (SNPs$alt == "T" | SNPs$alt == "C"),]
SNPs_transition_GR <- GRanges(seqnames = SNPs_transition$chr,
 ranges = IRanges(start = SNPs_transition$pos,
 end = SNPs_transition$pos),
 strand = "*",
 coverage = rep(1, dim(SNPs_transition)[1]))

transversion
SNPs_transversion <- SNPs[(SNPs$ref == "A" | SNPs$ref == "G") & (SNPs$alt == "C" | SNPs$alt == "T") |
 (SNPs$ref == "C" | SNPs$ref == "T") & (SNPs$alt == "A" | SNPs$alt == "G"),]
stopifnot((dim(SNPs_transition)[1] +
 dim(SNPs_transversion)[1]) ==
 dim(SNPs)[1])
SNPs_transversion_GR <- GRanges(seqnames = SNPs_transversion$chr,
 ranges = IRanges(start = SNPs_transversion$pos,
 end = SNPs_transversion$pos),
 strand = "*",
 coverage = rep(1, dim(SNPs_transversion)[1]))

Add transitions and transversions GRanges to SNPsListGR
SNPsListGR <- c(SNPsListGR,
 SNPs_transition_GR,
 SNPs_transversion_GR)
SNPclassNames <- c(
 "all",
 "upstream_gene_variant",
 "downstream_gene_variant",
 "missense_variant",
 "synonymous_variant",
 "HIGH",
 "MODERATE",
 "LOW",
 "MODIFIER",
 "intron_variant",
 "intergenic",
 "transition",
 "transversion"
)

Define matrix and column mean outfiles
outDF <- lapply(seq_along(SNPclassNames), function(x) {
 list(paste0(matDir, "exome_", SNPclassNames[x],
 "_SNPs_around_", featureName, "_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, ".tab"),
 paste0(matDir, "exome_", SNPclassNames[x],
 "_SNPs_around_", featureName, "_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, ".tab"))
})
outDFcolMeans <- lapply(seq_along(SNPclassNames), function(x) {
 list(paste0(matDir, "exome_", SNPclassNames[x],
 "_SNPs_around_", featureName, "_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"),
 paste0(matDir, "exome_", SNPclassNames[x],
 "_SNPs_around_", featureName, "_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"))
})

Function to create SNP frequency matrices for
feature loci and random loci (incl. flanking regions)
and to calculate mean profiles across all feature loci and random loci
covMatrix <- function(signal,
 feature,
 ranLoc,
 featureSize,
 flankSize,
 winSize,
 outDF,
 outDFcolMeans) {
 # feature loci
 set.seed(2840)
 feature_smoothed <- normalizeToMatrix(signal = signal,
 target = feature,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("feature_smoothed")
 print(feature_smoothed)
 print("feature_smoothed rows = ")
 print(length(feature_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 feature_smoothed_DF <- data.frame(feature_smoothed)
 feature_smoothed_DF_colMeans <- as.vector(colMeans(feature_smoothed_DF,
 na.rm = T))
 write.table(feature_smoothed_DF,
 file = outDF[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(feature_smoothed_DF_colMeans,
 file = outDFcolMeans[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)

 # random loci
 set.seed(8472)
 ranLoc_smoothed <- normalizeToMatrix(signal = signal,
 target = ranLoc,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("ranLoc_smoothed")
 print(ranLoc_smoothed)
 print("ranLoc_smoothed rows = ")
 print(length(ranLoc_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 ranLoc_smoothed_DF <- data.frame(ranLoc_smoothed)
 ranLoc_smoothed_DF_colMeans <- as.vector(colMeans(ranLoc_smoothed_DF,
 na.rm = T))
 write.table(ranLoc_smoothed_DF,
 file = outDF[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(ranLoc_smoothed_DF_colMeans,
 file = outDFcolMeans[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
}

Run covMatrix() function on each feature GRanges object to obtain matrices
containing normalised feature density values around target and random loci
mclapply(seq_along(SNPclassNames), function(x) {
 covMatrix(signal = SNPsListGR[[x]],
 feature = genesGR,
 ranLoc = ranLocGR,
 featureSize = bodyLength,
 flankSize = flankSize,
 winSize = winSize,
 outDF = outDF[[x]],
 outDFcolMeans = outDFcolMeans[[x]])
 print(paste0("exome ", SNPclassNames[x],
 " SNP frequency around ", featureName, " ", region,
 " profile calculation complete"))
}, mc.cores = length(SNPclassNames))

Script: TE_superfamily_profiles_around_genes_commandArgs.R:
#!/applications/R/R-3.4.0/bin/Rscript

Profile TE frequency around genes and random loci

Usage:
/applications/R/R-3.4.0/bin/Rscript ./TE_superfamily_profiles_around_genes_commandArgs.R genes_in_Agenome genomewide 3500 2000 2kb 20

#featureName <- "genes_in_Agenome"
#region <- "genomewide"
#bodyLength <- 3500
#flankSize <- 2000
#flankName <- "2kb"
#winSize <- 20

args <- commandArgs(trailingOnly = T)
featureName <- args[1]
region <- args[2]
bodyLength <- as.numeric(args[3])
flankSize <- as.numeric(args[4])
flankName <- as.character(args[5])
winSize <- as.numeric(args[6])

library(EnrichedHeatmap)
library(parallel)

matDir <- paste0("matrices/")
system(paste0("[-d ", matDir, "] || mkdir ", matDir))

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]
chrStart <- c(rep(1, times = length(chrs)))
chrLens <- as.vector(read.table("wheat_v1.0.fa.sizes")[,2])
chrLens <- chrLens[-length(chrLens)]
centromereStart <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,2])
centromereEnd <- as.vector(read.table(paste0("chromosome_compartments/",
 "centromeres_outer_CENH3enriched_IWGSC_2018_Science_Table_S11_chr4ALeftmostInterval_chr5ARightTwoIntervals.txt"))[,3])
chrPartitions <- read.table(paste0("chromosome_compartments/",
 "chromosome_partitions_IWGSC_2018_Science_Table_S29.txt"),
 header = TRUE)
genomeGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = chrStart,
 end = chrLens),
 strand = "*")
genomeGR <- genomeGR[grep(substr(featureName, 10, 10),
 seqnames(genomeGR))@values]

Define region to be analysed
if(region == "euchromatin") {
 regionGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
} else if(region == "heterochromatin") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
} else if(region == "centromeres") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = centromereStart,
 end = centromereEnd),
 strand = "*")
} else if(region == "pericentromeres") {
 regionGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R2a_C+1,
 end = chrPartitions$C_R2b-1),
 strand = "*")
} else if(region == "genomewide") {
 regionGR <- GRanges(seqnames = chrs,
 ranges = IRanges(start = rep(1, length(chrs)),
 end = chrLens),
 strand = "*")
} else {
 stop("region is not euchromatin, heterochromatin, centromeres, pericentromeres, or genomewide")
}

Define region to be masked out of analysis
if(region == "euchromatin") {
 maskGR <- GRanges(seqnames = chrPartitions$chrom,
 ranges = IRanges(start = chrPartitions$R1_R2a+1,
 end = chrPartitions$R2b_R3-1),
 strand = "*")
} else if(region == "heterochromatin") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$R2b_R3),
 end = c(chrPartitions$R1_R2a,
 chrLens)),
 strand = "*")
} else if(region == "centromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 centromereEnd+1),
 end = c(centromereStart-1,
 chrLens)),
 strand = "*")
} else if(region == "pericentromeres") {
 maskGR <- GRanges(seqnames = rep(chrPartitions$chrom, 2),
 ranges = IRanges(start = c(rep(1, dim(chrPartitions)[1]),
 chrPartitions$C_R2b),
 end = c(chrPartitions$R2a_C,
 chrLens)),
 strand = "*")
} else if(region == "genomewide") {
 maskGR <- GRanges()
} else {
 stop("region is not euchromatin, heterochromatin, centromeres, pericentromeres, or genomewide")
}

Load genes in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
genes <- read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 substring(featureName, first = 10, last = 16), "_", region, ".bed"),
 header = F)
colnames(genes) <- c("chr", "start", "end", "name", "score", "strand")
genesGR <- GRanges(seqnames = genes$chr,
 ranges = IRanges(start = genes$start+1,
 end = genes$end),
 strand = genes$strand,
 number = genes$name)
genesGR <- genesGR[seqnames(genesGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_genes_overlap <- findOverlaps(query = maskGR,
 subject = genesGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_genes_overlap) > 0) {
 genesGR <- genesGR[-subjectHits(mask_genes_overlap)]
}
Load ranLoc in BED format and convert into GRanges
Note addition of 1 to 0-based BED start coordinates
ranLoc <- read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 substring(featureName, first = 10, last = 16), "_", region, "_randomLoci.bed"),
 header = F)
colnames(ranLoc) <- c("chr", "start", "end", "name", "score", "strand")
ranLocGR <- GRanges(seqnames = ranLoc$chr,
 ranges = IRanges(start = ranLoc$start+1,
 end = ranLoc$end),
 strand = ranLoc$strand,
 number = ranLoc$name)
ranLocGR <- ranLocGR[seqnames(ranLocGR) != "chrUn"]
Subset to include only those not overlapping masked region
mask_ranLoc_overlap <- findOverlaps(query = maskGR,
 subject = ranLocGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
if(length(mask_ranLoc_overlap) > 0) {
 ranLocGR <- ranLocGR[-subjectHits(mask_ranLoc_overlap)]
}

Load TE superfamily BED files
inDirSuperfams <- "/home/ajt200/analysis/wheat/featureProfiles/TEs/superfamilies/"
superfamCode <- c("RLG",
 "RLC",
 "RLX",
 "RIX",
 "SIX",
 "DTC",
 "DTM",
 "DTX",
 "DTH",
 "DMI",
 "DTT",
 "DXX",
 "DTA",
 "DHH",
 "XXX")
superfamName <- c("Gypsy_LTR",
 "Copia_LTR",
 "Unclassified_LTR",
 "LINE",
 "SINE",
 "CACTA",
 "Mutator",
 "Unclassified_with_TIRs",
 "Harbinger",
 "MITE",
 "Mariner",
 "Unclassified_class_2",
 "hAT",
 "Helitrons",
 "Unclassified_repeats")

superfamListGR <- mclapply(seq_along(superfamName), function(x) {
 superfam <- read.table(paste0(inDirSuperfams,
 "iwgsc_refseqv1.0_TransposableElements_2017Mar13_superfamily_",
 superfamName[x], "_", superfamCode[x], ".bed"),
 header = F)
 colnames(superfam) <- c("chr", "start", "end", "name", "score", "strand")
 superfamGR <- GRanges(seqnames = superfam$chr,
 ranges = IRanges(start = superfam$start+1,
 end = superfam$end),
 strand = "*",
 number = superfam$name,
 coverage = rep(1, dim(superfam)[1]))
 superfamGR <- superfamGR[seqnames(superfamGR) != "chrUn"]
 # Subset to include only those not overlapping masked region
 mask_superfam_overlap <- findOverlaps(query = maskGR,
 subject = superfamGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
 if(length(mask_superfam_overlap) > 0) {
 superfamGR <- superfamGR[-subjectHits(mask_superfam_overlap)]
 }
 superfamGR
}, mc.cores = length(superfamName))

Define matrix and column mean outfiles
outDF <- lapply(seq_along(superfamName), function(x) {
 list(paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_", featureName, "_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, ".tab"),
 paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_", featureName, "_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, ".tab"))
})
outDFcolMeans <- lapply(seq_along(superfamName), function(x) {
 list(paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_", featureName, "_", region,
 "_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"),
 paste0(matDir, superfamName[x], "_", superfamCode[x],
 "_around_", featureName, "_", region,
 "_ranLoc_matrix_bin", winSize, "bp_flank", flankName, "_colMeans.tab"))
})

Function to create TE frequency matrices for
feature loci and random loci (incl. flanking regions)
and to calculate mean profiles across all feature loci and random loci
covMatrix <- function(signal,
 feature,
 ranLoc,
 featureSize,
 flankSize,
 winSize,
 outDF,
 outDFcolMeans) {
 # feature loci
 set.seed(2840)
 feature_smoothed <- normalizeToMatrix(signal = signal,
 target = feature,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("feature_smoothed")
 print(feature_smoothed)
 print("feature_smoothed rows = ")
 print(length(feature_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 feature_smoothed_DF <- data.frame(feature_smoothed)
 feature_smoothed_DF_colMeans <- as.vector(colMeans(feature_smoothed_DF,
 na.rm = T))
 write.table(feature_smoothed_DF,
 file = outDF[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(feature_smoothed_DF_colMeans,
 file = outDFcolMeans[[1]],
 quote = F, sep = "\t", row.names = F, col.names = T)

 # random loci
 set.seed(8472)
 ranLoc_smoothed <- normalizeToMatrix(signal = signal,
 target = ranLoc,
 value_column = "coverage",
 extend = flankSize,
 mean_mode = "w0",
 w = winSize,
 background = 0,
 smooth = TRUE,
 include_target = TRUE,
 target_ratio = featureSize/(featureSize+(flankSize*2)))
 print("ranLoc_smoothed")
 print(ranLoc_smoothed)
 print("ranLoc_smoothed rows = ")
 print(length(ranLoc_smoothed)/round((featureSize/winSize)+((flankSize*2)/winSize)))
 ranLoc_smoothed_DF <- data.frame(ranLoc_smoothed)
 ranLoc_smoothed_DF_colMeans <- as.vector(colMeans(ranLoc_smoothed_DF,
 na.rm = T))
 write.table(ranLoc_smoothed_DF,
 file = outDF[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
 write.table(ranLoc_smoothed_DF_colMeans,
 file = outDFcolMeans[[2]],
 quote = F, sep = "\t", row.names = F, col.names = T)
}

Run covMatrix() function on each feature GRanges object to obtain matrices
containing normalised feature density values around target and random loci
mclapply(seq_along(superfamName), function(x) {
 covMatrix(signal = superfamListGR[[x]],
 feature = genesGR,
 ranLoc = ranLocGR,
 featureSize = bodyLength,
 flankSize = flankSize,
 winSize = winSize,
 outDF = outDF[[x]],
 outDFcolMeans = outDFcolMeans[[x]])
 print(paste0(superfamName[x], "_", superfamCode[x],
 "_around_", featureName, "_", region,
 " profile calculation complete"))
}, mc.cores = length(superfamName))

The R script group_genes_into_quantiles_and_popgenetics.R was used to divide genes into groups corresponding to those in given percentile ranges (e.g., 100th–75th (Quantile 1), 75th–50th (Quantile 2), 50th–25th (Quantile 3) and 25th–0th (Quantile 4)) with regard to various ordering factors, such as mean crossover recombination rate (cM/Mb) values, derived from a Chinese Spring × Renan genetic map, ChIP-seq signal, or population genetics statistics. This script extends gene boundaries by 1 kb on each side, and computes mean cM/Mb values within these intervals using previously calculated mean recombination rates in 10-Mb sliding windows with a 1-Mb step (iwgsc_refseqv1.0_recombination_rate.txt, available as part of the IWGSC RefSeq v1.0 annotation). group_genes_into_quantiles_and_popgenetics.R requires coordinates for representative gene models from the IWGSC RefSeq v1.1 annotation and, separately, random loci in BED6 format: column 1 = chromosome ID; column 2 = 0-based start coordinates; column 3 = 1-based end coordinates; column 4 = sequential or otherwise unique numbers; column 5 = fill with NA; column 6 = strand. To compute population genetics statistics for each gene, this script also requires a variant call format (VCF) file containing ~3 million exome sequencing-derived SNP sites (all.GP08_mm75_het3_publication01142019.vcf.gz), with geographical information about each accession obtained from He et al. (2019) Nat. Genet. 51. DOI: 10.1038/s41588-019-0382-2.

Script: group_genes_into_quantiles_and_popgenetics.R:
#!/applications/R/R-3.5.0/bin/Rscript

Calculate population genetics statistics,
mean recombination rate (cM/Mb) and mean coverage values for each gene.
Use these values as ordering factors for dividing genes
into groups corresponding to genes in given
percentile ranges with regard to these values.

Usage:
/applications/R/R-3.5.0/bin/Rscript group_genes_into_quantiles_and_popgenetics.R 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes

#featureName <- unlist(strsplit("genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide",
split = ","))
#region <- "genes"

args <- commandArgs(trailingOnly = T)
featureName <- unlist(strsplit(args[1],
 split = ","))
region <- args[2]

library(PopGenome)
library(WhopGenome)
library(data.table)
library(GenomicRanges)
library(dplyr)
library(parallel)
library(doParallel)
registerDoParallel(cores = detectCores())
print("Currently registered parallel backend name, version and cores")
print(getDoParName())
print(getDoParVersion())
print(getDoParWorkers())

Load features
features <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 header = F)
})
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature data.frames
if(length(featureName) == 3) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
featureIDs <- sub(pattern = "\\.\\d+", replacement = "",
 features$V9)

inDir <- "/home/ajt200/analysis/wheat/annotation/221118_download/He_Akhunov_2019_NatGenet_1000exomes_SNPs/"

Load 811 exomes-derived SNP matrix from He et al. (2019) Nat. Genet. 51. DOI: 10.1038/s41588-019-0382-2
~3 million SNP sites, available at: http://wheatgenomics.plantpath.ksu.edu/1000EC/
if(!(file.exists(paste0(inDir, "all.GP08_mm75_het3_publication01142019.vcf.gz.tbi")))) {
 tabix_build(paste0(inDir, "all.GP08_mm75_het3_publication01142019.vcf.gz"),
 sc = as.integer(1), bc = as.integer(2), ec = as.integer(2), meta = "#", lineskip = as.integer(0))
} else {
 print("*.vcf.gz.tbi index file exists")
}
vcf_handle <- vcf_open(paste0(inDir, "all.GP08_mm75_het3_publication01142019.vcf.gz"))
chrs <- paste0(rep("chr", 21), rep(1:7, 3),
 c(rep("A", 7), rep("B", 7), rep("D", 7)))
This works with lapply, but fails with mclapply for some reason
genomeClass_list <- lapply(seq_along(chrs), function(x) {
 print(x)
 Whop_readVCF(v = vcf_handle,
 numcols = 1000,
 tid = chrs[x],
 frompos = 1,
 topos = 1000000000,
 samplenames = NA,
 gffpath = "/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706.gff3",
 include.unknown = T)
})

Specify populations based on regional groupings of accessions
pop_name <- c(
 "Africa",
 "MiddleEast",
 "Asia",
 "FormerSU",
 "EasternEurope",
 "WesternEurope",
 "NorthAmerica",
 "CentralAmerica",
 "SouthAmerica",
 "Oceania"
)

pop_list <- lapply(seq_along(pop_name), function(x) {
 as.character(read.table(paste0(inDir, pop_name[x], "_accessions.txt"))[[1]])
})

genomeClass_list <- lapply(seq_along(genomeClass_list), function(x) {
 set.populations(genomeClass_list[[x]],
 pop_list, diploid = T)
})

Assign to new object as mclapply may misbehave otherwise
print("set.synnonsyn")
genomeClass_list_syn <- mclapply(seq_along(genomeClass_list), function(x) {
 set.synnonsyn(genomeClass_list[[x]],
 ref.chr = paste0("/home/ajt200/analysis/wheat/wheat_IWGSC_WGA_v1.0_pseudomolecules/", chrs[x], ".fa"),
 save.codons = F)
}, mc.cores = length(genomeClass_list), mc.preschedule = F)

Extact variants located within features
print("splitting.data")
genomeClassSplit_list <- mclapply(seq_along(genomeClass_list_syn), function(x) {
 splitting.data(genomeClass_list_syn[[x]],
 positions = lapply(which(features$V1 == chrs[x]), function(x) {
 features[x,]$V4:features[x,]$V5 }),
 type = 2)
}, mc.cores = length(genomeClass_list_syn), mc.preschedule = F)

Get neutrality, diversity, F_ST (fixation index), site frequency spectrum (SFS),
composite-likelihood-ratio (CLR) test, and linkage disequilibrium statistics
print("neutrality")
genomeClassSplit_list_all <- mclapply(seq_along(genomeClassSplit_list), function(x) {
 neutrality.stats(genomeClassSplit_list[[x]],
 FAST = F, do.R2 = T)
}, mc.cores = length(genomeClassSplit_list), mc.preschedule = F)
genomeClassSplit_list_syn <- mclapply(seq_along(genomeClassSplit_list), function(x) {
 neutrality.stats(genomeClassSplit_list[[x]],
 FAST = F, do.R2 = T, subsites = "syn")
}, mc.cores = length(genomeClassSplit_list), mc.preschedule = F)
genomeClassSplit_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list), function(x) {
 neutrality.stats(genomeClassSplit_list[[x]],
 FAST = F, do.R2 = T, subsites = "nonsyn")
}, mc.cores = length(genomeClassSplit_list), mc.preschedule = F)
Below will extract stats for first population only
#neutrality_stats_df_list <- lapply(seq_along(genomeClassSplit_list), function(x) {
data.frame(get.neutrality(genomeClassSplit_list[[x]],
theta = T)[[1]],
stringsAsFactors = F)
#})

print("F_ST")
genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 F_ST.stats(genomeClassSplit_list_all[[x]],
 detail = T, mode = "nucleotide", FAST = F)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 F_ST.stats(genomeClassSplit_list_syn[[x]],
 detail = T, mode = "nucleotide", FAST = F, subsites = "syn")
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 F_ST.stats(genomeClassSplit_list_nonsyn[[x]],
 detail = T, mode = "nucleotide", FAST = F, subsites = "nonsyn")
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)
Below will extract stats for first population only
#F_ST_stats_df_list <- lapply(seq_along(genomeClassSplit_list), function(x) {
data.frame(get.F_ST(genomeClassSplit_list[[x]],
mode = "nucleotide"),
stringsAsFactors = F)
#})

genomeClassSplit_list_all <- genomeClassSplit_list_all2
genomeClassSplit_list_syn <- genomeClassSplit_list_syn2
genomeClassSplit_list_nonsyn <- genomeClassSplit_list_nonsyn2
rm(genomeClassSplit_list_all2, genomeClassSplit_list_syn2, genomeClassSplit_list_nonsyn2); gc()

diversity.stats function generates error when applied to genomeClassSplit_list
consisting of multiple populations with "keep.site.info = T":
"Error in `rownames<-`(`*tmp*`, value = nam) :
attempt to set 'rownames' on an object with no dimensions"
However, most diversity stats (but not Pi from Nei) are
available after running F_ST.stats
If Pi from Nei is needed, run diversity.stats with "keep.site.info = F"
(HOWEVER: Pi shouldn't be used when "include.unknown = T"
is specified in Whop_readVCF function call, as above)
print("diversity")
genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 diversity.stats(genomeClassSplit_list_all[[x]],
 pi = T, keep.site.info = F)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 diversity.stats(genomeClassSplit_list_syn[[x]],
 pi = T, keep.site.info = F, subsites = "syn")
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 diversity.stats(genomeClassSplit_list_nonsyn[[x]],
 pi = T, keep.site.info = F, subsites = "nonsyn")
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)
Below will extract stats for first population only
#diversity_stats_df_list <- lapply(seq_along(genomeClassSplit_list), function(x) {
data.frame(get.diversity(genomeClassSplit_list[[x]],
between = F)[[1]],
stringsAsFactors = F)
#})

genomeClassSplit_list_all <- genomeClassSplit_list_all2
genomeClassSplit_list_syn <- genomeClassSplit_list_syn2
genomeClassSplit_list_nonsyn <- genomeClassSplit_list_nonsyn2
rm(genomeClassSplit_list_all2, genomeClassSplit_list_syn2, genomeClassSplit_list_nonsyn2); gc()

Get site frequency spectrum (SFS) for each site
print("detail (SFS)")
genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 detail.stats(genomeClassSplit_list_all[[x]],
 site.spectrum = T)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 detail.stats(genomeClassSplit_list_syn[[x]],
 site.spectrum = T, subsites = "syn")
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 detail.stats(genomeClassSplit_list_nonsyn[[x]],
 site.spectrum = T, subsites = "nonsyn")
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

genomeClassSplit_list_all <- genomeClassSplit_list_all2
genomeClassSplit_list_syn <- genomeClassSplit_list_syn2
genomeClassSplit_list_nonsyn <- genomeClassSplit_list_nonsyn2
rm(genomeClassSplit_list_all2, genomeClassSplit_list_syn2, genomeClassSplit_list_nonsyn2); gc()

Calculate mean SFS for each gene in each population
all
SFS_means_list_all <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 SFS_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 SFS_pop <- sapply(genomeClassSplit_list_all[[x]]@region.stats@minor.allele.freqs, function(y) {
 if(length(y) == 0) {
 return(NA)
 } else {
 return(mean(y[p,], na.rm = T))
 }
 })
 SFS_pop_mat <- cbind(SFS_pop_mat, SFS_pop)
 }
 colnames(SFS_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(SFS_pop_mat)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
syn
SFS_means_list_syn <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 SFS_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 SFS_pop <- sapply(genomeClassSplit_list_syn[[x]]@region.stats@minor.allele.freqs, function(y) {
 if(length(y) == 0) {
 return(NA)
 } else {
 return(mean(y[p,], na.rm = T))
 }
 })
 SFS_pop_mat <- cbind(SFS_pop_mat, SFS_pop)
 }
 colnames(SFS_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(SFS_pop_mat)
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
nonsyn
SFS_means_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 SFS_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 SFS_pop <- sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@minor.allele.freqs, function(y) {
 if(length(y) == 0) {
 return(NA)
 } else {
 return(mean(y[p,], na.rm = T))
 }
 })
 SFS_pop_mat <- cbind(SFS_pop_mat, SFS_pop)
 }
 colnames(SFS_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(SFS_pop_mat)
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

Calculate composite-likelihood-ratio (CLR) tests from Nielsen
print("CLR")
all
genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 # Create a list in which each element is a table of frequencies of minor allele frequencies
 # across all genes for the given population
 MAF_freqTable_list <- lapply(seq_along(pop_name), function(p) {
 table(unlist(
 sapply(genomeClassSplit_list_all[[x]]@region.stats@minor.allele.freqs, function(y) {
 return(y[p,])
 })
))
 })
 # Use MAF_freqTable_list as input for CLR test
 return(sweeps.stats(genomeClassSplit_list_all[[x]],
 freq.table = MAF_freqTable_list))
})
syn
genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 # Create a list in which each element is a table of frequencies of minor allele frequencies
 # across all genes for the given population
 MAF_freqTable_list <- lapply(seq_along(pop_name), function(p) {
 table(unlist(
 sapply(genomeClassSplit_list_syn[[x]]@region.stats@minor.allele.freqs, function(y) {
 return(y[p,])
 })
))
 })
 # Use MAF_freqTable_list as input for CLR test
 return(sweeps.stats(genomeClassSplit_list_syn[[x]],
 freq.table = MAF_freqTable_list,
 subsites = "syn"))
})
nonsyn
genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 # Create a list in which each element is a table of frequencies of minor allele frequencies
 # across all genes for the given population
 MAF_freqTable_list <- lapply(seq_along(pop_name), function(p) {
 table(unlist(
 sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@minor.allele.freqs, function(y) {
 return(y[p,])
 })
))
 })
 # Use MAF_freqTable_list as input for CLR test
 return(sweeps.stats(genomeClassSplit_list_nonsyn[[x]],
 freq.table = MAF_freqTable_list,
 subsites = "nonsyn"))
})

genomeClassSplit_list_all <- genomeClassSplit_list_all2
genomeClassSplit_list_syn <- genomeClassSplit_list_syn2
genomeClassSplit_list_nonsyn <- genomeClassSplit_list_nonsyn2
rm(genomeClassSplit_list_all2, genomeClassSplit_list_syn2, genomeClassSplit_list_nonsyn2); gc()

Calculate recombination statistics (Hudson's RM)
genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 recomb.stats(genomeClassSplit_list_all[[x]])
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 recomb.stats(genomeClassSplit_list_syn[[x]],
 subsites = "syn")
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 recomb.stats(genomeClassSplit_list_nonsyn[[x]],
 subsites = "nonsyn")
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

genomeClassSplit_list_all <- genomeClassSplit_list_all2
genomeClassSplit_list_syn <- genomeClassSplit_list_syn2
genomeClassSplit_list_nonsyn <- genomeClassSplit_list_nonsyn2
rm(genomeClassSplit_list_all2, genomeClassSplit_list_syn2, genomeClassSplit_list_nonsyn2); gc()

Calculate linkage disequilibrium (LD) statistics
print("linkage")
genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 linkage.stats(genomeClassSplit_list_all[[x]],
 detail = T, do.ZnS = T, do.WALL = T)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 linkage.stats(genomeClassSplit_list_syn[[x]],
 detail = T, do.ZnS = T, do.WALL = T, subsites = "syn")
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 linkage.stats(genomeClassSplit_list_nonsyn[[x]],
 detail = T, do.ZnS = T, do.WALL = T, subsites = "nonsyn")
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

genomeClassSplit_list_all <- genomeClassSplit_list_all2
genomeClassSplit_list_syn <- genomeClassSplit_list_syn2
genomeClassSplit_list_nonsyn <- genomeClassSplit_list_nonsyn2
rm(genomeClassSplit_list_all2, genomeClassSplit_list_syn2, genomeClassSplit_list_nonsyn2); gc()

Calculate mean LD statistics for each gene in each population
all
d_raw_means_list_all <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 d_raw_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_raw_pop <- sapply(genomeClassSplit_list_all[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_raw",], na.rm = T))
 }
 })
 d_raw_pop_mat <- cbind(d_raw_pop_mat, d_raw_pop)
 }
 colnames(d_raw_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_raw_pop_mat)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
syn
d_raw_means_list_syn <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 d_raw_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_raw_pop <- sapply(genomeClassSplit_list_syn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_raw",], na.rm = T))
 }
 })
 d_raw_pop_mat <- cbind(d_raw_pop_mat, d_raw_pop)
 }
 colnames(d_raw_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_raw_pop_mat)
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
nonsyn
d_raw_means_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 d_raw_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_raw_pop <- sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_raw",], na.rm = T))
 }
 })
 d_raw_pop_mat <- cbind(d_raw_pop_mat, d_raw_pop)
 }
 colnames(d_raw_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_raw_pop_mat)
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

all
d_prime_means_list_all <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 d_prime_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_prime_pop <- sapply(genomeClassSplit_list_all[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_prime",], na.rm = T))
 }
 })
 d_prime_pop_mat <- cbind(d_prime_pop_mat, d_prime_pop)
 }
 colnames(d_prime_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_prime_pop_mat)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
syn
d_prime_means_list_syn <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 d_prime_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_prime_pop <- sapply(genomeClassSplit_list_syn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_prime",], na.rm = T))
 }
 })
 d_prime_pop_mat <- cbind(d_prime_pop_mat, d_prime_pop)
 }
 colnames(d_prime_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_prime_pop_mat)
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
nonsyn
d_prime_means_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 d_prime_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_prime_pop <- sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_prime",], na.rm = T))
 }
 })
 d_prime_pop_mat <- cbind(d_prime_pop_mat, d_prime_pop)
 }
 colnames(d_prime_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_prime_pop_mat)
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

all
d_dist_means_list_all <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 d_dist_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_dist_pop <- sapply(genomeClassSplit_list_all[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_dist",], na.rm = T))
 }
 })
 d_dist_pop_mat <- cbind(d_dist_pop_mat, d_dist_pop)
 }
 colnames(d_dist_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_dist_pop_mat)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
syn
d_dist_means_list_syn <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 d_dist_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_dist_pop <- sapply(genomeClassSplit_list_syn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_dist",], na.rm = T))
 }
 })
 d_dist_pop_mat <- cbind(d_dist_pop_mat, d_dist_pop)
 }
 colnames(d_dist_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_dist_pop_mat)
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
nonsyn
d_dist_means_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 d_dist_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 d_dist_pop <- sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "d_dist",], na.rm = T))
 }
 })
 d_dist_pop_mat <- cbind(d_dist_pop_mat, d_dist_pop)
 }
 colnames(d_dist_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(d_dist_pop_mat)
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

all
r2_means_list_all <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 r2_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 r2_pop <- sapply(genomeClassSplit_list_all[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "r2",], na.rm = T))
 }
 })
 r2_pop_mat <- cbind(r2_pop_mat, r2_pop)
 }
 colnames(r2_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(r2_pop_mat)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
syn
r2_means_list_syn <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 r2_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 r2_pop <- sapply(genomeClassSplit_list_syn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "r2",], na.rm = T))
 }
 })
 r2_pop_mat <- cbind(r2_pop_mat, r2_pop)
 }
 colnames(r2_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(r2_pop_mat)
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
nonsyn
r2_means_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 r2_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 r2_pop <- sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "r2",], na.rm = T))
 }
 })
 r2_pop_mat <- cbind(r2_pop_mat, r2_pop)
 }
 colnames(r2_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(r2_pop_mat)
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

all
r_means_list_all <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
 r_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 r_pop <- sapply(genomeClassSplit_list_all[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "r",], na.rm = T))
 }
 })
 r_pop_mat <- cbind(r_pop_mat, r_pop)
 }
 colnames(r_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(r_pop_mat)
}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
syn
r_means_list_syn <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
 r_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 r_pop <- sapply(genomeClassSplit_list_syn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "r",], na.rm = T))
 }
 })
 r_pop_mat <- cbind(r_pop_mat, r_pop)
 }
 colnames(r_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(r_pop_mat)
}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
nonsyn
r_means_list_nonsyn <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
 r_pop_mat <- NULL
 for(p in 1:length(pop_name)) {
 r_pop <- sapply(genomeClassSplit_list_nonsyn[[x]]@region.stats@linkage.disequilibrium, function(y) {
 if(length(y) <= 1) {
 return(NA)
 } else if(length(y[p,1][[1]]) == 0) {
 return(NA)
 } else {
 return(mean(y[p,1][[1]][rownames(y[p,1][[1]]) == "r",], na.rm = T))
 }
 })
 r_pop_mat <- cbind(r_pop_mat, r_pop)
 }
 colnames(r_pop_mat) <- paste0("pop ", 1:length(pop_name))
 return(r_pop_mat)
}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

Calculate additional LD statistics (r2, Fisher exact test P-value, and distance)
NOTE: commented out as the above, more detailed LD statistics (d_raw, d_prime, d_dist, r2, r)
would be replaced with those generated by calc.R2 (in genomeClassSplit_list_nonsyn[[x]]@region.stats@linkage.disequilibrium)
#genomeClassSplit_list_all2 <- mclapply(seq_along(genomeClassSplit_list_all), function(x) {
calc.R2(genomeClassSplit_list_all[[x]])
#}, mc.cores = length(genomeClassSplit_list_all), mc.preschedule = F)
#genomeClassSplit_list_syn2 <- mclapply(seq_along(genomeClassSplit_list_syn), function(x) {
calc.R2(genomeClassSplit_list_syn[[x]],
subsites = "syn")
#}, mc.cores = length(genomeClassSplit_list_syn), mc.preschedule = F)
#genomeClassSplit_list_nonsyn2 <- mclapply(seq_along(genomeClassSplit_list_nonsyn), function(x) {
calc.R2(genomeClassSplit_list_nonsyn[[x]],
subsites = "nonsyn")
#}, mc.cores = length(genomeClassSplit_list_nonsyn), mc.preschedule = F)

For each population, combine statistics into one dataframe
popgen_stats_pop_list <- mclapply(seq_along(pop_name), function(w) {
#for(w in seq_along(pop_name)) {
 popgen_stats_chr_list <- lapply(seq_along(genomeClassSplit_list_all), function(x) {
 data.frame(chr = as.character(chrs[x]),
 start = as.integer(sub(pattern = " - \\d+", replacement = "",
 x = genomeClassSplit_list_all[[x]]@region.names)),
 end = as.integer(sub(pattern = "\\d+ - ", replacement = "",
 x = genomeClassSplit_list_all[[x]]@region.names)),
 width = as.integer(genomeClassSplit_list_all[[x]]@n.sites),
 ## OR
 #width = as.integer((as.integer(sub(pattern = "\\d+ - ", replacement = "",
 # x = genomeClassSplit_list_all[[x]]@region.names)) -
 # as.integer(sub(pattern = " - \\d+", replacement = "",
 # x = genomeClassSplit_list_all[[x]]@region.names))) + 1),
 strand = as.character(features[features$V1 == chrs[x],]$V7),
 ID = as.character(features[features$V1 == chrs[x],]$V9),
 # all
 nuc.diversity.within_all = as.numeric(genomeClassSplit_list_all[[x]]@nuc.diversity.within[,w]),
 hap.diversity.within_all = as.numeric(genomeClassSplit_list_all[[x]]@hap.diversity.within[,w]),
 Pi_Nei_all = as.numeric(genomeClassSplit_list_all[[x]]@Pi[,w]),
 nuc.F_ST.vs.all_all = as.numeric(genomeClassSplit_list_all[[x]]@nuc.F_ST.vs.all[,w]),
 nucleotide.F_ST_all = as.numeric(genomeClassSplit_list_all[[x]]@nucleotide.F_ST[,1]),
 n.segregating.sites_all = as.numeric(genomeClassSplit_list_all[[x]]@n.segregating.sites[,w]),
 Tajima.D_all = as.numeric(genomeClassSplit_list_all[[x]]@Tajima.D[,w]),
 Rozas.R_2_all = as.numeric(genomeClassSplit_list_all[[x]]@Rozas.R_2[,w]),
 Fu.Li.F_all = as.numeric(genomeClassSplit_list_all[[x]]@Fu.Li.F[,w]),
 Fu.Li.D_all = as.numeric(genomeClassSplit_list_all[[x]]@Fu.Li.D[,w]),
 theta_Tajima_all = as.numeric(genomeClassSplit_list_all[[x]]@theta_Tajima[,w]),
 theta_Watterson_all = as.numeric(genomeClassSplit_list_all[[x]]@theta_Watterson[,w]),
 theta_Fu.Li_all = as.numeric(genomeClassSplit_list_all[[x]]@theta_Fu.Li[,w]),
 theta_Achaz.Tajima_all = as.numeric(genomeClassSplit_list_all[[x]]@theta_Achaz.Tajima[,w]),
 theta_Achaz.Watterson_all = as.numeric(genomeClassSplit_list_all[[x]]@theta_Achaz.Watterson[,w]),
 SFS_all = as.numeric(SFS_means_list_all[[x]][,w]),
 CLR_all = as.numeric(genomeClassSplit_list_all[[x]]@CLR[,w]),
 CL_all = as.numeric(genomeClassSplit_list_all[[x]]@CL[,w]),
 Kelly.Z_nS_all = as.numeric(genomeClassSplit_list_all[[x]]@Kelly.Z_nS[,w]),
 Rozas.ZA_all = as.numeric(genomeClassSplit_list_all[[x]]@Rozas.ZA[,w]),
 Rozas.ZZ_all = as.numeric(genomeClassSplit_list_all[[x]]@Rozas.ZZ[,w]),
 Wall.B_all = as.numeric(genomeClassSplit_list_all[[x]]@Wall.B[,w]),
 Wall.Q_all = as.numeric(genomeClassSplit_list_all[[x]]@Wall.Q[,w]),
 d_raw_all = as.numeric(d_raw_means_list_all[[x]][,w]),
 d_prime_all = as.numeric(d_prime_means_list_all[[x]][,w]),
 d_dist_all = as.numeric(d_dist_means_list_all[[x]][,w]),
 r2_all = as.numeric(r2_means_list_all[[x]][,w]),
 r_all = as.numeric(r_means_list_all[[x]][,w]),
 Hudson.RM_all = as.numeric(genomeClassSplit_list_all[[x]]@RM[,w]),
 # syn
 nuc.diversity.within_syn = as.numeric(genomeClassSplit_list_syn[[x]]@nuc.diversity.within[,w]),
 hap.diversity.within_syn = as.numeric(genomeClassSplit_list_syn[[x]]@hap.diversity.within[,w]),
 Pi_Nei_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Pi[,w]),
 nuc.F_ST.vs.all_syn = as.numeric(genomeClassSplit_list_syn[[x]]@nuc.F_ST.vs.all[,w]),
 nucleotide.F_ST_syn = as.numeric(genomeClassSplit_list_syn[[x]]@nucleotide.F_ST[,1]),
 n.segregating.sites_syn = as.numeric(genomeClassSplit_list_syn[[x]]@n.segregating.sites[,w]),
 Tajima.D_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Tajima.D[,w]),
 Rozas.R_2_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Rozas.R_2[,w]),
 Fu.Li.F_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Fu.Li.F[,w]),
 Fu.Li.D_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Fu.Li.D[,w]),
 theta_Tajima_syn = as.numeric(genomeClassSplit_list_syn[[x]]@theta_Tajima[,w]),
 theta_Watterson_syn = as.numeric(genomeClassSplit_list_syn[[x]]@theta_Watterson[,w]),
 theta_Fu.Li_syn = as.numeric(genomeClassSplit_list_syn[[x]]@theta_Fu.Li[,w]),
 theta_Achaz.Tajima_syn = as.numeric(genomeClassSplit_list_syn[[x]]@theta_Achaz.Tajima[,w]),
 theta_Achaz.Watterson_syn = as.numeric(genomeClassSplit_list_syn[[x]]@theta_Achaz.Watterson[,w]),
 SFS_syn = as.numeric(SFS_means_list_syn[[x]][,w]),
 CLR_syn = as.numeric(genomeClassSplit_list_syn[[x]]@CLR[,w]),
 CL_syn = as.numeric(genomeClassSplit_list_syn[[x]]@CL[,w]),
 Kelly.Z_nS_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Kelly.Z_nS[,w]),
 Rozas.ZA_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Rozas.ZA[,w]),
 Rozas.ZZ_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Rozas.ZZ[,w]),
 Wall.B_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Wall.B[,w]),
 Wall.Q_syn = as.numeric(genomeClassSplit_list_syn[[x]]@Wall.Q[,w]),
 d_raw_syn = as.numeric(d_raw_means_list_syn[[x]][,w]),
 d_prime_syn = as.numeric(d_prime_means_list_syn[[x]][,w]),
 d_dist_syn = as.numeric(d_dist_means_list_syn[[x]][,w]),
 r2_syn = as.numeric(r2_means_list_syn[[x]][,w]),
 r_syn = as.numeric(r_means_list_syn[[x]][,w]),
 Hudson.RM_syn = as.numeric(genomeClassSplit_list_syn[[x]]@RM[,w]),
 # nonsyn
 nuc.diversity.within_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@nuc.diversity.within[,w]),
 hap.diversity.within_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@hap.diversity.within[,w]),
 Pi_Nei_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Pi[,w]),
 nuc.F_ST.vs.all_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@nuc.F_ST.vs.all[,w]),
 nucleotide.F_ST_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@nucleotide.F_ST[,1]),
 n.segregating.sites_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@n.segregating.sites[,w]),
 Tajima.D_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Tajima.D[,w]),
 Rozas.R_2_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Rozas.R_2[,w]),
 Fu.Li.F_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Fu.Li.F[,w]),
 Fu.Li.D_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Fu.Li.D[,w]),
 theta_Tajima_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@theta_Tajima[,w]),
 theta_Watterson_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@theta_Watterson[,w]),
 theta_Fu.Li_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@theta_Fu.Li[,w]),
 theta_Achaz.Tajima_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@theta_Achaz.Tajima[,w]),
 theta_Achaz.Watterson_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@theta_Achaz.Watterson[,w]),
 SFS_nonsyn = as.numeric(SFS_means_list_nonsyn[[x]][,w]),
 CLR_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@CLR[,w]),
 CL_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@CL[,w]),
 Kelly.Z_nS_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Kelly.Z_nS[,w]),
 Rozas.ZA_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Rozas.ZA[,w]),
 Rozas.ZZ_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Rozas.ZZ[,w]),
 Wall.B_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Wall.B[,w]),
 Wall.Q_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@Wall.Q[,w]),
 d_raw_nonsyn = as.numeric(d_raw_means_list_nonsyn[[x]][,w]),
 d_prime_nonsyn = as.numeric(d_prime_means_list_nonsyn[[x]][,w]),
 d_dist_nonsyn = as.numeric(d_dist_means_list_nonsyn[[x]][,w]),
 r2_nonsyn = as.numeric(r2_means_list_nonsyn[[x]][,w]),
 r_nonsyn = as.numeric(r_means_list_nonsyn[[x]][,w]),
 Hudson.RM_nonsyn = as.numeric(genomeClassSplit_list_nonsyn[[x]]@RM[,w]),

 stringsAsFactors = F)
 })
 popgen_stats_pop <- do.call(rbind, popgen_stats_chr_list)

 # Sanity check to ensure popgen_stats feature chromosome IDs and start and end coordinates
 # are identical to those in features data.frame
 if(!identical(popgen_stats_pop$chr, as.character(features$V1))) {
 stop("popgen_stats chromosome IDs are not identical to those in features data.frame!")
 }
 if(!identical(popgen_stats_pop$start, features$V4)) {
 stop("popgen_stats start coordinates are not identical to those in features data.frame!")
 }
 if(!identical(popgen_stats_pop$end, features$V5)) {
 stop("popgen_stats end coordinates are not identical to those in features data.frame!")
 }
 return(popgen_stats_pop)
}, mc.cores = length(pop_list), mc.preschedule = F)

for(w in seq_along(pop_name)) {
 write.table(popgen_stats_pop_list[[w]],
 file = paste0("PopGenome_stats_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[w], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
}

For when working with a single population:
#popgen_stats_df_list <- lapply(seq_along(neutrality_stats_df_list), function(x) {
data.frame(chr = as.character(chrs[x]),
start = as.integer(sub(pattern = " - \\d+", replacement = "",
x = genomeClassSplit_list_all[[x]]@region.names)),
end = as.integer(sub(pattern = "\\d+ - ", replacement = "",
x = genomeClassSplit_list_all[[x]]@region.names)),
width = as.integer((as.integer(sub(pattern = "\\d+ - ", replacement = "",
x = genomeClassSplit_list_all[[x]]@region.names)) -
as.integer(sub(pattern = " - \\d+", replacement = "",
x = genomeClassSplit_list_all[[x]]@region.names))) + 1),
OR
#width = as.integer(genomeClassSplit_list_all[[x]]@n.sites),
strand = as.character(features[features$V1 == chrs[x],]$V7),
ID = as.character(features[features$V1 == chrs[x],]$V9),
nuc.diversity.within_all = as.numeric(diversity_stats_df_list[[x]]$nuc.diversity.within),
hap.diversity.within_all = as.numeric(diversity_stats_df_list[[x]]$hap.diversity.within),
Pi_all = as.numeric(diversity_stats_df_list[[x]]$Pi),
hap.F_ST.vs.all_all = as.numeric(diversity_stats_df_list[[x]]$hap.F_ST.vs.all),
nuc.F_ST.vs.all_all = as.numeric(diversity_stats_df_list[[x]]$nuc.F_ST.vs.all),
neutrality_stats_df_list[[x]],
stringsAsFactors = F,
row.names = as.character(1:dim(neutrality_stats_df_list[[x]])[1]))
#})
#popgen_stats <- do.call(rbind, popgen_stats_df_list)
Sanity check to ensure popgen_stats feature chromosome IDs and start and end coordinates
are identical to those in features data.frame
#if(!identical(popgen_stats$chr, features$V1)) {
stop("popgen_stats chromosome IDs are not identical to those in features data.frame!")
#}
#if(!identical(popgen_stats$start, features$V4)) {
stop("popgen_stats start coordinates are not identical to those in features data.frame!")
#}
#if(!identical(popgen_stats$end, features$V5)) {
stop("popgen_stats end coordinates are not identical to those in features data.frame!")
#}

Load features
features <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 colClasses = c(NA,
 rep("NULL", 2),
 rep(NA, 2),
 "NULL", NA, "NULL", NA),
 header = F)
})
if(length(featureName) == 3) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
colnames(features) <- c("chr", "start", "end", "strand", "featureID")
featuresGR <- GRanges(seqnames = features$chr,
 ranges = IRanges(start = features$start,
 end = features$end),
 strand = features$strand,
 featureID = features$featureID)
Extend feature boundaries to include promoters and terminators for calculation of recombination rate (cM/Mb)
featuresGR_ext <- GRanges(seqnames = seqnames(featuresGR),
 ranges = IRanges(start = start(featuresGR)-1000,
 end = end(featuresGR)+1000),
 strand = strand(featuresGR),
 featureID = featuresGR$featureID)
print(featuresGR_ext)

Load ranLocs
ranLocs <- lapply(seq_along(featureName), function(y) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 substring(featureName[y], first = 10), "_randomLoci.bed"),
 colClasses = c(rep(NA, 4), "NULL", NA),
 header = F)
})
if(length(featureName) == 3) {
 ranLocs <- do.call(rbind, ranLocs)
} else {
 ranLocs <- ranLocs[[1]]
}
colnames(ranLocs) <- c("chr", "start", "end", "ranLocID", "strand")
ranLocsGR <- GRanges(seqnames = ranLocs$chr,
 ranges = IRanges(start = ranLocs$start+1,
 end = ranLocs$end),
 strand = ranLocs$strand,
 ranLocID = ranLocs$ranLocID)
Extend feature boundaries to include promoters and terminators for calculation of recombination rate (cM/Mb)
ranLocsGR_ext <- GRanges(seqnames = seqnames(ranLocsGR),
 ranges = IRanges(start = start(ranLocsGR)-1000,
 end = end(ranLocsGR)+1000),
 strand = strand(ranLocsGR),
 ranLocID = ranLocsGR$ranLocID)
print(ranLocsGR_ext)

Load and convert into GRanges previously calculated mean recombination rates
in 10-Mb sliding windows with a 1-Mb step (iwgsc_refseqv1.0_recombination_rate.txt),
available as part of the IWGSC RefSeq v1.0 annotation:
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/
cMMb <- read.table(paste0(
 "/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.0_recombination_rate_analysis/",
 "iwgsc_refseqv1.0_recombination_rate.txt"),
 header = T)
cMMbGR <- GRanges(seqnames = cMMb$chromosome,
 ranges = IRanges(start = cMMb$intervalStart,
 end = cMMb$intervalEnd),
 strand = "*",
 cMMb = cMMb$recombinationRate)

Obtain cM/Mb values for each feature between promoter and terminator
Where features overlap more than one window, calculate mean cM/Mb
feature_cMMb_overlaps <- findOverlaps(query = featuresGR_ext,
 subject = cMMbGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
feature_cMMb_overlapsList <- lapply(seq_along(featuresGR_ext), function(x) {
 subjectHits(feature_cMMb_overlaps)[queryHits(feature_cMMb_overlaps) == x]
})
feature_cMMb <- sapply(feature_cMMb_overlapsList,
 function(x) mean(cMMbGR$cMMb[x], na.rm = TRUE))

Get intron number per gene
introns <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/",
 "IWGSC_v1.1_HC_20170706_representative_introns_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 header = F,
 stringsAsFactors = F)
})
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature data.frames
if(length(featureName) == 3) {
 introns <- do.call(rbind, introns)
} else {
 introns <- introns[[1]]
}
colnames(introns) <- c("seqid", "source", "type", "start", "end",
 "score", "strand", "phase", "ID", "Parent")
intronNoPerGene <- unlist(mclapply(seq_along(as.character(features$featureID)), function(x) {
 dim(introns[as.character(introns$Parent) == as.character(features$featureID)[x],])[1]
}, mc.cores = detectCores()))

Get exon number per gene
exons <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/",
 "IWGSC_v1.1_HC_20170706_representative_exons_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 header = F,
 stringsAsFactors = F)
})
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature data.frames
if(length(featureName) == 3) {
 exons <- do.call(rbind, exons)
} else {
 exons <- exons[[1]]
}
colnames(exons) <- c("seqid", "source", "type", "start", "end",
 "score", "strand", "phase", "ID", "Parent")
exonNoPerGene <- unlist(mclapply(seq_along(as.character(features$featureID)), function(x) {
 dim(exons[as.character(exons$Parent) == as.character(features$featureID)[x],])[1]
}, mc.cores = detectCores()))

Calculate mean log2(ChIP/control) in
gene promoters, bodies and terminators, and in all three combined ("genes")
Extract and save feature IDs for each quantile for further analyses
(e.g., GO enrichment and average + 95% CI profile plotting).

Load feature matrices for each chromatin dataset, calculate log2(ChIP/control),
and sort by decreasing log2mat1RegionRowMeans
ChIPNames <- c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_Rep1_ChIP",
 "H3K27me3_ChIP_SRR6350666",
 "H2AZ_Rep1_ChIP"
)
ChIPNamesDir <- c(
 "ASY1_CS",
 "DMC1",
 "H3K4me3",
 "H3K27me3",
 "H2AZ"
)
log2ChIPNamesPlot <- c(
 "ASY1",
 "DMC1",
 "H3K4me3",
 "H3K27me3",
 "H2AZ"
)
ChIPDirs <- sapply(seq_along(ChIPNames), function(x) {
 if(ChIPNames[x] %in% c("H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "CENH3_ChIP_SRR1686799")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else if(ChIPNames[x] %in% c("H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else {
 paste0("/home/ajt200/analysis/wheat/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 }
})

controlNames <- c(
 "input_SRR6350669",
 "MNase_Rep1"
)
controlNamesDir <- c(
 "input",
 "MNase"
)
controlNamesPlot <- c(
 "Input",
 "MNase"
)
controlDirs <- sapply(seq_along(controlNames), function(x) {
 if(controlNames[x] == "input_SRR6350669") {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 controlNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else if(controlNames[x] == "MNase_Rep1") {
 paste0("/home/ajt200/analysis/wheat/",
 controlNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else {
 if(!(controlNames %in% c("input_SRR6350669", "MNase_Rep1"))) {
 stop(paste0("controlNames[", x, "] is neither input_SRR6350669 nor MNase_Rep1"))
 }
 }
})

bodyLength <- 3500
upstream <- 2000
downstream <- 2000
flankName <- "2kb"
flankNamePlot <- "2 kb"
binSize <- 20
binName <- "20bp"

control
feature
control_featureMats <- mclapply(seq_along(controlNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(controlDirs[x],
 controlNames[x],
 "_MappedOn_wheat_v1.0_lowXM_both_sort_norm_",
 featureName[y], "_matrix_bin", binName, "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(controlNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
control_featureMats <- mclapply(seq_along(control_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, control_featureMats[[x]])
 } else {
 control_featureMats[[x]][[1]]
 }
}, mc.cores = length(control_featureMats))

ChIP
feature
ChIP_featureMats <- mclapply(seq_along(ChIPNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(ChIPDirs[x],
 ChIPNames[x],
 "_MappedOn_wheat_v1.0_lowXM_both_sort_norm_",
 featureName[y], "_matrix_bin", binName, "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(ChIPNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
ChIP_featureMats <- mclapply(seq_along(ChIP_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, ChIP_featureMats[[x]])
 } else {
 ChIP_featureMats[[x]][[1]]
 }
}, mc.cores = length(ChIP_featureMats))

Conditionally calculate log2(ChIP/input) or log2(ChIP/MNase)
for each matrix depending on library
log2ChIP_featureMats <- mclapply(seq_along(ChIP_featureMats), function(x) {
 if(ChIPNames[x] %in% c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621"
)) {
 print(paste0(ChIPNames[x], " was sonication-based; using ", controlNames[1], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_featureMats[[x]]+1)/(control_featureMats[[1]]+1))
 } else {
 print(paste0(ChIPNames[x], " was MNase-based; using ", controlNames[2], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_featureMats[[x]]+1)/(control_featureMats[[2]]+1))
 }
}, mc.cores = length(ChIP_featureMats))

log2ChIP_featureMats_promoters <- lapply(seq_along(log2ChIP_featureMats), function(x) {
 log2ChIP_featureMats[[x]][,(((upstream-1000)/binSize)+1):(upstream/binSize)]
})
log2ChIP_featureMats_bodies <- lapply(seq_along(log2ChIP_featureMats), function(x) {
 log2ChIP_featureMats[[x]][,((upstream/binSize)+1):((upstream+bodyLength)/binSize)]
})
log2ChIP_featureMats_terminators <- lapply(seq_along(log2ChIP_featureMats), function(x) {
 log2ChIP_featureMats[[x]][,(((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(1000/binSize))]
})
log2ChIP_featureMats_genes <- lapply(seq_along(log2ChIP_featureMats), function(x) {
 log2ChIP_featureMats[[x]][,(((upstream-1000)/binSize)+1):(((upstream+bodyLength)/binSize)+(1000/binSize))]
})
log2ChIP_featureMats_promotersRowMeans <- lapply(seq_along(log2ChIP_featureMats_promoters), function(x) {
 rowMeans(log2ChIP_featureMats_promoters[[x]], na.rm = T)
})
log2ChIP_featureMats_bodiesRowMeans <- lapply(seq_along(log2ChIP_featureMats_bodies), function(x) {
 rowMeans(log2ChIP_featureMats_bodies[[x]], na.rm = T)
})
log2ChIP_featureMats_terminatorsRowMeans <- lapply(seq_along(log2ChIP_featureMats_terminators), function(x) {
 rowMeans(log2ChIP_featureMats_terminators[[x]], na.rm = T)
})
log2ChIP_featureMats_genesRowMeans <- lapply(seq_along(log2ChIP_featureMats_genes), function(x) {
 rowMeans(log2ChIP_featureMats_genes[[x]], na.rm = T)
})

control_featureMats_promoters <- lapply(seq_along(control_featureMats), function(x) {
 control_featureMats[[x]][,(((upstream-1000)/binSize)+1):(upstream/binSize)]
})
control_featureMats_bodies <- lapply(seq_along(control_featureMats), function(x) {
 control_featureMats[[x]][,((upstream/binSize)+1):((upstream+bodyLength)/binSize)]
})
control_featureMats_terminators <- lapply(seq_along(control_featureMats), function(x) {
 control_featureMats[[x]][,(((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(1000/binSize))]
})
control_featureMats_genes <- lapply(seq_along(control_featureMats), function(x) {
 control_featureMats[[x]][,(((upstream-1000)/binSize)+1):(((upstream+bodyLength)/binSize)+(1000/binSize))]
})
control_featureMats_promotersRowMeans <- lapply(seq_along(control_featureMats_promoters), function(x) {
 rowMeans(control_featureMats_promoters[[x]], na.rm = T)
})
control_featureMats_bodiesRowMeans <- lapply(seq_along(control_featureMats_bodies), function(x) {
 rowMeans(control_featureMats_bodies[[x]], na.rm = T)
})
control_featureMats_terminatorsRowMeans <- lapply(seq_along(control_featureMats_terminators), function(x) {
 rowMeans(control_featureMats_terminators[[x]], na.rm = T)
})
control_featureMats_genesRowMeans <- lapply(seq_along(control_featureMats_genes), function(x) {
 rowMeans(control_featureMats_genes[[x]], na.rm = T)
})

Combine feature coordinates and their corresponding population genetics statistics,
mean cM/Mb values, and intron and exon numbers
featuresGR_pop_list <- mclapply(seq_along(popgen_stats_pop_list), function(x) {
 featuresGR_pop <- GRanges(featuresGR,
 featureID = featuresGR$featureID,
 # all
 # Normalise by feature width (per 1 kb)
 nucleotideDiversity_all = popgen_stats_pop_list[[x]]$nuc.diversity.within_all/(popgen_stats_pop_list[[x]]$width/1e3),
 # The PopGenome developers advise that, where include.unknown = TRUE in the
 # Whop_readVCF() function call, "diversity.stats: pi and haplotype diversity should not be used"
 haplotypeDiversity_all = popgen_stats_pop_list[[x]]$hap.diversity.within_all,
 # Normalise by feature width (per 1 kb)
 Pi_Nei_all = popgen_stats_pop_list[[x]]$Pi_Nei_all/(popgen_stats_pop_list[[x]]$width/1e3),
 nucleotideFSTvAll_all = popgen_stats_pop_list[[x]]$nuc.F_ST.vs.all_all,
 nucleotideFST_all = popgen_stats_pop_list[[x]]$nucleotide.F_ST_all,
 nSegregatingSites_all = popgen_stats_pop_list[[x]]$n.segregating.sites_all/(popgen_stats_pop_list[[x]]$width/1e3),
 TajimaD_all = popgen_stats_pop_list[[x]]$Tajima.D_all,
 RozasR2_all = popgen_stats_pop_list[[x]]$Rozas.R_2_all,
 FuLiF_all = popgen_stats_pop_list[[x]]$Fu.Li.F_all,
 FuLiD_all = popgen_stats_pop_list[[x]]$Fu.Li.D_all,
 SFS_all = popgen_stats_pop_list[[x]]$SFS_all,
 CLR_all = popgen_stats_pop_list[[x]]$CLR_all,
 CL_all = popgen_stats_pop_list[[x]]$CL_all,
 KellyZnS_all = popgen_stats_pop_list[[x]]$Kelly.Z_nS_all,
 RozasZA_all = popgen_stats_pop_list[[x]]$Rozas.ZA_all,
 RozasZZ_all = popgen_stats_pop_list[[x]]$Rozas.ZZ_all,
 WallB_all = popgen_stats_pop_list[[x]]$Wall.B_all,
 WallQ_all = popgen_stats_pop_list[[x]]$Wall.Q_all,
 d_raw_all = popgen_stats_pop_list[[x]]$d_raw_all,
 d_prime_all = popgen_stats_pop_list[[x]]$d_prime_all,
 d_dist_all = popgen_stats_pop_list[[x]]$d_dist_all,
 r2_all = popgen_stats_pop_list[[x]]$r2_all,
 r_all = popgen_stats_pop_list[[x]]$r_all,
 HudsonRM_all = popgen_stats_pop_list[[x]]$Hudson.RM_all/(popgen_stats_pop_list[[x]]$width/1e3),

 # syn
 # Normalise by feature width (per 1 kb)
 nucleotideDiversity_syn = popgen_stats_pop_list[[x]]$nuc.diversity.within_syn/(popgen_stats_pop_list[[x]]$width/1e3),
 # The PopGenome developers advise that, where include.unknown = TRUE in the
 # Whop_readVCF() function call, "diversity.stats: pi and haplotype diversity should not be used"
 haplotypeDiversity_syn = popgen_stats_pop_list[[x]]$hap.diversity.within_syn,
 # Normalise by feature width (per 1 kb)
 Pi_Nei_syn = popgen_stats_pop_list[[x]]$Pi_Nei_syn/(popgen_stats_pop_list[[x]]$width/1e3),
 nucleotideFSTvAll_syn = popgen_stats_pop_list[[x]]$nuc.F_ST.vs.all_syn,
 nucleotideFST_syn = popgen_stats_pop_list[[x]]$nucleotide.F_ST_syn,
 nSegregatingSites_syn = popgen_stats_pop_list[[x]]$n.segregating.sites_syn/(popgen_stats_pop_list[[x]]$width/1e3),
 TajimaD_syn = popgen_stats_pop_list[[x]]$Tajima.D_syn,
 RozasR2_syn = popgen_stats_pop_list[[x]]$Rozas.R_2_syn,
 FuLiF_syn = popgen_stats_pop_list[[x]]$Fu.Li.F_syn,
 FuLiD_syn = popgen_stats_pop_list[[x]]$Fu.Li.D_syn,
 SFS_syn = popgen_stats_pop_list[[x]]$SFS_syn,
 CLR_syn = popgen_stats_pop_list[[x]]$CLR_syn,
 CL_syn = popgen_stats_pop_list[[x]]$CL_syn,
 KellyZnS_syn = popgen_stats_pop_list[[x]]$Kelly.Z_nS_syn,
 RozasZA_syn = popgen_stats_pop_list[[x]]$Rozas.ZA_syn,
 RozasZZ_syn = popgen_stats_pop_list[[x]]$Rozas.ZZ_syn,
 WallB_syn = popgen_stats_pop_list[[x]]$Wall.B_syn,
 WallQ_syn = popgen_stats_pop_list[[x]]$Wall.Q_syn,
 d_raw_syn = popgen_stats_pop_list[[x]]$d_raw_syn,
 d_prime_syn = popgen_stats_pop_list[[x]]$d_prime_syn,
 d_dist_syn = popgen_stats_pop_list[[x]]$d_dist_syn,
 r2_syn = popgen_stats_pop_list[[x]]$r2_syn,
 r_syn = popgen_stats_pop_list[[x]]$r_syn,
 HudsonRM_syn = popgen_stats_pop_list[[x]]$Hudson.RM_syn/(popgen_stats_pop_list[[x]]$width/1e3),

 # nonsyn
 # Normalise by feature width (per 1 kb)
 nucleotideDiversity_nonsyn = popgen_stats_pop_list[[x]]$nuc.diversity.within_nonsyn/(popgen_stats_pop_list[[x]]$width/1e3),
 # The PopGenome developers advise that, where include.unknown = TRUE in the
 # Whop_readVCF() function call, "diversity.stats: pi and haplotype diversity should not be used"
 haplotypeDiversity_nonsyn = popgen_stats_pop_list[[x]]$hap.diversity.within_nonsyn,
 # Normalise by feature width (per 1 kb)
 Pi_Nei_nonsyn = popgen_stats_pop_list[[x]]$Pi_Nei_nonsyn/(popgen_stats_pop_list[[x]]$width/1e3),
 nucleotideFSTvAll_nonsyn = popgen_stats_pop_list[[x]]$nuc.F_ST.vs.all_nonsyn,
 nucleotideFST_nonsyn = popgen_stats_pop_list[[x]]$nucleotide.F_ST_nonsyn,
 nSegregatingSites_nonsyn = popgen_stats_pop_list[[x]]$n.segregating.sites_nonsyn/(popgen_stats_pop_list[[x]]$width/1e3),
 TajimaD_nonsyn = popgen_stats_pop_list[[x]]$Tajima.D_nonsyn,
 RozasR2_nonsyn = popgen_stats_pop_list[[x]]$Rozas.R_2_nonsyn,
 FuLiF_nonsyn = popgen_stats_pop_list[[x]]$Fu.Li.F_nonsyn,
 FuLiD_nonsyn = popgen_stats_pop_list[[x]]$Fu.Li.D_nonsyn,
 SFS_nonsyn = popgen_stats_pop_list[[x]]$SFS_nonsyn,
 CLR_nonsyn = popgen_stats_pop_list[[x]]$CLR_nonsyn,
 CL_nonsyn = popgen_stats_pop_list[[x]]$CL_nonsyn,
 KellyZnS_nonsyn = popgen_stats_pop_list[[x]]$Kelly.Z_nS_nonsyn,
 RozasZA_nonsyn = popgen_stats_pop_list[[x]]$Rozas.ZA_nonsyn,
 RozasZZ_nonsyn = popgen_stats_pop_list[[x]]$Rozas.ZZ_nonsyn,
 WallB_nonsyn = popgen_stats_pop_list[[x]]$Wall.B_nonsyn,
 WallQ_nonsyn = popgen_stats_pop_list[[x]]$Wall.Q_nonsyn,
 d_raw_nonsyn = popgen_stats_pop_list[[x]]$d_raw_nonsyn,
 d_prime_nonsyn = popgen_stats_pop_list[[x]]$d_prime_nonsyn,
 d_dist_nonsyn = popgen_stats_pop_list[[x]]$d_dist_nonsyn,
 r2_nonsyn = popgen_stats_pop_list[[x]]$r2_nonsyn,
 r_nonsyn = popgen_stats_pop_list[[x]]$r_nonsyn,
 HudsonRM_nonsyn = popgen_stats_pop_list[[x]]$Hudson.RM_nonsyn/(popgen_stats_pop_list[[x]]$width/1e3),

 ASY1_in_promoters = log2ChIP_featureMats_promotersRowMeans[[1]],
 DMC1_in_promoters = log2ChIP_featureMats_promotersRowMeans[[2]],
 H3K4me3_in_promoters = log2ChIP_featureMats_promotersRowMeans[[3]],
 H3K27me3_in_promoters = log2ChIP_featureMats_promotersRowMeans[[4]],
 H2AZ_in_promoters = log2ChIP_featureMats_promotersRowMeans[[5]],
 MNase_in_promoters = control_featureMats_promotersRowMeans[[2]],
 ASY1_in_bodies = log2ChIP_featureMats_bodiesRowMeans[[1]],
 DMC1_in_bodies = log2ChIP_featureMats_bodiesRowMeans[[2]],
 H3K4me3_in_bodies = log2ChIP_featureMats_bodiesRowMeans[[3]],
 H3K27me3_in_bodies = log2ChIP_featureMats_bodiesRowMeans[[4]],
 H2AZ_in_bodies = log2ChIP_featureMats_bodiesRowMeans[[5]],
 MNase_in_bodies = control_featureMats_bodiesRowMeans[[2]],
 ASY1_in_terminators = log2ChIP_featureMats_terminatorsRowMeans[[1]],
 DMC1_in_terminators = log2ChIP_featureMats_terminatorsRowMeans[[2]],
 H3K4me3_in_terminators = log2ChIP_featureMats_terminatorsRowMeans[[3]],
 H3K27me3_in_terminators = log2ChIP_featureMats_terminatorsRowMeans[[4]],
 H2AZ_in_terminators = log2ChIP_featureMats_terminatorsRowMeans[[5]],
 MNase_in_terminators = control_featureMats_terminatorsRowMeans[[2]],
 ASY1_in_genes = log2ChIP_featureMats_genesRowMeans[[1]],
 DMC1_in_genes = log2ChIP_featureMats_genesRowMeans[[2]],
 H3K4me3_in_genes = log2ChIP_featureMats_genesRowMeans[[3]],
 H3K27me3_in_genes = log2ChIP_featureMats_genesRowMeans[[4]],
 H2AZ_in_genes = log2ChIP_featureMats_genesRowMeans[[5]],
 MNase_in_genes = control_featureMats_genesRowMeans[[2]],
 cMMb = feature_cMMb,
 exons = exonNoPerGene,
 introns = intronNoPerGene)
 #featuresGR_pop <- featuresGR_pop[ID_indices]

 # Sanity check to ensure featuresGR_pop feauture IDs, chromosome IDs and start and end coordinates
 # are identical to those in features data.frame
 if(!identical(gsub("\\.\\d+", "", as.character(featuresGR_pop$featureID)),
 gsub("\\.\\d+", "", popgen_stats_pop_list[[x]]$ID))) {
 stop("featuresGR_pop feature IDs are not identical to those in popgen_stats_pop_list[[x]] data.frame!")
 }
 if(!identical(as.character(seqnames(featuresGR_pop)), popgen_stats_pop_list[[x]]$chr)) {
 stop("featuresGR_pop chromosome IDs are not identical to those in popgen_stats_pop_list[[x]] data.frame!")
 }
 if(!identical(start(featuresGR_pop), popgen_stats_pop_list[[x]]$start)) {
 stop("featuresGR_pop start coordinates are not identical to those in popgen_stats_pop_list[[x]] data.frame!")
 }
 if(!identical(end(featuresGR_pop), popgen_stats_pop_list[[x]]$end)) {
 stop("featuresGR_pop end coordinates are not identical to those in popgen_stats_pop_list[[x]] data.frame!")
 }
 return(featuresGR_pop)
}, mc.cores = length(popgen_stats_pop_list), mc.preschedule = F)

Obtain cM/Mb values for each ranLoc between promoter and terminator
Where ranLocs overlap more than one window, calculate mean cM/Mb
ranLoc_cMMb_overlaps <- findOverlaps(query = ranLocsGR_ext,
 subject = cMMbGR,
 type = "any",
 select = "all",
 ignore.strand = TRUE)
ranLoc_cMMb_overlapsList <- lapply(seq_along(ranLocsGR_ext), function(x) {
 subjectHits(ranLoc_cMMb_overlaps)[queryHits(ranLoc_cMMb_overlaps) == x]
})
ranLoc_cMMb <- sapply(ranLoc_cMMb_overlapsList,
 function(x) mean(cMMbGR$cMMb[x], na.rm = TRUE))

Combine ranLoc coordinates and their corresponding mean haplotype numbers,
cM/Mb values
ranLocsGR <- GRanges(ranLocsGR,
 ranLocID = ranLocsGR$ranLocID,
 cMMb = ranLoc_cMMb)

Define first set of ordering factors (population genetics statistics)
to be used for grouping genes into 2 quantiles
(3 quantiles can result in very uneven split of genes, or poor separation of values)
quantiles <- 2
orderingFactor <- colnames(data.frame(featuresGR_pop_list[[1]]))[7:30]
outDir <- paste0("quantiles_by_", orderingFactor, "_in_", region, "/")
outDir_list <- lapply(seq_along(outDir), function(w) {
 sapply(seq_along(pop_name), function(x) {
 paste0(outDir[w], pop_name[x], "/")
 })
})
plotDir_list <- lapply(seq_along(outDir), function(w) {
 sapply(seq_along(pop_name), function(x) {
 paste0(outDir_list[[w]][x], "plots/")
 })
})
sapply(seq_along(outDir), function(w) {
 system(paste0("[-d ", outDir[w], "] || mkdir ", outDir[w]))
})
sapply(seq_along(outDir), function(w) {
 mclapply(seq_along(pop_name), function(x) {
 system(paste0("[-d ", outDir_list[[w]][x], "] || mkdir ", outDir_list[[w]][x]))
 }, mc.cores = length(pop_name), mc.preschedule = F)
})
sapply(seq_along(outDir), function(w) {
 mclapply(seq_along(pop_name), function(x) {
 system(paste0("[-d ", plotDir_list[[w]][x], "] || mkdir ", plotDir_list[[w]][x]))
 }, mc.cores = length(pop_name), mc.preschedule = F)
})

For each population, divide features into quantiles based on decreasing orderingFactor
for(x in 1:length(featuresGR_pop_list)) {
 print(pop_name[x])
 featuresDF <- data.frame(featuresGR_pop_list[[x]],
 quantile = as.character(""),
 stringsAsFactors = F)
 mclapply(seq_along(orderingFactor), function(w) {
 print(orderingFactor[w])
 quantilesStats <- data.frame()
 for(k in 1:quantiles) {
 if(k < quantiles) {
 # First quantile should span 1 to greater than, e.g., 0.75 proportions of features
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) > 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 } else {
 # Final quantile should span 0 to, e.g., 0.25 proportions of features
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) >= 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 }
 write.table(featuresDF[featuresDF$quantile == paste0("Quantile ", k),],
 file = paste0(outDir_list[[w]][x],
 "quantile", k, "_of_", quantiles,
 "_by_", orderingFactor[w], "_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 stats <- data.frame(quantile = as.integer(k),
 n = as.integer(dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]),
 mean_width = as.integer(round(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T))),
 total_width = as.integer(sum(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T)),
 mean_orderingFactor = as.numeric(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,which(colnames(featuresDF) == orderingFactor[w])], na.rm = T)))
 quantilesStats <- rbind(quantilesStats, stats)
 }
 write.table(quantilesStats,
 file = paste0(outDir_list[[w]][x],
 "summary_", quantiles, "quantiles_by_", orderingFactor[w], "_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 write.table(featuresDF,
 file = paste0(outDir_list[[w]][x],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w], "_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

 # Divide ranLocs into quantiles based on feature quantile indices
 ranLocsDF <- data.frame(ranLocsGR,
 random = as.character(""),
 stringsAsFactors = F)
 # Get row indices for each feature quantile
 quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
 })
 for(k in 1:quantiles) {
 ranLocsDF[quantileIndices[[k]],]$random <- paste0("Random ", k)
 }
 write.table(ranLocsDF,
 file = paste0(outDir_list[[w]][x],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w], "_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], "_ranLocs.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 }, mc.cores = length(orderingFactor), mc.preschedule = F)
}

Define second set of ordering factors (log2(ChIP/input) in gene promoters, bodies and terminators)
to be used for grouping genes into 4 quantiles
orderingFactor <- colnames(data.frame(featuresGR_pop_list[[1]]))[c(30, 79:103)]
outDir <- paste0("quantiles_by_", orderingFactor, "/")
outDir_list <- lapply(seq_along(outDir), function(w) {
 sapply(seq_along(pop_name), function(x) {
 paste0(outDir[w], pop_name[x], "/")
 })
})
plotDir_list <- lapply(seq_along(outDir), function(w) {
 sapply(seq_along(pop_name), function(x) {
 paste0(outDir_list[[w]][x], "plots/")
 })
})
sapply(seq_along(outDir), function(w) {
 system(paste0("[-d ", outDir[w], "] || mkdir ", outDir[w]))
})
sapply(seq_along(outDir), function(w) {
 mclapply(seq_along(pop_name), function(x) {
 system(paste0("[-d ", outDir_list[[w]][x], "] || mkdir ", outDir_list[[w]][x]))
 }, mc.cores = length(pop_name), mc.preschedule = F)
})
sapply(seq_along(outDir), function(w) {
 mclapply(seq_along(pop_name), function(x) {
 system(paste0("[-d ", plotDir_list[[w]][x], "] || mkdir ", plotDir_list[[w]][x]))
 }, mc.cores = length(pop_name), mc.preschedule = F)
})

For each population, divide features into quantiles based on decreasing orderingFactor
all subgenomes
for(x in 1:length(featuresGR_pop_list)) {
 print(pop_name[x])
 featuresDF <- data.frame(featuresGR_pop_list[[x]],
 quantile = as.character(""),
 stringsAsFactors = F)
 mclapply(seq_along(orderingFactor), function(w) {
 print(orderingFactor[w])
 # Assign 0s to NA values only for coverage data
 if(grepl("_in_", orderingFactor[w])) {
 featuresDF[,which(colnames(featuresDF) == orderingFactor[w])][which(is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]))] <- 0
 }
 if(grepl("HudsonRM", orderingFactor[w])) {
 quantiles <- 2
 } else {
 quantiles <- 4
 }
 quantilesStats <- data.frame()
 for(k in 1:quantiles) {
 # First quantile should span 1 to greater than, e.g., 0.75 proportions of features
 if(k < quantiles) {
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) > 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 } else {
 # Final quantile should span 0 to, e.g., 0.25 proportions of features
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) >= 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 }
 write.table(featuresDF[featuresDF$quantile == paste0("Quantile ", k),],
 file = paste0(outDir_list[[w]][x],
 "quantile", k, "_of_", quantiles,
 "_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 stats <- data.frame(quantile = as.integer(k),
 n = as.integer(dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]),
 mean_width = as.integer(round(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T))),
 total_width = as.integer(sum(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T)),
 mean_orderingFactor = as.numeric(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,which(colnames(featuresDF) == orderingFactor[w])], na.rm = T)))
 quantilesStats <- rbind(quantilesStats, stats)
 }
 write.table(quantilesStats,
 file = paste0(outDir_list[[w]][x],
 "summary_", quantiles, "quantiles_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 write.table(featuresDF,
 file = paste0(outDir_list[[w]][x],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

 # Divide ranLocs into quantiles based on feature quantile indices
 ranLocsDF <- data.frame(ranLocsGR,
 random = as.character(""),
 stringsAsFactors = F)
 # Get row indices for each feature quantile
 quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
 })
 for(k in 1:quantiles) {
 ranLocsDF[quantileIndices[[k]],]$random <- paste0("Random ", k)
 }
 write.table(ranLocsDF,
 file = paste0(outDir_list[[w]][x],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], "_ranLocs.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 }, mc.cores = length(orderingFactor), mc.preschedule = F)
}

each subgenome (sg)
for(sg in 1:length(featureName)) {
 print(substring(featureName, first = 10, last = 10)[sg])
 for(x in 1:length(featuresGR_pop_list)) {
 print(pop_name[x])
 featuresDF <- data.frame(featuresGR_pop_list[[x]],
 quantile = as.character(""),
 stringsAsFactors = F)
 featuresDF <- featuresDF[grepl(paste0("TraesCS\\d",
 substring(featureName, first = 10, last = 10)[sg]),
 featuresDF$featureID),]
 mclapply(seq_along(orderingFactor), function(w) {
 print(orderingFactor[w])
 # Assign 0s to NA values only for coverage data
 if(grepl("_in_", orderingFactor[w])) {
 featuresDF[,which(colnames(featuresDF) == orderingFactor[w])][which(is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]))] <- 0
 }
 if(grepl("HudsonRM", orderingFactor[w])) {
 quantiles <- 2
 } else {
 quantiles <- 4
 }
 quantilesStats <- data.frame()
 for(k in 1:quantiles) {
 # First quantile should span 1 to greater than, e.g., 0.75 proportions of features
 if(k < quantiles) {
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) > 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 } else {
 # Final quantile should span 0 to, e.g., 0.25 proportions of features
 featuresDF[!is.na(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) <= 1-((k-1)/quantiles) &
 percent_rank(featuresDF[,which(colnames(featuresDF) == orderingFactor[w])]) >= 1-(k/quantiles),]$quantile <- paste0("Quantile ", k)
 }
 write.table(featuresDF[featuresDF$quantile == paste0("Quantile ", k),],
 file = paste0(outDir_list[[w]][x],
 "quantile", k, "_of_", quantiles,
 "_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 substring(featureName, first = 10, last = 16)[sg], "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 stats <- data.frame(quantile = as.integer(k),
 n = as.integer(dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]),
 mean_width = as.integer(round(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T))),
 total_width = as.integer(sum(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$width, na.rm = T)),
 mean_orderingFactor = as.numeric(mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,which(colnames(featuresDF) == orderingFactor[w])], na.rm = T)))
 quantilesStats <- rbind(quantilesStats, stats)
 }
 write.table(quantilesStats,
 file = paste0(outDir_list[[w]][x],
 "summary_", quantiles, "quantiles_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 substring(featureName, first = 10, last = 16)[sg], "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 write.table(featuresDF,
 file = paste0(outDir_list[[w]][x],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 substring(featureName, first = 10, last = 16)[sg], "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

 # Divide ranLocs into quantiles based on feature quantile indices
 ranLocsDF <- data.frame(ranLocsGR,
 random = as.character(""),
 stringsAsFactors = F)
 # Get row indices for each feature quantile
 quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
 })
 for(k in 1:quantiles) {
 ranLocsDF[quantileIndices[[k]],]$random <- paste0("Random ", k)
 }
 write.table(ranLocsDF,
 file = paste0(outDir_list[[w]][x],
 "features_", quantiles, "quantiles",
 "_by_", orderingFactor[w],
 "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 substring(featureName, first = 10, last = 16)[sg], "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], "_ranLocs.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)
 }, mc.cores = length(orderingFactor), mc.preschedule = F)
 }
}

gene_quantile_metaprofiles.R calculates and plots metaprofiles of ChIP-seq, MNase-seq and RNA-seq signals, DNA methylation proportions, and SNP and transposon frequencies (gene windowed means and 95% confidence intervals, CIs) for each group of genes, defined either by decreasing recombination rate, for example, or randomly.

Script: gene_quantile_metaprofiles.R:
#!/applications/R/R-3.5.0/bin/Rscript

Calculate and plot metaprofiles of ChIP-seq, MNase-seq and RNA-seq signals,
DNA methylation proportions, and SNP and transposon frequencies
(gene windowed means and 95% confidence intervals, CIs)
for each group of genes, defined either by
decreasing recombination rate (cM/Mb), for example, or randomly

Usage:
/applications/R/R-3.5.0/bin/Rscript gene_quantile_metaprofiles.R cMMb 'cM/Mb' both 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' 3500 2000 2kb '2 kb' 20 20bp genes 4 '0.02,0.96'

#libName <- "cMMb"
#dirName <- "cM/Mb"
#align <- "both"
#featureName <- unlist(strsplit("genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide",
split = ","))
#bodyLength <- 3500
#upstream <- 2000
#downstream <- 2000
#flankName <- "2kb"
#flankNamePlot <- "2 kb"
#binSize <- 20
#binName <- "20bp"
#region <- "genes"
#quantiles <- 4
top left
#legendPos <- as.numeric(unlist(strsplit("0.02,0.96",
split = ",")))
top centre
#legendPos <- as.numeric(unlist(strsplit("0.38,0.96",
split = ",")))
top right
#legendPos <- as.numeric(unlist(strsplit("0.75,0.96",
split = ",")))
bottom left
#legendPos <- as.numeric(unlist(strsplit("0.02,0.30",
split = ",")))

args <- commandArgs(trailingOnly = T)
libName <- args[1]
dirName <- args[2]
align <- args[3]
featureName <- unlist(strsplit(args[4],
 split = ","))
bodyLength <- as.numeric(args[5])
upstream <- as.numeric(args[6])
downstream <- as.numeric(args[6])
flankName <- args[7]
flankNamePlot <- args[8]
binSize <- as.numeric(args[9])
binName <- args[10]
region <- args[11]
quantiles <- as.numeric(args[12])
legendPos <- as.numeric(unlist(strsplit(args[13],
 split = ",")))

library(parallel)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggthemes)
library(grid)
library(gridExtra)
library(extrafont)

if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 outDir <- paste0("quantiles_by_", libName, "/")
} else {
 outDir <- paste0("quantiles_by_", sub("_\\w+", "", libName),
 "_in_", region, "/")
}
plotDir <- paste0(outDir, "plots/")
system(paste0("[-d ", outDir, "] || mkdir ", outDir))
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Define plot titles
featureNamePlot <- paste0(sub("_\\w+", "", dirName), " ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles")
ranFeatNamePlot <- paste0("Random ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles")
ranLocNamePlot <- "Random locus quantiles"

Define quantile colours
if(quantiles == 4) {
 quantileColours <- c("red", "purple", "blue", "navy")
} else if(quantiles == 3) {
 quantileColours <- c("red", "purple", "navy")
} else if(quantiles == 2) {
 quantileColours <- c("red", "navy")
}

Define feature start and end labels for plotting
if(grepl("genes", featureName)) {
 featureStartLab <- "TSS"
 featureEndLab <- "TTS"
} else {
 featureStartLab <- "Start"
 featureEndLab <- "End"
}

Genomic definitions
chrs <- as.vector(read.table("wheat_v1.0.fa.sizes")[,1])
chrs <- chrs[-length(chrs)]

Load table of features grouped into quantiles
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 featuresDF <- read.table(paste0(outDir, "WesternEurope/features_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_WesternEurope.txt"),
 header = T, sep = "\t", row.names = NULL, stringsAsFactors = F)
} else {
 featuresDF <- read.table(paste0(outDir, "WesternEurope/features_", quantiles, "quantiles",
 "_by_", sub("_\\w+", "", libName), "_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_WesternEurope.txt"),
 header = T, sep = "\t", row.names = NULL, stringsAsFactors = F)
}

Load features to confirm feature (row) ordering in "featuresDF" is the same
as in "features" (which was used for generating the coverage matrices)
features <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 header = F)
})
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature data.frames
if(length(featureName) == 3) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
stopifnot(identical(as.character(featuresDF$featureID),
 as.character(features$V9)))

Get row indices for each feature quantile
quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
})

Random feature quantiles
Define function to randomly select n rows from
a data.frame
selectRandomFeatures <- function(features, n) {
 return(features[sample(x = dim(features)[1],
 size = n,
 replace = FALSE),])
}

Define seed so that random selections are reproducible
set.seed(93750174)

Divide features into random sets of equal number,
with the same number of genes per chromosome as
above-defined libName-defined feature quantiles
randomPCIndices <- lapply(1:quantiles, function(k) {
 randomPCIndicesk <- NULL
 for(i in 1:length(chrs)) {
 randomPCfeatureskChr <- selectRandomFeatures(features = featuresDF[featuresDF$seqnames == chrs[i],],
 n = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k) &
 featuresDF$seqnames == chrs[i],])[1])
 randomPCIndicesk <- c(randomPCIndicesk, as.integer(rownames(randomPCfeatureskChr)))
 }
 randomPCIndicesk
})
Confirm per-chromosome feature numbers are the same for quantiles and random groupings
lapply(seq_along(1:quantiles), function(k) {
 sapply(seq_along(chrs), function(x) {
 if(!identical(dim(featuresDF[randomPCIndices[[k]],][featuresDF[randomPCIndices[[k]],]$seqnames == chrs[x],]),
 dim(featuresDF[quantileIndices[[k]],][featuresDF[quantileIndices[[k]],]$seqnames == chrs[x],]))) {
 stop("Quantile features and random features do not consist of the same number of features per chromosome")
 }
 })
})

Load feature matrices for each chromatin dataset and calculate log2(ChIP/control)
ChIPNames <- c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_Rep1_ChIP",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621",
 "H3K27me3_ChIP_SRR6350666",
 "H3K9me2_Rep1_ChIP",
 "H3K27me1_Rep1_ChIP"
)
ChIPNamesDir <- c(
 "ASY1_CS",
 "DMC1",
 "H3K4me3",
 "H3K4me1",
 "H3K27ac",
 "H3K27me3",
 "H3K9me2",
 "H3K27me1"
)
log2ChIPNamesPlot <- c(
 "ASY1",
 "DMC1",
 "H3K4me3",
 "H3K4me1",
 "H3K27ac",
 "H3K27me3",
 "H3K9me2",
 "H3K27me1"
)
log2ChIPColours <- c(
 rep("black", length(log2ChIPNamesPlot))
)
ChIPDirs <- sapply(seq_along(ChIPNames), function(x) {
 if(ChIPNames[x] %in% c("H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "CENH3_ChIP_SRR1686799")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else if(ChIPNames[x] %in% c("H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else {
 paste0("/home/ajt200/analysis/wheat/",
 ChIPNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 }
})

controlNames <- c(
 "input_SRR6350669",
 "MNase_Rep1"
)
controlNamesDir <- c(
 "input",
 "MNase"
)
controlNamesPlot <- c(
 "Input",
 "MNase"
)
controlColours <- c(
 rep("black", length(controlNamesPlot))
)
controlDirs <- sapply(seq_along(controlNames), function(x) {
 if(controlNames[x] == "input_SRR6350669") {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 controlNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else if(controlNames[x] == "MNase_Rep1") {
 paste0("/home/ajt200/analysis/wheat/",
 controlNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else {
 if(!(controlNames %in% c("input_SRR6350669", "MNase_Rep1"))) {
 stop(paste0("controlNames[", x, "] is neither input_SRR6350669 nor MNase_Rep1"))
 }
 }
})

otherNames <- c(
 "MNase_Rep1",
 "DNaseI_Rep1_SRR8447247",
 "WT_RNAseq_Rep1_ERR2402974",
 "WT_RNAseq_Rep2_ERR2402973",
 "WT_RNAseq_Rep3_ERR2402972"
)
otherNamesDir <- c(
 "MNase",
 "DNaseI",
 "RNAseq_meiocyte_Martin_Moore_2018_FrontPlantSci",
 "RNAseq_meiocyte_Martin_Moore_2018_FrontPlantSci",
 "RNAseq_meiocyte_Martin_Moore_2018_FrontPlantSci"
)
otherNamesPlot <- c(
 "MNase",
 "DNaseI",
 "RNA-seq Rep1",
 "RNA-seq Rep2",
 "RNA-seq Rep3"
)
otherColours <- c(
 rep("black", length(otherNamesPlot))
)

otherDirs <- sapply(seq_along(otherNames), function(x) {
 if(otherNames[x] %in% c("MNase_Rep1")) {
 paste0("/home/ajt200/analysis/wheat/",
 otherNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else if(otherNames[x] %in% c("DNaseI_Rep1_SRR8447247")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_seedlings_Li_2019_Genome_Biol/",
 otherNamesDir[x], "/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/")
 } else if(grepl("RNAseq", otherNames[x])) {
 paste0("/home/ajt200/analysis/wheat/",
 otherNamesDir[x], "/snakemake_RNAseq_HISAT2/mapped/geneProfiles_subgenomes/matrices/")
 } else {
 stop(paste0("otherNames[", x, "] is not compatible with the specified coverage matrix paths"))
 }
})

DNAmethNames <- c(
 "BSseq_Rep8a_SRR6792678"
)
DNAmethNamesDir <- c(
 "BSseq"
)
DNAmethContexts <- c(
 "CpG",
 "CHG",
 "CHH"
)
DNAmethNamesPlot <- c(
 "mCG",
 "mCHG",
 "mCHH"
)
DNAmethColours <- c(
 rep("black", length(DNAmethNamesPlot))
)
DNAmethDirs <- sapply(seq_along(DNAmethNames), function(x) {
 if(DNAmethNames[x] %in% c("BSseq_Rep8a_SRR6792678")) {
 paste0("/home/ajt200/analysis/wheat/epigenomics_shoot_leaf_IWGSC_2018_Science/",
 DNAmethNamesDir[x],
 "/snakemake_BSseq/coverage/geneProfiles_subgenomes/matrices/")
 } else {
 stop(paste0("DNAmethNames[", x, "] is not compatible with the specified coverage matrix paths"))
 }
})

control
feature
control_featureMats <- mclapply(seq_along(controlNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(controlDirs[x],
 controlNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 featureName[y], "_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(controlNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
control_featureMats <- mclapply(seq_along(control_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, control_featureMats[[x]])
 } else {
 control_featureMats[[x]][[1]]
 }
}, mc.cores = length(control_featureMats))

ranLoc
control_ranLocMats <- mclapply(seq_along(controlNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(controlDirs[x],
 controlNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 featureName[y], "_ranLoc_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(controlNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
control_ranLocMats <- mclapply(seq_along(control_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, control_ranLocMats[[x]])
 } else {
 control_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(control_ranLocMats))

ChIP
feature
ChIP_featureMats <- mclapply(seq_along(ChIPNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(ChIPDirs[x],
 ChIPNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 featureName[y], "_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(ChIPNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
ChIP_featureMats <- mclapply(seq_along(ChIP_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, ChIP_featureMats[[x]])
 } else {
 ChIP_featureMats[[x]][[1]]
 }
}, mc.cores = length(ChIP_featureMats))

Conditionally calculate log2(ChIP/input) or log2(ChIP/MNase)
for each matrix depending on library
log2ChIP_featureMats <- mclapply(seq_along(ChIP_featureMats), function(x) {
 if(ChIPNames[x] %in% c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621"
)) {
 print(paste0(ChIPNames[x], " was sonication-based; using ", controlNames[1], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_featureMats[[x]]+1)/(control_featureMats[[1]]+1))
 } else {
 print(paste0(ChIPNames[x], " was MNase-based; using ", controlNames[2], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_featureMats[[x]]+1)/(control_featureMats[[2]]+1))
 }
}, mc.cores = length(ChIP_featureMats))

ranLoc
ChIP_ranLocMats <- mclapply(seq_along(ChIPNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(ChIPDirs[x],
 ChIPNames[x],
 "_MappedOn_wheat_v1.0_lowXM_", align, "_sort_norm_",
 featureName[y], "_ranLoc_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(ChIPNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
ChIP_ranLocMats <- mclapply(seq_along(ChIP_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, ChIP_ranLocMats[[x]])
 } else {
 ChIP_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(ChIP_ranLocMats))

Conditionally calculate log2(ChIP/input) or log2(ChIP/MNase)
for each matrix depending on library
log2ChIP_ranLocMats <- mclapply(seq_along(ChIP_ranLocMats), function(x) {
 if(ChIPNames[x] %in% c(
 "ASY1_CS_Rep1_ChIP",
 "DMC1_Rep1_ChIP",
 "H3K4me3_ChIP_SRR6350668",
 "H3K27me3_ChIP_SRR6350666",
 "H3K36me3_ChIP_SRR6350670",
 "H3K9ac_ChIP_SRR6350667",
 "H3K4me1_Rep1_ChIP_SRR8126618",
 "H3K27ac_Rep1_ChIP_SRR8126621"
)) {
 print(paste0(ChIPNames[x], " was sonication-based; using ", controlNames[1], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_ranLocMats[[x]]+1)/(control_ranLocMats[[1]]+1))
 } else {
 print(paste0(ChIPNames[x], " was MNase-based; using ", controlNames[2], " for log2((ChIP+1)/(control+1)) calculation"))
 log2((ChIP_ranLocMats[[x]]+1)/(control_ranLocMats[[2]]+1))
 }
}, mc.cores = length(ChIP_ranLocMats))

Add column names
for(x in seq_along(log2ChIP_featureMats)) {
 colnames(log2ChIP_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(log2ChIP_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
log2ChIP_mats_quantiles <- mclapply(seq_along(log2ChIP_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 log2ChIP_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 log2ChIP_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 log2ChIP_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(log2ChIP_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_log2ChIP <- mclapply(seq_along(log2ChIP_mats_quantiles), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(log2ChIP_mats_quantiles[[x]][[y]][[k]]),
 t(log2ChIP_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(log2ChIP_mats_quantiles))

Convert into tidy data.frame (long format)
tidyDFfeature_list_log2ChIP <- mclapply(seq_along(wideDFfeature_list_log2ChIP), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_log2ChIP[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_log2ChIP))

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_log2ChIP)) {
 for(y in seq_along(log2ChIP_mats_quantiles[[x]])) {
 for(k in seq_along(log2ChIP_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_log2ChIP[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_log2ChIP <- mclapply(seq_along(tidyDFfeature_list_log2ChIP), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_log2ChIP[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_log2ChIP))

for(x in seq_along(summaryDFfeature_list_log2ChIP)) {
 for(y in seq_along(log2ChIP_mats_quantiles[[x]])) {
 for(k in seq_along(log2ChIP_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_log2ChIP[[x]][[y]][[k]]$window))
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_log2ChIP[[x]][[y]][[k]])[1])
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sem <- summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sem
 summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_log2ChIP[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_log2ChIP)) {
 # feature quantiles
 names(summaryDFfeature_list_log2ChIP[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_log2ChIP[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_log2ChIP[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_log2ChIP into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_log2ChIP <- mclapply(seq_along(summaryDFfeature_list_log2ChIP), function(x) {
 lapply(seq_along(log2ChIP_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_log2ChIP[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_log2ChIP))
for(x in seq_along(summaryDFfeature_log2ChIP)) {
 # feature quantiles
 summaryDFfeature_log2ChIP[[x]][[1]]$quantile <- factor(summaryDFfeature_log2ChIP[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_log2ChIP[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_log2ChIP[[x]][[2]]$quantile <- factor(summaryDFfeature_log2ChIP[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_log2ChIP[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_log2ChIP[[x]][[3]]$quantile <- factor(summaryDFfeature_log2ChIP[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_log2ChIP[[x]][[3]]))
}

Define y-axis limits
ymin_list_log2ChIP <- lapply(seq_along(summaryDFfeature_log2ChIP), function(x) {
 min(c(summaryDFfeature_log2ChIP[[x]][[1]]$CI_lower,
 summaryDFfeature_log2ChIP[[x]][[2]]$CI_lower,
 summaryDFfeature_log2ChIP[[x]][[3]]$CI_lower))
})
ymax_list_log2ChIP <- lapply(seq_along(summaryDFfeature_log2ChIP), function(x) {
 max(c(summaryDFfeature_log2ChIP[[x]][[1]]$CI_upper,
 summaryDFfeature_log2ChIP[[x]][[2]]$CI_upper,
 summaryDFfeature_log2ChIP[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_log2ChIP <- mclapply(seq_along(log2ChIPNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_log2ChIP[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_log2ChIP[[x]], ymax_list_log2ChIP[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_log2ChIP[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = log2ChIPNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = log2ChIPColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(log2ChIPNamesPlot))

ranFeat
ggObj2_combined_log2ChIP <- mclapply(seq_along(log2ChIPNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_log2ChIP[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_log2ChIP[[x]], ymax_list_log2ChIP[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_log2ChIP[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = log2ChIPNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = log2ChIPColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(log2ChIPNamesPlot))

ranLoc
ggObj3_combined_log2ChIP <- mclapply(seq_along(log2ChIPNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_log2ChIP[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_log2ChIP[[x]], ymax_list_log2ChIP[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_log2ChIP[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 "Start",
 "End",
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_log2ChIP[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = log2ChIPNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = log2ChIPColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(log2ChIPNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_log2ChIP,
 ggObj2_combined_log2ChIP,
 ggObj3_combined_log2ChIP
),
 layout_matrix = cbind(
 1:length(c(log2ChIPNamesPlot)),
 (length(c(log2ChIPNamesPlot))+1):(length(c(log2ChIPNamesPlot))*2),
 ((length(c(log2ChIPNamesPlot))*2)+1):(length(c(log2ChIPNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "log2ChIPcontrol_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(log2ChIPNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "log2ChIPcontrol_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(log2ChIPNamesPlot)), width = 21, limitsize = FALSE)
}

Free up memory by removing no longer required objects
rm(
 ChIP_featureMats, ChIP_ranLocMats,
 control_featureMats, control_ranLocMats,
 log2ChIP_featureMats, log2ChIP_ranLocMats,
 log2ChIP_mats_quantiles,
 wideDFfeature_list_log2ChIP,
 tidyDFfeature_list_log2ChIP,
 summaryDFfeature_list_log2ChIP,
 summaryDFfeature_log2ChIP
)
gc()
#####

other
feature
other_featureMats <- mclapply(seq_along(otherNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 otherFile <- system(paste0("ls ", otherDirs[x],
 otherNames[x],
 "_MappedOn_wheat_v1.0*", align, "_sort_norm_",
 featureName[y], "_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 intern = T)
 as.matrix(read.table(otherFile,
 header = F, skip = 3))
 })
}, mc.cores = length(otherNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
other_featureMats <- mclapply(seq_along(other_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, other_featureMats[[x]])
 } else {
 other_featureMats[[x]][[1]]
 }
}, mc.cores = length(other_featureMats))

ranLoc
other_ranLocMats <- mclapply(seq_along(otherNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 otherFile <- system(paste0("ls ", otherDirs[x],
 otherNames[x],
 "_MappedOn_wheat_v1.0*", align, "_sort_norm_",
 featureName[y], "_ranLoc_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 intern = T)
 as.matrix(read.table(otherFile,
 header = F, skip = 3))
 })
}, mc.cores = length(otherNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
other_ranLocMats <- mclapply(seq_along(other_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, other_ranLocMats[[x]])
 } else {
 other_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(other_ranLocMats))

Add column names
for(x in seq_along(other_featureMats)) {
 colnames(other_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(other_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
other_mats_quantiles <- mclapply(seq_along(other_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 other_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 other_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 other_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(other_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_other <- mclapply(seq_along(other_mats_quantiles), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(other_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(other_mats_quantiles[[x]][[y]][[k]]),
 t(other_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(other_mats_quantiles))

Convert into tidy data.frame (long format)
tidyDFfeature_list_other <- mclapply(seq_along(wideDFfeature_list_other), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(other_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_other[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_other))

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_other)) {
 for(y in seq_along(other_mats_quantiles[[x]])) {
 for(k in seq_along(other_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_other[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_other[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_other <- mclapply(seq_along(tidyDFfeature_list_other), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(other_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_other[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_other[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_other[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_other[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_other[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_other))

for(x in seq_along(summaryDFfeature_list_other)) {
 for(y in seq_along(other_mats_quantiles[[x]])) {
 for(k in seq_along(other_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_other[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_other[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_other[[x]][[y]][[k]]$window))
 summaryDFfeature_list_other[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_other[[x]][[y]][[k]])[1])
 summaryDFfeature_list_other[[x]][[y]][[k]]$sem <- summaryDFfeature_list_other[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_other[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_other[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_other[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_other[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_other[[x]][[y]][[k]]$sem
 summaryDFfeature_list_other[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_other[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_other[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_other[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_other)) {
 # feature quantiles
 names(summaryDFfeature_list_other[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_other[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_other[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_other into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_other <- mclapply(seq_along(summaryDFfeature_list_other), function(x) {
 lapply(seq_along(other_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_other[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_other))
for(x in seq_along(summaryDFfeature_other)) {
 # feature quantiles
 summaryDFfeature_other[[x]][[1]]$quantile <- factor(summaryDFfeature_other[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_other[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_other[[x]][[2]]$quantile <- factor(summaryDFfeature_other[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_other[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_other[[x]][[3]]$quantile <- factor(summaryDFfeature_other[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_other[[x]][[3]]))
}

Define y-axis limits
ymin_list_other <- lapply(seq_along(summaryDFfeature_other), function(x) {
 min(c(summaryDFfeature_other[[x]][[1]]$CI_lower,
 summaryDFfeature_other[[x]][[2]]$CI_lower,
 summaryDFfeature_other[[x]][[3]]$CI_lower))
})
ymax_list_other <- lapply(seq_along(summaryDFfeature_other), function(x) {
 max(c(summaryDFfeature_other[[x]][[1]]$CI_upper,
 summaryDFfeature_other[[x]][[2]]$CI_upper,
 summaryDFfeature_other[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_other <- mclapply(seq_along(otherNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_other[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_other[[x]], ymax_list_other[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_other[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = otherNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = otherColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(otherNamesPlot))

ranFeat
ggObj2_combined_other <- mclapply(seq_along(otherNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_other[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_other[[x]], ymax_list_other[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_other[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = otherNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = otherColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(otherNamesPlot))

ranLoc
ggObj3_combined_other <- mclapply(seq_along(otherNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_other[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_other[[x]], ymax_list_other[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_other[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 "Start",
 "End",
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_other[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = otherNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = otherColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(otherNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_other,
 ggObj2_combined_other,
 ggObj3_combined_other
),
 layout_matrix = cbind(
 1:length(c(otherNamesPlot)),
 (length(c(otherNamesPlot))+1):(length(c(otherNamesPlot))*2),
 ((length(c(otherNamesPlot))*2)+1):(length(c(otherNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "other_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(otherNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "other_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(otherNamesPlot)), width = 21, limitsize = FALSE)
}

Free up memory by removing no longer required objects
rm(
 other_featureMats, other_ranLocMats,
 other_mats_quantiles,
 wideDFfeature_list_other,
 tidyDFfeature_list_other,
 summaryDFfeature_list_other,
 summaryDFfeature_other
)
gc()
#####

DNAmeth
feature
DNAmeth_featureMats <- mclapply(seq_along(DNAmethContexts), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(DNAmethDirs,
 DNAmethNames,
 "_MappedOn_wheat_v1.0_incl_organelles_controls_dedup_", DNAmethContexts[x], "_",
 featureName[y], "_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(DNAmethContexts))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
DNAmeth_featureMats <- mclapply(seq_along(DNAmeth_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, DNAmeth_featureMats[[x]])
 } else {
 DNAmeth_featureMats[[x]][[1]]
 }
}, mc.cores = length(DNAmeth_featureMats))

ranLoc
DNAmeth_ranLocMats <- mclapply(seq_along(DNAmethContexts), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0(DNAmethDirs,
 DNAmethNames,
 "_MappedOn_wheat_v1.0_incl_organelles_controls_dedup_", DNAmethContexts[x], "_",
 featureName[y], "_ranLoc_matrix_bin", binName,
 "_flank", flankName, ".tab"),
 header = F, skip = 3))
 })
}, mc.cores = length(DNAmethContexts))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
DNAmeth_ranLocMats <- mclapply(seq_along(DNAmeth_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, DNAmeth_ranLocMats[[x]])
 } else {
 DNAmeth_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(DNAmeth_ranLocMats))

Add column names
for(x in seq_along(DNAmeth_featureMats)) {
 colnames(DNAmeth_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(DNAmeth_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
DNAmeth_mats_quantiles <- mclapply(seq_along(DNAmeth_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 DNAmeth_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 DNAmeth_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 DNAmeth_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(DNAmeth_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_DNAmeth <- mclapply(seq_along(DNAmeth_mats_quantiles), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(DNAmeth_mats_quantiles[[x]][[y]][[k]]),
 t(DNAmeth_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(DNAmeth_mats_quantiles))

Convert into tidy data.frame (long format)
tidyDFfeature_list_DNAmeth <- mclapply(seq_along(wideDFfeature_list_DNAmeth), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_DNAmeth[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_DNAmeth))

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_DNAmeth)) {
 for(y in seq_along(DNAmeth_mats_quantiles[[x]])) {
 for(k in seq_along(DNAmeth_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_DNAmeth[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_DNAmeth <- mclapply(seq_along(tidyDFfeature_list_DNAmeth), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_DNAmeth[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_DNAmeth))

for(x in seq_along(summaryDFfeature_list_DNAmeth)) {
 for(y in seq_along(DNAmeth_mats_quantiles[[x]])) {
 for(k in seq_along(DNAmeth_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_DNAmeth[[x]][[y]][[k]]$window))
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_DNAmeth[[x]][[y]][[k]])[1])
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sem <- summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sem
 summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_DNAmeth[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_DNAmeth)) {
 # feature quantiles
 names(summaryDFfeature_list_DNAmeth[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_DNAmeth[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_DNAmeth[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_DNAmeth into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_DNAmeth <- mclapply(seq_along(summaryDFfeature_list_DNAmeth), function(x) {
 lapply(seq_along(DNAmeth_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_DNAmeth[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_DNAmeth))
for(x in seq_along(summaryDFfeature_DNAmeth)) {
 # feature quantiles
 summaryDFfeature_DNAmeth[[x]][[1]]$quantile <- factor(summaryDFfeature_DNAmeth[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_DNAmeth[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_DNAmeth[[x]][[2]]$quantile <- factor(summaryDFfeature_DNAmeth[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_DNAmeth[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_DNAmeth[[x]][[3]]$quantile <- factor(summaryDFfeature_DNAmeth[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_DNAmeth[[x]][[3]]))
}

Define y-axis limits
ymin_list_DNAmeth <- lapply(seq_along(summaryDFfeature_DNAmeth), function(x) {
 min(c(summaryDFfeature_DNAmeth[[x]][[1]]$CI_lower,
 summaryDFfeature_DNAmeth[[x]][[2]]$CI_lower,
 summaryDFfeature_DNAmeth[[x]][[3]]$CI_lower))
})
ymax_list_DNAmeth <- lapply(seq_along(summaryDFfeature_DNAmeth), function(x) {
 max(c(summaryDFfeature_DNAmeth[[x]][[1]]$CI_upper,
 summaryDFfeature_DNAmeth[[x]][[2]]$CI_upper,
 summaryDFfeature_DNAmeth[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_DNAmeth <- mclapply(seq_along(DNAmethNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_DNAmeth[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_DNAmeth[[x]], ymax_list_DNAmeth[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_DNAmeth[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = DNAmethNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = DNAmethColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(DNAmethNamesPlot))

ranFeat
ggObj2_combined_DNAmeth <- mclapply(seq_along(DNAmethNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_DNAmeth[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_DNAmeth[[x]], ymax_list_DNAmeth[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_DNAmeth[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = DNAmethNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = DNAmethColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(DNAmethNamesPlot))

ranLoc
ggObj3_combined_DNAmeth <- mclapply(seq_along(DNAmethNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_DNAmeth[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_DNAmeth[[x]], ymax_list_DNAmeth[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_DNAmeth[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 "Start",
 "End",
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_DNAmeth[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = DNAmethNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = DNAmethColours[x]),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(DNAmethNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_DNAmeth,
 ggObj2_combined_DNAmeth,
 ggObj3_combined_DNAmeth
),
 layout_matrix = cbind(
 1:length(c(DNAmethNamesPlot)),
 (length(c(DNAmethNamesPlot))+1):(length(c(DNAmethNamesPlot))*2),
 ((length(c(DNAmethNamesPlot))*2)+1):(length(c(DNAmethNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "DNAmeth_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(DNAmethNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "DNAmeth_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(DNAmethNamesPlot)), width = 21, limitsize = FALSE)
}

Free up memory by removing no longer required objects
rm(
 DNAmeth_featureMats, DNAmeth_ranLocMats,
 DNAmeth_mats_quantiles,
 wideDFfeature_list_DNAmeth,
 tidyDFfeature_list_DNAmeth,
 summaryDFfeature_list_DNAmeth,
 summaryDFfeature_DNAmeth
)
gc()
#####

15 cultivars vs Chinese Spring WGS SNPs and indels SNPclasses
SNPclassNames <- c(
 "all_SNPs",
 "all_SNPs_indels"
)
SNPclassNamesPlot <- c(
 "15 cvs. SNPs",
 "15 cvs. SNPs+indels"
)

feature
SNPclass_featureMats <- mclapply(seq_along(SNPclassNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/",
 "15cvs_v_CS_WGS_", SNPclassNames[x],
 "_around_", featureName[y],
 "_matrix_bin", binSize, "bp_flank", flankName, ".tab"),
 header = T))
 })
}, mc.cores = length(SNPclassNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
SNPclass_featureMats <- mclapply(seq_along(SNPclass_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, SNPclass_featureMats[[x]])
 } else {
 SNPclass_featureMats[[x]][[1]]
 }
}, mc.cores = length(SNPclass_featureMats))

ranLoc
SNPclass_ranLocMats <- mclapply(seq_along(SNPclassNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/",
 "15cvs_v_CS_WGS_", SNPclassNames[x],
 "_around_", featureName[y],
 "_ranLoc_matrix_bin", binSize, "bp_flank", flankName, ".tab"),
 header = T))
 })
}, mc.cores = length(SNPclassNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
SNPclass_ranLocMats <- mclapply(seq_along(SNPclass_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, SNPclass_ranLocMats[[x]])
 } else {
 SNPclass_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(SNPclass_ranLocMats))

Add column names
for(x in seq_along(SNPclass_featureMats)) {
 colnames(SNPclass_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(SNPclass_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
SNPclass_mats_quantiles <- mclapply(seq_along(SNPclass_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 SNPclass_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 SNPclass_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 SNPclass_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(SNPclass_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_SNPclass <- mclapply(seq_along(SNPclass_mats_quantiles), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(SNPclass_mats_quantiles[[x]][[y]][[k]]),
 t(SNPclass_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(SNPclass_mats_quantiles)/2)

Convert into tidy data.frame (long format)
tidyDFfeature_list_SNPclass <- mclapply(seq_along(wideDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_SNPclass[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_SNPclass)/2)

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_SNPclass)) {
 for(y in seq_along(SNPclass_mats_quantiles[[x]])) {
 for(k in seq_along(SNPclass_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_SNPclass <- mclapply(seq_along(tidyDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_SNPclass)/2)

for(x in seq_along(summaryDFfeature_list_SNPclass)) {
 for(y in seq_along(SNPclass_mats_quantiles[[x]])) {
 for(k in seq_along(SNPclass_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window))
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_SNPclass[[x]][[y]][[k]])[1])
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_SNPclass)) {
 # feature quantiles
 names(summaryDFfeature_list_SNPclass[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_SNPclass[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_SNPclass[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_SNPclass into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_SNPclass <- mclapply(seq_along(summaryDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_SNPclass[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_SNPclass))
for(x in seq_along(summaryDFfeature_SNPclass)) {
 # feature quantiles
 summaryDFfeature_SNPclass[[x]][[1]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_SNPclass[[x]][[2]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_SNPclass[[x]][[3]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[3]]))
}

Define y-axis limits
ymin_list_SNPclass <- lapply(seq_along(summaryDFfeature_SNPclass), function(x) {
 min(c(summaryDFfeature_SNPclass[[x]][[1]]$CI_lower,
 summaryDFfeature_SNPclass[[x]][[2]]$CI_lower,
 summaryDFfeature_SNPclass[[x]][[3]]$CI_lower))
})
ymax_list_SNPclass <- lapply(seq_along(summaryDFfeature_SNPclass), function(x) {
 max(c(summaryDFfeature_SNPclass[[x]][[1]]$CI_upper,
 summaryDFfeature_SNPclass[[x]][[2]]$CI_upper,
 summaryDFfeature_SNPclass[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = bquote(.(SNPclassNamesPlot[[x]]))) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ranFeat
ggObj2_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = bquote(.(SNPclassNamesPlot[[x]]))) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ranLoc
ggObj3_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 "Start",
 "End",
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = bquote(.(SNPclassNamesPlot[[x]]))) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_SNPclass,
 ggObj2_combined_SNPclass,
 ggObj3_combined_SNPclass
),
 layout_matrix = cbind(
 1:length(c(SNPclassNamesPlot)),
 (length(c(SNPclassNamesPlot))+1):(length(c(SNPclassNamesPlot))*2),
 ((length(c(SNPclassNamesPlot))*2)+1):(length(c(SNPclassNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "15cvs_v_CS_WGS_SNPs_indels_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(SNPclassNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "15cvs_v_CS_WGS_SNPs_indels_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(SNPclassNamesPlot)), width = 21, limitsize = FALSE)
}

Free up memory by removing no longer required objects
rm(
 SNPclass_featureMats, SNPclass_ranLocMats,
 SNPclass_mats_quantiles,
 wideDFfeature_list_SNPclass,
 tidyDFfeature_list_SNPclass,
 summaryDFfeature_list_SNPclass,
 summaryDFfeature_SNPclass
)
gc()
#####

varietal SNPclasses
#SNPclassNames <- c(
"all",
"missense_variant",
"synonymous_variant",
"HIGH",
"MODERATE",
"LOW",
"MODIFIER",
"upstream_gene_variant",
"downstream_gene_variant",
"intron_variant",
"intergenic",
"transition",
"transversion"
)
#SNPclassNamesPlot <- c(
"All SNPs",
"Missense SNPs",
"Synonymous SNPs",
"High-impact SNPs",
"Moderate-impact SNPs",
"Low-impact SNPs",
"Modifier-impact SNPs",
"SNPs upstream of a gene",
"SNPs downstream of a gene",
"Intronic SNPs",
"Intergenic SNPs",
"Transitions",
"Transversions"
)

exome SNPclasses
SNPclassNames <- c(
 "all",
 "missense_variant",
 "synonymous_variant",
 "HIGH",
 "MODERATE",
 "LOW",
 "MODIFIER",
 "upstream_gene_variant",
 "downstream_gene_variant",
 "intron_variant",
 "intergenic",
 "transition",
 "transversion"
)

SNPclassNamesPlot <- c(
 "Exome SNPs",
 "Missense SNPs",
 "Synonymous SNPs",
 "High-impact SNPs",
 "Moderate-impact SNPs",
 "Low-impact SNPs",
 "Modifier-impact SNPs",
 "SNPs upstream of a gene",
 "SNPs downstream of a gene",
 "Intronic SNPs",
 "Intergenic SNPs",
 "Transitions",
 "Transversions",
 bquote("Log"[2]*"(dSNP/sSNP)"),
 bquote("Log"[2]*"(nSNP/sSNP)"),
 bquote("Log"[2]*"(dSNP/lSNP)")
)

feature
SNPclass_featureMats <- mclapply(seq_along(SNPclassNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/exome_",
 SNPclassNames[x],
 "_SNPs_around_", featureName[y],
 "_matrix_bin", binSize, "bp_flank", flankName, ".tab"),
 header = T))
 })
}, mc.cores = length(SNPclassNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
SNPclass_featureMats <- mclapply(seq_along(SNPclass_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, SNPclass_featureMats[[x]])
 } else {
 SNPclass_featureMats[[x]][[1]]
 }
}, mc.cores = length(SNPclass_featureMats))
Calculate log2 ratios of high-impact SNPs:synonymous SNPs,
non-synonymous SNPs:synonymous SNPs, and
high-impact SNPs:low-impact SNPs
SNPclass_featureMats <- c(SNPclass_featureMats,
 list(log2((SNPclass_featureMats[[4]]+1)/(SNPclass_featureMats[[3]]+1)),
 log2((SNPclass_featureMats[[2]]+1)/(SNPclass_featureMats[[3]]+1)),
 log2((SNPclass_featureMats[[4]]+1)/(SNPclass_featureMats[[6]]+1))))

ranLoc
SNPclass_ranLocMats <- mclapply(seq_along(SNPclassNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/exome_",
 SNPclassNames[x],
 "_SNPs_around_", featureName[y],
 "_ranLoc_matrix_bin", binSize, "bp_flank", flankName, ".tab"),
 header = T))
 })
}, mc.cores = length(SNPclassNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
SNPclass_ranLocMats <- mclapply(seq_along(SNPclass_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, SNPclass_ranLocMats[[x]])
 } else {
 SNPclass_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(SNPclass_ranLocMats))
Calculate log2 ratios of high-impact SNPs:synonymous SNPs,
non-synonymous SNPs:synonymous SNPs, and
high-impact SNPs:low-impact SNPs
SNPclass_ranLocMats <- c(SNPclass_ranLocMats,
 list(log2((SNPclass_ranLocMats[[4]]+1)/(SNPclass_ranLocMats[[3]]+1)),
 log2((SNPclass_ranLocMats[[2]]+1)/(SNPclass_ranLocMats[[3]]+1)),
 log2((SNPclass_ranLocMats[[4]]+1)/(SNPclass_ranLocMats[[6]]+1))))

Add column names
for(x in seq_along(SNPclass_featureMats)) {
 colnames(SNPclass_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(SNPclass_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
SNPclass_mats_quantiles <- mclapply(seq_along(SNPclass_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 SNPclass_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 SNPclass_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 SNPclass_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(SNPclass_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_SNPclass <- mclapply(seq_along(SNPclass_mats_quantiles), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(SNPclass_mats_quantiles[[x]][[y]][[k]]),
 t(SNPclass_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(SNPclass_mats_quantiles)/2)

Convert into tidy data.frame (long format)
tidyDFfeature_list_SNPclass <- mclapply(seq_along(wideDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_SNPclass[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_SNPclass)/2)

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_SNPclass)) {
 for(y in seq_along(SNPclass_mats_quantiles[[x]])) {
 for(k in seq_along(SNPclass_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_SNPclass <- mclapply(seq_along(tidyDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_SNPclass)/2)

for(x in seq_along(summaryDFfeature_list_SNPclass)) {
 for(y in seq_along(SNPclass_mats_quantiles[[x]])) {
 for(k in seq_along(SNPclass_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_SNPclass[[x]][[y]][[k]]$window))
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_SNPclass[[x]][[y]][[k]])[1])
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem
 summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_SNPclass[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_SNPclass)) {
 # feature quantiles
 names(summaryDFfeature_list_SNPclass[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_SNPclass[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_SNPclass[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_SNPclass into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_SNPclass <- mclapply(seq_along(summaryDFfeature_list_SNPclass), function(x) {
 lapply(seq_along(SNPclass_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_SNPclass[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_SNPclass))
for(x in seq_along(summaryDFfeature_SNPclass)) {
 # feature quantiles
 summaryDFfeature_SNPclass[[x]][[1]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_SNPclass[[x]][[2]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_SNPclass[[x]][[3]]$quantile <- factor(summaryDFfeature_SNPclass[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_SNPclass[[x]][[3]]))
}

Define y-axis limits
ymin_list_SNPclass <- lapply(seq_along(summaryDFfeature_SNPclass), function(x) {
 min(c(summaryDFfeature_SNPclass[[x]][[1]]$CI_lower,
 summaryDFfeature_SNPclass[[x]][[2]]$CI_lower,
 summaryDFfeature_SNPclass[[x]][[3]]$CI_lower))
})
ymax_list_SNPclass <- lapply(seq_along(summaryDFfeature_SNPclass), function(x) {
 max(c(summaryDFfeature_SNPclass[[x]][[1]]$CI_upper,
 summaryDFfeature_SNPclass[[x]][[2]]$CI_upper,
 summaryDFfeature_SNPclass[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = bquote(.(SNPclassNamesPlot[[x]]))) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ranFeat
ggObj2_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = bquote(.(SNPclassNamesPlot[[x]]))) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ranLoc
ggObj3_combined_SNPclass <- mclapply(seq_along(SNPclassNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_SNPclass[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_SNPclass[[x]], ymax_list_SNPclass[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 "Start",
 "End",
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_SNPclass[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = bquote(.(SNPclassNamesPlot[[x]]))) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(SNPclassNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_SNPclass,
 ggObj2_combined_SNPclass,
 ggObj3_combined_SNPclass
),
 layout_matrix = cbind(
 1:length(c(SNPclassNamesPlot)),
 (length(c(SNPclassNamesPlot))+1):(length(c(SNPclassNamesPlot))*2),
 ((length(c(SNPclassNamesPlot))*2)+1):(length(c(SNPclassNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "exomeSNPclass_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(SNPclassNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "exomeSNPclass_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(SNPclassNamesPlot)), width = 21, limitsize = FALSE)
}

Free up memory by removing no longer required objects
rm(
 SNPclass_featureMats, SNPclass_ranLocMats,
 SNPclass_mats_quantiles,
 wideDFfeature_list_SNPclass,
 tidyDFfeature_list_SNPclass,
 summaryDFfeature_list_SNPclass,
 summaryDFfeature_SNPclass
)
gc()
#####

TE superfams
superfamCodes <- c("RLG",
 "RLC",
 "RLX",
 "RIX",
 "SIX",
 "DTC",
 "DTM",
 "DTX",
 "DTH",
 "DTT",
 "DXX",
 "DTA",
 "DHH",
 "XXX")
superfamNames <- c("Gypsy_LTR",
 "Copia_LTR",
 "Unclassified_LTR",
 "LINE",
 "SINE",
 "CACTA",
 "Mutator",
 "Unclassified_with_TIRs",
 "Harbinger",
 "Mariner",
 "Unclassified_class_2",
 "hAT",
 "Helitrons",
 "Unclassified_repeats")
superfamNamesPlot <- c("Gypsy LTR",
 "Copia LTR",
 "Unclassified LTR",
 "LINE",
 "SINE",
 "CACTA",
 "Mutator",
 "Unclassified with TIRs",
 "Harbinger",
 "Mariner",
 "Unclassified class 2",
 "hAT",
 "Helitrons",
 "Unclassified repeats")

feature
superfam_featureMats <- mclapply(seq_along(superfamNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/",
 superfamNames[x], "_", superfamCodes[x],
 "_around_", featureName[y],
 "_matrix_bin", binSize, "bp_flank", flankName, ".tab"),
 header = T))
 })
}, mc.cores = length(superfamNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
superfam_featureMats <- mclapply(seq_along(superfam_featureMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, superfam_featureMats[[x]])
 } else {
 superfam_featureMats[[x]][[1]]
 }
}, mc.cores = length(superfam_featureMats))

ranLoc
superfam_ranLocMats <- mclapply(seq_along(superfamNames), function(x) {
 lapply(seq_along(featureName), function(y) {
 as.matrix(read.table(paste0("/home/ajt200/analysis/wheat/ASY1_CS/snakemake_ChIPseq/mapped/geneProfiles_subgenomes/matrices/",
 superfamNames[x], "_", superfamCodes[x],
 "_around_", featureName[y],
 "_ranLoc_matrix_bin", binSize, "bp_flank", flankName, ".tab"),
 header = T))
 })
}, mc.cores = length(superfamNames))
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature coverage matrices
superfam_ranLocMats <- mclapply(seq_along(superfam_ranLocMats), function(x) {
 if(length(featureName) == 3) {
 do.call(rbind, superfam_ranLocMats[[x]])
 } else {
 superfam_ranLocMats[[x]][[1]]
 }
}, mc.cores = length(superfam_ranLocMats))

Add column names
for(x in seq_along(superfam_featureMats)) {
 colnames(superfam_featureMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
 colnames(superfam_ranLocMats[[x]]) <- c(paste0("u", 1:(upstream/binSize)),
 paste0("t", ((upstream/binSize)+1):((upstream+bodyLength)/binSize)),
 paste0("d", (((upstream+bodyLength)/binSize)+1):(((upstream+bodyLength)/binSize)+(downstream/binSize))))
}

Subdivide coverage matrices into above-defined quantiles and random groupings
superfam_mats_quantiles <- mclapply(seq_along(superfam_featureMats), function(x) {
 list(
 # feature quantiles
 lapply(1:quantiles, function(k) {
 superfam_featureMats[[x]][quantileIndices[[k]],]
 }),
 # feature random groupings
 lapply(1:quantiles, function(k) {
 superfam_featureMats[[x]][randomPCIndices[[k]],]
 }),
 # random loci groupings
 lapply(1:quantiles, function(k) {
 superfam_ranLocMats[[x]][quantileIndices[[k]],]
 })
)
}, mc.cores = length(superfam_featureMats))

Transpose matrix and convert into dataframe
in which first column is window name
wideDFfeature_list_superfam <- mclapply(seq_along(superfam_mats_quantiles), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(superfam_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = colnames(superfam_mats_quantiles[[x]][[y]][[k]]),
 t(superfam_mats_quantiles[[x]][[y]][[k]]))
 })
 })
}, mc.cores = length(superfam_mats_quantiles)/3)

Convert into tidy data.frame (long format)
tidyDFfeature_list_superfam <- mclapply(seq_along(wideDFfeature_list_superfam), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(superfam_mats_quantiles[[x]][[y]]), function(k) {
 gather(data = wideDFfeature_list_superfam[[x]][[y]][[k]],
 key = feature,
 value = coverage,
 -window)
 })
 })
}, mc.cores = length(wideDFfeature_list_superfam)/3)

Order levels of factor "window" so that sequential levels
correspond to sequential windows
for(x in seq_along(tidyDFfeature_list_superfam)) {
 for(y in seq_along(superfam_mats_quantiles[[x]])) {
 for(k in seq_along(superfam_mats_quantiles[[x]][[y]])) {
 tidyDFfeature_list_superfam[[x]][[y]][[k]]$window <- factor(tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_superfam[[x]][[y]][[k]]$window))
 }
 }
}

Create summary data.frame in which each row corresponds to a window (Column 1),
Column2 is the number of coverage values (features) per window,
Column3 is the mean of coverage values per window,
Column4 is the standard deviation of coverage values per window,
Column5 is the standard error of the mean of coverage values per window,
Column6 is the lower bound of the 95% confidence interval, and
Column7 is the upper bound of the 95% confidence interval
summaryDFfeature_list_superfam <- mclapply(seq_along(tidyDFfeature_list_superfam), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 lapply(seq_along(superfam_mats_quantiles[[x]][[y]]), function(k) {
 data.frame(window = as.character(wideDFfeature_list_superfam[[x]][[y]][[k]]$window),
 n = tapply(X = tidyDFfeature_list_superfam[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 FUN = length),
 mean = tapply(X = tidyDFfeature_list_superfam[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 FUN = mean,
 na.rm = TRUE),
 sd = tapply(X = tidyDFfeature_list_superfam[[x]][[y]][[k]]$coverage,
 INDEX = tidyDFfeature_list_superfam[[x]][[y]][[k]]$window,
 FUN = sd,
 na.rm = TRUE))
 })
 })
}, mc.cores = length(tidyDFfeature_list_superfam)/3)

for(x in seq_along(summaryDFfeature_list_superfam)) {
 for(y in seq_along(superfam_mats_quantiles[[x]])) {
 for(k in seq_along(superfam_mats_quantiles[[x]][[y]])) {
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$window <- factor(summaryDFfeature_list_superfam[[x]][[y]][[k]]$window,
 levels = as.character(wideDFfeature_list_superfam[[x]][[y]][[k]]$window))
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$winNo <- factor(1:dim(summaryDFfeature_list_superfam[[x]][[y]][[k]])[1])
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$sem <- summaryDFfeature_list_superfam[[x]][[y]][[k]]$sd/sqrt(summaryDFfeature_list_superfam[[x]][[y]][[k]]$n-1)
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$CI_lower <- summaryDFfeature_list_superfam[[x]][[y]][[k]]$mean -
 qt(0.975, df = summaryDFfeature_list_superfam[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_superfam[[x]][[y]][[k]]$sem
 summaryDFfeature_list_superfam[[x]][[y]][[k]]$CI_upper <- summaryDFfeature_list_superfam[[x]][[y]][[k]]$mean +
 qt(0.975, df = summaryDFfeature_list_superfam[[x]][[y]][[k]]$n-1)*summaryDFfeature_list_superfam[[x]][[y]][[k]]$sem
 }
 }
}

quantileNames <- paste0(rep("Quantile ", quantiles), 1:quantiles)
randomPCNames <- paste0(rep("Random ", quantiles), 1:quantiles)
for(x in seq_along(summaryDFfeature_list_superfam)) {
 # feature quantiles
 names(summaryDFfeature_list_superfam[[x]][[1]]) <- quantileNames
 # feature random groupings
 names(summaryDFfeature_list_superfam[[x]][[2]]) <- randomPCNames
 # random loci groupings
 names(summaryDFfeature_list_superfam[[x]][[3]]) <- randomPCNames
}

Convert list of lists of lists of feature quantiles summaryDFfeature_list_superfam into
a list of lists of single data.frames containing all feature quantiles for plotting
summaryDFfeature_superfam <- mclapply(seq_along(summaryDFfeature_list_superfam), function(x) {
 lapply(seq_along(superfam_mats_quantiles[[x]]), function(y) {
 bind_rows(summaryDFfeature_list_superfam[[x]][[y]], .id = "quantile")
 })
}, mc.cores = length(summaryDFfeature_list_superfam))
for(x in seq_along(summaryDFfeature_superfam)) {
 # feature quantiles
 summaryDFfeature_superfam[[x]][[1]]$quantile <- factor(summaryDFfeature_superfam[[x]][[1]]$quantile,
 levels = names(summaryDFfeature_list_superfam[[x]][[1]]))
 # feature random groupings
 summaryDFfeature_superfam[[x]][[2]]$quantile <- factor(summaryDFfeature_superfam[[x]][[2]]$quantile,
 levels = names(summaryDFfeature_list_superfam[[x]][[2]]))
 # random loci groupings
 summaryDFfeature_superfam[[x]][[3]]$quantile <- factor(summaryDFfeature_superfam[[x]][[3]]$quantile,
 levels = names(summaryDFfeature_list_superfam[[x]][[3]]))
}

Define y-axis limits
ymin_list_superfam <- lapply(seq_along(summaryDFfeature_superfam), function(x) {
 min(c(summaryDFfeature_superfam[[x]][[1]]$CI_lower,
 summaryDFfeature_superfam[[x]][[2]]$CI_lower,
 summaryDFfeature_superfam[[x]][[3]]$CI_lower))
})
ymax_list_superfam <- lapply(seq_along(summaryDFfeature_superfam), function(x) {
 max(c(summaryDFfeature_superfam[[x]][[1]]$CI_upper,
 summaryDFfeature_superfam[[x]][[2]]$CI_upper,
 summaryDFfeature_superfam[[x]][[3]]$CI_upper))
})

Define legend labels
legendLabs_feature <- lapply(seq_along(quantileNames), function(x) {
 grobTree(textGrob(bquote(.(quantileNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranFeat <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})
legendLabs_ranLoc <- lapply(seq_along(randomPCNames), function(x) {
 grobTree(textGrob(bquote(.(randomPCNames[x])),
 x = legendPos[1], y = legendPos[2]-((x-1)*0.06), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 18)))
})

Plot average profiles with 95% CI ribbon
feature
ggObj1_combined_superfam <- mclapply(seq_along(superfamNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_superfam[[x]][[1]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_superfam[[x]], ymax_list_superfam[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[1]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_superfam[[x]][[1]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[1]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = superfamNamesPlot[x]) +
 annotation_custom(legendLabs_feature[[1]]) +
 annotation_custom(legendLabs_feature[[2]]) +
 annotation_custom(legendLabs_feature[[3]]) +
 annotation_custom(legendLabs_feature[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(featureNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(superfamNamesPlot))

ranFeat
ggObj2_combined_superfam <- mclapply(seq_along(superfamNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_superfam[[x]][[2]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_superfam[[x]], ymax_list_superfam[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[2]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_superfam[[x]][[2]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 featureStartLab,
 featureEndLab,
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[2]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = superfamNamesPlot[x]) +
 annotation_custom(legendLabs_ranFeat[[1]]) +
 annotation_custom(legendLabs_ranFeat[[2]]) +
 annotation_custom(legendLabs_ranFeat[[3]]) +
 annotation_custom(legendLabs_ranFeat[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranFeatNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(superfamNamesPlot))

ranLoc
ggObj3_combined_superfam <- mclapply(seq_along(superfamNamesPlot), function(x) {
 summaryDFfeature <- summaryDFfeature_superfam[[x]][[3]]
 ggplot(data = summaryDFfeature,
 mapping = aes(x = winNo,
 y = mean,
 group = quantile)
) +
 geom_line(data = summaryDFfeature,
 mapping = aes(colour = quantile),
 size = 1) +
 scale_colour_manual(values = quantileColours) +
 geom_ribbon(data = summaryDFfeature,
 mapping = aes(ymin = CI_lower,
 ymax = CI_upper,
 fill = quantile),
 alpha = 0.4) +
 scale_fill_manual(values = quantileColours) +
 scale_y_continuous(limits = c(ymin_list_superfam[[x]], ymax_list_superfam[[x]]),
 labels = function(x) sprintf("%6.3f", x)) +
 scale_x_discrete(breaks = c(1,
 (upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[3]])[1]/quantiles)-(downstream/binSize),
 dim(summaryDFfeature_superfam[[x]][[3]])[1]/quantiles),
 labels = c(paste0("-", flankNamePlot),
 "Start",
 "End",
 paste0("+", flankNamePlot))) +
 geom_vline(xintercept = c((upstream/binSize)+1,
 (dim(summaryDFfeature_superfam[[x]][[3]])[1]/quantiles)-(downstream/binSize)),
 linetype = "dashed",
 size = 1) +
 labs(x = "",
 y = superfamNamesPlot[x]) +
 annotation_custom(legendLabs_ranLoc[[1]]) +
 annotation_custom(legendLabs_ranLoc[[2]]) +
 annotation_custom(legendLabs_ranLoc[[3]]) +
 annotation_custom(legendLabs_ranLoc[[4]]) +
 theme_bw() +
 theme(
 axis.ticks = element_line(size = 1.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.x = element_text(size = 22, colour = "black"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 30, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_rect(size = 3.5, colour = "black"),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.0,0.3), "cm"),
 plot.title = element_text(hjust = 1.0, size = 30)) +
 ggtitle(bquote(.(ranLocNamePlot) ~ "(" * italic("n") ~ "=" ~
 .(prettyNum(summaryDFfeature$n[1],
 big.mark = ",", trim = T)) *
 ")"))
}, mc.cores = length(superfamNamesPlot))

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_superfam,
 ggObj2_combined_superfam,
 ggObj3_combined_superfam
),
 layout_matrix = cbind(
 1:length(c(superfamNamesPlot)),
 (length(c(superfamNamesPlot))+1):(length(c(superfamNamesPlot))*2),
 ((length(c(superfamNamesPlot))*2)+1):(length(c(superfamNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "TEsuperfam_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(superfamNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "TEsuperfam_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(superfamNamesPlot)), width = 21, limitsize = FALSE)
}

Free up memory by removing no longer required objects
rm(
 superfam_featureMats, superfam_ranLocMats,
 superfam_mats_quantiles,
 wideDFfeature_list_superfam,
 tidyDFfeature_list_superfam,
 summaryDFfeature_list_superfam,
 summaryDFfeature_superfam
)
gc()
#####

ggObjGA_combined <- grid.arrange(grobs = c(
 ggObj1_combined_log2ChIP,
 ggObj1_combined_other,
 ggObj1_combined_DNAmeth,
 ggObj1_combined_SNPclass,
 ggObj1_combined_superfam,
 ggObj2_combined_log2ChIP,
 ggObj2_combined_other,
 ggObj2_combined_DNAmeth,
 ggObj2_combined_SNPclass,
 ggObj2_combined_superfam,
 ggObj3_combined_log2ChIP,
 ggObj3_combined_other,
 ggObj3_combined_DNAmeth,
 ggObj3_combined_SNPclass,
 ggObj3_combined_superfam
),
 layout_matrix = cbind(
 1:length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot)),
 (length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))+1):(length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))*2),
 ((length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))*2)+1):(length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot))*3)
))
if(libName %in% c("cMMb", "HudsonRM_all", "HudsonRM_syn", "HudsonRM_nonsyn")) {
 ggsave(paste0(plotDir,
 "combined_avgProfiles_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot)), width = 21, limitsize = FALSE)
} else {
 ggsave(paste0(plotDir,
 "combined_avgProfiles_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 6.5*length(c(log2ChIPNamesPlot, otherNamesPlot, DNAmethNamesPlot, SNPclassNamesPlot, superfamNamesPlot)), width = 21, limitsize = FALSE)
}

gene_quantile_cMMb_density_mean_95CI_plot.R plots density and means with 95% CIs of recombination rate for each group of genes.

Script: gene_quantile_cMMb_density_mean_95CI_plot.R:
#!/applications/R/R-3.5.0/bin/Rscript

Plot density and means with 95% confidence intervals (CIs)
of recombination rate (cM/Mb) for each group of genes

Usage:
/applications/R/R-3.5.0/bin/Rscript gene_quantile_cMMb_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4

#libName <- "DMC1_Rep1_ChIP"
#dirName <- "DMC1"
#featureName <- unlist(strsplit("genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide",
split = ","))
#region <- "genes"
#quantiles <- 4

args <- commandArgs(trailingOnly = T)
libName <- args[1]
dirName <- args[2]
featureName <- unlist(strsplit(args[3],
 split = ","))
region <- args[4]
quantiles <- as.numeric(args[5])

library(parallel)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggbeeswarm)
library(ggthemes)
library(grid)
library(gridExtra)
library(extrafont)

if(libName %in% c("cMMb")) {
outDir <- paste0("quantiles_by_", libName, "/")
} else {
outDir <- paste0("quantiles_by_log2_", libName,
 "_control_in_", region, "/")
}
plotDir <- paste0(outDir, "plots/")
system(paste0("[-d ", outDir, "] || mkdir ", outDir))
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Define plot titles
if(libName %in% c("cMMb")) {
featureNamePlot <- paste0("cM/Mb ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles (", region, ")")
} else {
featureNamePlot <- paste0(sub("_\\w+", "", libName), " ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles (", region, ")")
}
ranFeatNamePlot <- paste0("Random ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles")

Define quantile colours
quantileColours <- c("red", "purple", "blue", "navy")
makeTransparent <- function(thisColour, alpha = 250)
{
 newColour <- col2rgb(thisColour)
 apply(newColour, 2, function(x) {
 rgb(red = x[1], green = x[2], blue = x[3],
 alpha = alpha, maxColorValue = 255)
 })
}
quantileColours <- makeTransparent(quantileColours)

Genomic definitions
chrs <- paste0(rep("chr", 21), rep(1:7, 3),
 c(rep("A", 7), rep("B", 7), rep("D", 7)))

Load table of features grouped into quantiles
if(libName %in% c("cMMb")) {
featuresDF <- read.table(paste0(outDir, "WesternEurope/features_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_WesternEurope.txt"),
 header = T, sep = "\t")
} else {
featuresDF <- read.table(paste0(outDir, "features_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".txt"),
 header = T, sep = "\t")
}

Load features to confirm feature (row) ordering in "featuresDF" is the same
as in "features" (which was used for generating the coverage matrices)
features <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 header = F)
})
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature data.frames
if(length(featureName) == 3) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
stopifnot(identical(as.character(featuresDF$featureID),
 as.character(features$V9)))

Get row indices for each feature quantile
quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
})

Random feature quantiles
Define function to randomly select n rows from
a data.frame
selectRandomFeatures <- function(features, n) {
 return(features[sample(x = dim(features)[1],
 size = n,
 replace = FALSE),])
}

Define seed so that random selections are reproducible
set.seed(453838430)

Divide features into random sets of equal number,
with the same number of genes per chromosome as
above-defined libName-defined feature quantiles
randomPCIndices <- lapply(1:quantiles, function(k) {
 randomPCIndicesk <- NULL
 for(i in 1:length(chrs)) {
 randomPCfeatureskChr <- selectRandomFeatures(features = featuresDF[featuresDF$seqnames == chrs[i],],
 n = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k) &
 featuresDF$seqnames == chrs[i],])[1])
 randomPCIndicesk <- c(randomPCIndicesk, as.integer(rownames(randomPCfeatureskChr)))
 }
 randomPCIndicesk
})
Confirm per-chromosome feature numbers are the same for quantiles and random groupings
lapply(seq_along(1:quantiles), function(k) {
 sapply(seq_along(chrs), function(x) {
 if(!identical(dim(featuresDF[randomPCIndices[[k]],][featuresDF[randomPCIndices[[k]],]$seqnames == chrs[x],]),
 dim(featuresDF[quantileIndices[[k]],][featuresDF[quantileIndices[[k]],]$seqnames == chrs[x],]))) {
 stop("Quantile features and random features do not consist of the same number of features per chromosome")
 }
 })
})

featuresDFtmp <- data.frame(featuresDF,
 random = as.character(""),
 stringsAsFactors = F)
ranFeatsDF <- data.frame()
for(k in 1:quantiles) {
 featuresDFtmp[randomPCIndices[[k]],]$random <- paste0("Random ", k)
 ranFeatsDFk <- featuresDFtmp[featuresDFtmp$random == paste0("Random ", k),]
 ranFeatsDF <- rbind(ranFeatsDF, ranFeatsDFk)
}

Calculate means, SDs, SEMs and 95% CIs
and create dataframe of summary statistics for plotting
featuresDF_quantileMean <- sapply(1:quantiles, function(k) {
 mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$cMMb, na.rm = T)
})
featuresDF_quantileSD <- sapply(1:quantiles, function(k) {
 sd(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$cMMb, na.rm = T)
})
featuresDF_quantileSEM <- sapply(1:quantiles, function(k) {
 featuresDF_quantileSD[k] / sqrt((dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1] - 1))
})
featuresDF_quantileCIlower <- sapply(1:quantiles, function(k) {
 featuresDF_quantileMean[k] -
 (qt(0.975, df = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]-1) *
 featuresDF_quantileSEM[k])
})
featuresDF_quantileCIupper <- sapply(1:quantiles, function(k) {
 featuresDF_quantileMean[k] +
 (qt(0.975, df = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]-1) *
 featuresDF_quantileSEM[k])
})
featuresDF_summary_stats <- data.frame(quantile = paste0("Quantile ", 1:4),
 Mean = featuresDF_quantileMean,
 SD = featuresDF_quantileSD,
 SEM = featuresDF_quantileSEM,
 CIlower = featuresDF_quantileCIlower,
 CIupper = featuresDF_quantileCIupper,
 stringsAsFactors = F)

ranFeatsDF_randomMean <- sapply(1:quantiles, function(k) {
 mean(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),]$cMMb, na.rm = T)
})
ranFeatsDF_randomSD <- sapply(1:quantiles, function(k) {
 sd(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),]$cMMb, na.rm = T)
})
ranFeatsDF_randomSEM <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomSD[k] / sqrt((dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1] - 1))
})
ranFeatsDF_randomCIlower <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomMean[k] -
 (qt(0.975, df = dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1]-1) *
 ranFeatsDF_randomSEM[k])
})
ranFeatsDF_randomCIupper <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomMean[k] +
 (qt(0.975, df = dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1]-1) *
 ranFeatsDF_randomSEM[k])
})
ranFeatsDF_summary_stats <- data.frame(random = paste0("Random ", 1:4),
 Mean = ranFeatsDF_randomMean,
 SD = ranFeatsDF_randomSD,
 SEM = ranFeatsDF_randomSEM,
 CIlower = ranFeatsDF_randomCIlower,
 CIupper = ranFeatsDF_randomCIupper,
 stringsAsFactors = F)
summary_stats_min <- min(c(featuresDF_summary_stats$CIlower, ranFeatsDF_summary_stats$CIlower), na.rm = T)
summary_stats_max <- max(c(featuresDF_summary_stats$CIupper, ranFeatsDF_summary_stats$CIupper), na.rm = T)

Take top 95% of data to aid visualisation in density plots
featuresDF <- featuresDF[which(featuresDF$cMMb <=
 quantile(featuresDF$cMMb,
 probs = 0.99, na.rm = T)),]
ranFeatsDF <- ranFeatsDF[which(ranFeatsDF$cMMb <=
 quantile(ranFeatsDF$cMMb,
 probs = 0.99, na.rm = T)),]

xmin <- min(c(
 featuresDF[unlist(quantileIndices),]$cMMb,
 featuresDF[unlist(randomPCIndices),]$cMMb
), na.rm = T)
xmax <- max(c(
 featuresDF[unlist(quantileIndices),]$cMMb,
 featuresDF[unlist(randomPCIndices),]$cMMb
), na.rm = T)
minDensity <- 0
maxDensity <- max(density(featuresDF[featuresDF$quantile == "Quantile 4",]$cMMb,
 na.rm = T)$y)+0.04
maxDensity <- max(
 c(
 sapply(1:quantiles, function(k) {
 max(c(max(density(featuresDF[featuresDF$quantile == paste0("Quantile ", k),]$cMMb,
 na.rm = T)$y),
 max(density(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),]$cMMb,
 na.rm = T)$y)))
 })
)
)+0.04

Define legend labels
legendLabs_feature <- lapply(1:quantiles, function(x) {
 grobTree(textGrob(bquote(.(paste0("Quantile ", 1:quantiles)[x])),
 x = 0.65, y = 0.90-((x-1)*0.07), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 22)))
})
legendLabs_ranFeat <- lapply(1:quantiles, function(x) {
 grobTree(textGrob(bquote(.(paste0("Random ", 1:quantiles)[x])),
 x = 0.65, y = 0.90-((x-1)*0.07), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 22)))
})

Recombination rate (cM/Mb) density plot function
cMMb_plotFun <- function(lociDF,
 parameter,
 parameterLab,
 featureGroup,
 featureNamePlot,
 legendLabs,
 quantileColours) {
 ggplot(data = lociDF,
 mapping = aes(x = get(parameter),
 colour = reorder(x = get(featureGroup), X = desc(get(featureGroup))),
 group = reorder(x = get(featureGroup), X = desc(get(featureGroup))))) +
 scale_colour_manual(values = rev(quantileColours)) +
 geom_density(size = 1.5) +
 scale_x_continuous(limits = c(xmin, xmax),
 labels = function(x) sprintf("%1.1f", x)) +
 scale_y_continuous(limits = c(minDensity, maxDensity),
 labels = function(x) sprintf("%1.1f", x)) +
 labs(x = parameterLab,
 y = "Density") +
 annotation_custom(legendLabs[[1]]) +
 annotation_custom(legendLabs[[2]]) +
 annotation_custom(legendLabs[[3]]) +
 annotation_custom(legendLabs[[4]]) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 2.0, colour = "black"),
 axis.line.x = element_line(size = 2.0, colour = "black"),
 axis.ticks.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.x = element_line(size = 2.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.text.x = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 26, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.3,0.3),"cm"),
 plot.title = element_text(hjust = 0.5, size = 30)) +
 ggtitle(bquote(.(featureNamePlot)))
}

Plot means and 95% confidence intervals
cMMb_meanCIs <- function(dataFrame,
 parameterLab,
 featureGroup,
 featureNamePlot,
 quantileColours) {
 ggplot(data = dataFrame,
 mapping = aes(x = get(featureGroup),
 y = Mean,
 colour = get(featureGroup))) +
 labs(colour = "") +
 geom_point(shape = 19, size = 6, position = position_dodge(width = 0.2)) +
 geom_errorbar(mapping = aes(ymin = CIlower,
 ymax = CIupper),
 width = 0.2, size = 2, position = position_dodge(width = 0.2)) +
 scale_colour_manual(values = quantileColours) +
 scale_y_continuous(limits = c(summary_stats_min, summary_stats_max),
 labels = function(x) sprintf("%1.2f", x)) +
 labs(x = "",
 y = parameterLab) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.x = element_blank(),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.text.x = element_text(size = 22, colour = quantileColours, hjust = 1.0, vjust = 1.0, angle = 45),
 axis.title = element_text(size = 26, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.1,0.3),"cm"),
 plot.title = element_text(hjust = 0.5, size = 30)) +
 ggtitle(bquote(.(featureNamePlot)))
}

ggObjGA_feature <- cMMb_plotFun(lociDF = featuresDF,
 parameter = "cMMb",
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "quantile",
 featureNamePlot = featureNamePlot,
 legendLabs = legendLabs_feature,
 quantileColours = quantileColours
)
ggObjGA_ranFeat <- cMMb_plotFun(lociDF = ranFeatsDF,
 parameter = "cMMb",
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "random",
 featureNamePlot = ranFeatNamePlot,
 legendLabs = legendLabs_ranFeat,
 quantileColours = quantileColours
)
ggObjGA_feature_mean <- cMMb_meanCIs(dataFrame = featuresDF_summary_stats,
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "quantile",
 featureNamePlot = featureNamePlot,
 quantileColours = quantileColours
)
ggObjGA_ranFeat_mean <- cMMb_meanCIs(dataFrame = ranFeatsDF_summary_stats,
 parameterLab = "Recombination rate (cM/Mb)",
 featureGroup = "random",
 featureNamePlot = ranFeatNamePlot,
 quantileColours = quantileColours
)
ggObjGA_combined <- grid.arrange(ggObjGA_feature,
 ggObjGA_feature_mean,
 ggObjGA_ranFeat,
 ggObjGA_ranFeat_mean,
 ncol = 2, as.table = F)
if(libName %in% c("cMMb")) {
ggsave(paste0(plotDir,
 "cMMb_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 13, width = 14)
} else {
ggsave(paste0(plotDir,
 "cMMb_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".pdf"),
 plot = ggObjGA_combined,
 height = 13, width = 14)
}

gene_quantile_popgenetics_stats_density_mean_95CI_plot.R plots density and means with 95% CIs of a given population genetics statistic for each group of genes.

Script: gene_quantile_popgenetics_stats_density_mean_95CI_plot.R:
#!/applications/R/R-3.5.0/bin/Rscript

Plot density and means with 95% confidence intervals (CIs)
of given population genetics statistic for each group of genes

Usage:
#/applications/R/R-3.5.0/bin/Rscript gene_quantile_popgenetics_stats_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4 TajimaD_all "Tajima's D" 0.99 0.2 '%1.1f' '%1.1f' '%1.2f' 0.65

#/applications/R/R-3.5.0/bin/Rscript gene_quantile_popgenetics_stats_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4 RozasR2_all "Rozas' R 2" 0.90 0.2 '%1.2f' '%2.0f' '%2.0f' 0.38

#/applications/R/R-3.5.0/bin/Rscript gene_quantile_popgenetics_stats_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4 CLR_all "CLR" 0.90 0.005 '%1.0f' '%1.2f' '%1.0f' 0.65

#/applications/R/R-3.5.0/bin/Rscript gene_quantile_popgenetics_stats_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4 HudsonRM_all "Hudson's R M" 0.90 0.2 '%1.1f' '%2.0f' '%1.2f' 0.38

#/applications/R/R-3.5.0/bin/Rscript gene_quantile_popgenetics_stats_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4 nucleotideDiversity_all "Diversity pi" 0.75 0.2 '%1.3f' '%3.0f' '%1.3f' 0.65

#/applications/R/R-3.5.0/bin/Rscript gene_quantile_popgenetics_stats_density_mean_95CI_plot.R DMC1_Rep1_ChIP DMC1 'genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide' genes 4 nSegregatingSites_all "Norm. seg. sites" 0.99 0.05 '%1.1f' '%1.1f' '%1.1f' 0.65

#libName <- "DMC1_Rep1_ChIP"
#dirName <- "DMC1"
#featureName <- unlist(strsplit("genes_in_Agenome_genomewide,genes_in_Bgenome_genomewide,genes_in_Dgenome_genomewide",
split = ","))
#region <- "genes"
#quantiles <- 4
#orderingFactor <- "TajimaD_all"
#orderingFactor <- "RozasR2_all"
#orderingFactorName <- bquote("Tajima's" ~ italic("D"))
#orderingFactorName <- bquote("Rozas'" ~ italic("R")[2])
#orderingFactorName <- unlist(strsplit("Tajima's D", split = " "))
#orderingFactorName <- unlist(strsplit("Rozas' R 2", split = " "))
#densityProp <- 0.99
#maxDensityPlus <- 0.2
#xDec <- "%1.1f"
#yDec <- "%1.1f"
#yDec2 <- "%1.2f"
#legendLabX <- "0.65"

args <- commandArgs(trailingOnly = T)
libName <- args[1]
dirName <- args[2]
featureName <- unlist(strsplit(args[3],
 split = ","))
region <- args[4]
quantiles <- as.numeric(args[5])
orderingFactor <- args[6]
orderingFactorName <- unlist(strsplit(args[7], split = " "))
if(grepl("Tajima", paste(orderingFactorName, collapse = " "))) {
 orderingFactorName <- bquote(.(orderingFactorName[1]) ~ italic(.(orderingFactorName[2])))
} else if(grepl("Rozas' Z", paste(orderingFactorName, collapse = " "))) {
 orderingFactorName <- bquote(.(orderingFactorName[1]) ~ italic(.(orderingFactorName[2])))
} else if(grepl("Rozas' R", paste(orderingFactorName, collapse = " "))) {
 orderingFactorName <- bquote(.(orderingFactorName[1]) ~ italic(.(orderingFactorName[2]))[.(as.numeric(orderingFactorName[3]))])
} else if(grepl("Hudson's R", paste(orderingFactorName, collapse = " "))) {
 orderingFactorName <- bquote(.(orderingFactorName[1]) ~ italic(.(orderingFactorName[2])[.(as.character(orderingFactorName[3]))]))
} else if(grepl("Diversity", paste(orderingFactorName, collapse = " "))) {
 orderingFactorName <- bquote(.(orderingFactorName[1]) ~ "(" * .(as.symbol(orderingFactorName[2])) * ")")
} else {
 orderingFactorName <- paste(orderingFactorName, collapse = " ")
}
densityProp <- as.numeric(args[8])
maxDensityPlus <- as.numeric(args[9])
xDec <- as.character(args[10])
yDec <- as.character(args[11])
yDec2 <- as.character(args[12])
legendLabX <- as.numeric(args[13])

library(parallel)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggbeeswarm)
library(ggthemes)
library(grid)
library(gridExtra)
library(extrafont)

pop_name <- c(
 "Africa",
 "MiddleEast",
 "Asia",
 "FormerSU",
 "EasternEurope",
 "WesternEurope",
 "NorthAmerica",
 "CentralAmerica",
 "SouthAmerica",
 "Oceania"
)

pop_name_plot <- c(
 "Africa",
 "Middle East",
 "Asia",
 "Former SU",
 "Eastern Europe",
 "Western Europe",
 "North America",
 "Central America",
 "South America",
 "Oceania"
)

if(libName %in% "cMMb") {
 outDir <- paste0("quantiles_by_", sub("_\\w+", "", libName), "/")
} else {
 outDir <- paste0("quantiles_by_", sub("_\\w+", "", libName),
 "_in_", region, "/")
}
outDir <- sapply(seq_along(pop_name), function(x) {
 paste0(outDir, pop_name[x], "/")
})
plotDir <- paste0(outDir, "plots/")

Define plot titles
if(libName %in% "cMMb") {
 featureNamePlot <- paste0("cM/Mb ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles")
} else {
 featureNamePlot <- paste0(sub("_\\w+", "", libName), " ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles (", region, ")")
}
ranFeatNamePlot <- paste0("Random ",
 substr(featureName[1], start = 1, stop = 4),
 " quantiles")

Define quantile colours
quantileColours <- c("red", "purple", "blue", "navy")
makeTransparent <- function(thisColour, alpha = 250)
{
 newColour <- col2rgb(thisColour)
 apply(newColour, 2, function(x) {
 rgb(red = x[1], green = x[2], blue = x[3],
 alpha = alpha, maxColorValue = 255)
 })
}
quantileColours <- makeTransparent(quantileColours)

Genomic definitions
chrs <- paste0(rep("chr", 21), rep(1:7, 3),
 c(rep("A", 7), rep("B", 7), rep("D", 7)))

Load table of features grouped into quantiles
mclapply(seq_along(pop_name), function(x) {
if(libName %in% "cMMb") {
 featuresDF <- read.table(paste0(outDir[x], "features_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 header = T, sep = "\t")
} else {
 featuresDF <- read.table(paste0(outDir[x], "features_", quantiles, "quantiles",
 "_by_", sub("_\\w+", "", libName), "_in_",
 region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".txt"),
 header = T, sep = "\t")
}

Load features to confirm feature (row) ordering in "featuresDF" is the same
as in "features" (which was used for generating the coverage matrices)
features <- lapply(seq_along(featureName), function(x) {
 read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/IWGSC_v1.1_HC_20170706_representative_mRNA_in_",
 paste0(substring(featureName[x], first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), ".gff3"),
 header = F)
})
If features from all 3 subgenomes are to be analysed,
concatenate the 3 corresponding feature data.frames
if(length(featureName) == 3) {
 features <- do.call(rbind, features)
} else {
 features <- features[[1]]
}
stopifnot(identical(as.character(featuresDF$featureID),
 as.character(features$V9)))

Get row indices for each feature quantile
quantileIndices <- lapply(1:quantiles, function(k) {
 which(featuresDF$quantile == paste0("Quantile ", k))
})

Random feature quantiles
Define function to randomly select n rows from
a data.frame
selectRandomFeatures <- function(features, n) {
 return(features[sample(x = dim(features)[1],
 size = n,
 replace = FALSE),])
}

Define seed so that random selections are reproducible
set.seed(453838430)

Divide features into random sets of equal number,
with the same number of genes per chromosome as
above-defined libName-defined feature quantiles
randomPCIndices <- lapply(1:quantiles, function(k) {
 randomPCIndicesk <- NULL
 for(i in 1:length(chrs)) {
 randomPCfeatureskChr <- selectRandomFeatures(features = featuresDF[featuresDF$seqnames == chrs[i],],
 n = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k) &
 featuresDF$seqnames == chrs[i],])[1])
 randomPCIndicesk <- c(randomPCIndicesk, as.integer(rownames(randomPCfeatureskChr)))
 }
 randomPCIndicesk
})
Confirm per-chromosome feature numbers are the same for quantiles and random groupings
lapply(seq_along(1:quantiles), function(k) {
 sapply(seq_along(chrs), function(x) {
 if(!identical(dim(featuresDF[randomPCIndices[[k]],][featuresDF[randomPCIndices[[k]],]$seqnames == chrs[x],]),
 dim(featuresDF[quantileIndices[[k]],][featuresDF[quantileIndices[[k]],]$seqnames == chrs[x],]))) {
 stop("Quantile features and random features do not consist of the same number of features per chromosome")
 }
 })
})

featuresDFtmp <- data.frame(featuresDF,
 random = as.character(""),
 stringsAsFactors = F)
ranFeatsDF <- data.frame()
for(k in 1:quantiles) {
 featuresDFtmp[randomPCIndices[[k]],]$random <- paste0("Random ", k)
 ranFeatsDFk <- featuresDFtmp[featuresDFtmp$random == paste0("Random ", k),]
 ranFeatsDF <- rbind(ranFeatsDF, ranFeatsDFk)
}

Calculate means, SDs, SEMs and 95% CIs
and create dataframe of summary statistics for plotting
featuresDF_quantileMean <- sapply(1:quantiles, function(k) {
 mean(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,colnames(featuresDF) == orderingFactor,], na.rm = T)
})
featuresDF_quantileSD <- sapply(1:quantiles, function(k) {
 sd(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,colnames(featuresDF) == orderingFactor,], na.rm = T)
})
featuresDF_quantileSEM <- sapply(1:quantiles, function(k) {
 featuresDF_quantileSD[k] / sqrt((dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1] - 1))
})
featuresDF_quantileCIlower <- sapply(1:quantiles, function(k) {
 featuresDF_quantileMean[k] -
 (qt(0.975, df = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]-1) *
 featuresDF_quantileSEM[k])
})
featuresDF_quantileCIupper <- sapply(1:quantiles, function(k) {
 featuresDF_quantileMean[k] +
 (qt(0.975, df = dim(featuresDF[featuresDF$quantile == paste0("Quantile ", k),])[1]-1) *
 featuresDF_quantileSEM[k])
})
featuresDF_summary_stats <- data.frame(quantile = paste0("Quantile ", 1:quantiles),
 Mean = featuresDF_quantileMean,
 SD = featuresDF_quantileSD,
 SEM = featuresDF_quantileSEM,
 CIlower = featuresDF_quantileCIlower,
 CIupper = featuresDF_quantileCIupper,
 stringsAsFactors = F)

ranFeatsDF_randomMean <- sapply(1:quantiles, function(k) {
 mean(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),][,colnames(ranFeatsDF) == orderingFactor,], na.rm = T)
})
ranFeatsDF_randomSD <- sapply(1:quantiles, function(k) {
 sd(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),][,colnames(ranFeatsDF) == orderingFactor,], na.rm = T)
})
ranFeatsDF_randomSEM <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomSD[k] / sqrt((dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1] - 1))
})
ranFeatsDF_randomCIlower <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomMean[k] -
 (qt(0.975, df = dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1]-1) *
 ranFeatsDF_randomSEM[k])
})
ranFeatsDF_randomCIupper <- sapply(1:quantiles, function(k) {
 ranFeatsDF_randomMean[k] +
 (qt(0.975, df = dim(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),])[1]-1) *
 ranFeatsDF_randomSEM[k])
})
ranFeatsDF_summary_stats <- data.frame(random = paste0("Random ", 1:quantiles),
 Mean = ranFeatsDF_randomMean,
 SD = ranFeatsDF_randomSD,
 SEM = ranFeatsDF_randomSEM,
 CIlower = ranFeatsDF_randomCIlower,
 CIupper = ranFeatsDF_randomCIupper,
 stringsAsFactors = F)
summary_stats_min <- min(c(featuresDF_summary_stats$CIlower, ranFeatsDF_summary_stats$CIlower), na.rm = T)
summary_stats_max <- max(c(featuresDF_summary_stats$CIupper, ranFeatsDF_summary_stats$CIupper), na.rm = T)

featuresDF <- featuresDF[which(featuresDF[,which(colnames(featuresDF) == orderingFactor)] <=
 quantile(featuresDF[,which(colnames(featuresDF) == orderingFactor)],
 probs = densityProp, na.rm = T)),]
ranFeatsDF <- ranFeatsDF[which(ranFeatsDF[,which(colnames(ranFeatsDF) == orderingFactor)] <=
 quantile(ranFeatsDF[,which(colnames(ranFeatsDF) == orderingFactor)],
 probs = densityProp, na.rm = T)),]
xmin <- min(c(featuresDF[,which(colnames(featuresDF) == orderingFactor)]),
 na.rm = T)
xmax <- max(c(featuresDF[,which(colnames(featuresDF) == orderingFactor)]),
 na.rm = T)
minDensity <- 0
maxDensity <- max(density(featuresDF[featuresDF$quantile == "Quantile 4",][,which(colnames(featuresDF) == orderingFactor)],
 na.rm = T)$y)+maxDensityPlus
maxDensity <- max(
 c(
 sapply(1:quantiles, function(k) {
 max(c(max(density(featuresDF[featuresDF$quantile == paste0("Quantile ", k),][,which(colnames(featuresDF) == orderingFactor)],
 na.rm = T)$y),
 max(density(ranFeatsDF[ranFeatsDF$random == paste0("Random ", k),][,which(colnames(featuresDF) == orderingFactor)],
 na.rm = T)$y)))
 })
)
)+maxDensityPlus

Define legend labels
legendLabs_feature <- lapply(1:quantiles, function(x) {
 grobTree(textGrob(bquote(.(paste0("Quantile ", 1:quantiles)[x])),
 x = legendLabX, y = 0.90-((x-1)*0.07), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 22)))
})
legendLabs_ranFeat <- lapply(1:quantiles, function(x) {
 grobTree(textGrob(bquote(.(paste0("Random ", 1:quantiles)[x])),
 x = legendLabX, y = 0.90-((x-1)*0.07), just = "left",
 gp = gpar(col = quantileColours[x], fontsize = 22)))
})

Population genetics statistic density plot function
popgen_stats_plotFun <- function(lociDF,
 parameter,
 parameterLab,
 featureGroup,
 featureNamePlot,
 legendLabs,
 quantileColours) {
 ggplot(data = lociDF,
 mapping = aes(x = get(parameter),
 colour = reorder(x = get(featureGroup), X = desc(get(featureGroup))),
 group = reorder(x = get(featureGroup), X = desc(get(featureGroup))))) +
 scale_colour_manual(values = rev(quantileColours)) +
 geom_density(size = 1.5) +
 scale_x_continuous(limits = c(xmin, xmax),
 labels = function(x) sprintf(xDec, x)) +
 scale_y_continuous(limits = c(minDensity, maxDensity),
 labels = function(x) sprintf(yDec, x)) +
 labs(x = parameterLab,
 y = "Density") +
 annotation_custom(legendLabs[[1]]) +
 annotation_custom(legendLabs[[2]]) +
 annotation_custom(legendLabs[[3]]) +
 annotation_custom(legendLabs[[4]]) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 2.0, colour = "black"),
 axis.line.x = element_line(size = 2.0, colour = "black"),
 axis.ticks.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.x = element_line(size = 2.0, colour = "black"),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.text.x = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.title = element_text(size = 26, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.3,0.3),"cm"),
 plot.title = element_text(hjust = 0.5, size = 30)) +
 ggtitle(bquote(.(featureNamePlot)))
}

Plot means and 95% confidence intervals
popgen_stats_meanCIs <- function(dataFrame,
 parameterLab,
 featureGroup,
 featureNamePlot,
 quantileColours) {
 ggplot(data = dataFrame,
 mapping = aes(x = get(featureGroup),
 y = Mean,
 colour = get(featureGroup))) +
 labs(colour = "") +
 geom_point(shape = 19, size = 6, position = position_dodge(width = 0.2)) +
 geom_errorbar(mapping = aes(ymin = CIlower,
 ymax = CIupper),
 width = 0.2, size = 2, position = position_dodge(width = 0.2)) +
 scale_colour_manual(values = quantileColours) +
 scale_y_continuous(limits = c(summary_stats_min, summary_stats_max),
 labels = function(x) sprintf(yDec2, x)) +
 labs(x = "",
 y = parameterLab) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.y = element_line(size = 2.0, colour = "black"),
 axis.ticks.x = element_blank(),
 axis.ticks.length = unit(0.25, "cm"),
 axis.text.y = element_text(size = 18, colour = "black", family = "Luxi Mono"),
 axis.text.x = element_text(size = 22, colour = quantileColours, hjust = 1.0, vjust = 1.0, angle = 45),
 axis.title = element_text(size = 26, colour = "black"),
 legend.position = "none",
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 plot.margin = unit(c(0.3,1.2,0.1,0.3),"cm"),
 plot.title = element_text(hjust = 0.5, size = 30)) +
 ggtitle(bquote(.(featureNamePlot)))
}

ggObjGA_feature <- popgen_stats_plotFun(lociDF = featuresDF[grepl("Quantile ", featuresDF$quantile),],
 parameter = orderingFactor,
 parameterLab = bquote(.(orderingFactorName) ~ "(" * .(pop_name_plot[x]) * ")"),
 featureGroup = "quantile",
 featureNamePlot = featureNamePlot,
 legendLabs = legendLabs_feature,
 quantileColours = quantileColours
)
ggObjGA_ranFeat <- popgen_stats_plotFun(lociDF = ranFeatsDF[grepl("Random ", ranFeatsDF$random),],
 parameter = orderingFactor,
 parameterLab = bquote(.(orderingFactorName) ~ "(" * .(pop_name_plot[x]) * ")"),
 featureGroup = "random",
 featureNamePlot = ranFeatNamePlot,
 legendLabs = legendLabs_ranFeat,
 quantileColours = quantileColours
)
ggObjGA_feature_mean <- popgen_stats_meanCIs(dataFrame = featuresDF_summary_stats,
 parameterLab = bquote(.(orderingFactorName) ~ "(" * .(pop_name_plot[x]) * ")"),
 featureGroup = "quantile",
 featureNamePlot = featureNamePlot,
 quantileColours = quantileColours
)
ggObjGA_ranFeat_mean <- popgen_stats_meanCIs(dataFrame = ranFeatsDF_summary_stats,
 parameterLab = bquote(.(orderingFactorName) ~ "(" * .(pop_name_plot[x]) * ")"),
 featureGroup = "random",
 featureNamePlot = ranFeatNamePlot,
 quantileColours = quantileColours
)
ggObjGA_combined <- grid.arrange(ggObjGA_feature,
 ggObjGA_feature_mean,
 ggObjGA_ranFeat,
 ggObjGA_ranFeat_mean,
 ncol = 2, as.table = F)
if(libName %in% "cMMb") {
 ggsave(paste0(plotDir[x],
 orderingFactor, "_densityProp", densityProp, "_around_", quantiles, "quantiles",
 "_by_", libName, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".pdf"),
 plot = ggObjGA_combined,
 height = 13, width = 14)
} else {
 ggsave(paste0(plotDir[x],
 orderingFactor, "_densityProp", densityProp, "_around_", quantiles, "quantiles",
 "_by_log2_", libName, "_control_in_", region, "_of_",
 substring(featureName[1][1], first = 1, last = 5), "_in_",
 paste0(substring(featureName, first = 10, last = 16),
 collapse = "_"), "_",
 substring(featureName[1][1], first = 18), "_", pop_name[x], ".pdf"),
 plot = ggObjGA_combined,
 height = 13, width = 14)
}
}, mc.cores = length(pop_name), mc.preschedule = F)

topGO_gene_quantiles.R and topGOslim_gene_quantiles.R evaluate groups of genes ("quantiles", defined by decreasing crossover recombination rate or ChIP-seq signal) for over-representation Gene Ontology (GO) and high-level GO (GO slim) terms, respectively.

Script: topGO_gene_quantiles.R:
#!/applications/R/R-3.5.0/bin/Rscript

For a given wheat subgenome or across all subgenomes,
analyse genes in each grouping (quantile) for over-representation of
Gene Ontology (GO) terms relative to their representation among
all genes in the given subgenome(s).
Use the default algorithm implemented in topGO ("weight01") to identify
over-represented GO terms, with Fisher's exact test P-values <=sigLevel

This script is based on a post by Avril Coghlan:
http://avrilomics.blogspot.co.uk/2015/07/using-topgo-to-test-for-go-term.html

Usage:
/applications/R/R-3.5.0/bin/Rscript ./topGO_gene_quantiles.R BP 0.05 'DMC1_in_genes' 1 4 'genomewide' 'Agenome_Bgenome_Dgenome'

#ont <- "BP"
#sigLevel <- 0.05
#quantileBy <- "DMC1_in_genes"
#quantileFirst <- 1
#quantileLast <- 4
#region <- "genomewide"
#genomeName <- "Agenome_Bgenome_Dgenome"

args <- commandArgs(trailingOnly = TRUE)
ont <- args[1]
sigLevel <- args[2]
quantileBy <- args[3]
quantileFirst <- as.integer(args[4])
quantileLast <- as.integer(args[5])
region <- args[6]
genomeName <- args[7]

suppressMessages(library(topGO))

targets <- lapply(seq_along(quantileFirst:quantileLast), function(x) {
 paste0("quantiles_by_", quantileBy, "/",
 "featureIDs_quantile", as.character(x),
 "_of_", as.character(quantileLast),
 "_by_", quantileBy, "_of_genes_in_",
 genomeName, "_", region, ".txt")
})

Read in GO annotations for genes to define "gene universe".
GO and GO slim annotations were obtained from "OntologiesForGenes.rds"
(available at https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/TablesForExploration/),
after retaining only rows containing "IWGSC+Stress" or "slim_IWGSC+Stress",
respectively, in the "ontology" column of this table
geneID2GO <- readMappings(file = paste0("/home/ajt200/analysis/wheat/annotation/RamirezGonzalez_2018_Science_GO_anno/RamirezGonzalez_2018_iwgsc_refseqv1.0_OntologiesForGenes_FunctionalAnnotation_HCgenes_in_",
 genomeName, "_", region,
 "_GO_IDs_no_chrUn.tsv"))
geneUniverse <- names(geneID2GO)

genesetGO <- function(target) {
 # Define list of genes of interest; file should contain a single column of gene identifiers
 genesOfInterest <- as.character(read.table(target)$V1)

 # Specify where genes of interest appear in the gene universe vector
 geneList <- factor(as.integer(geneUniverse %in% genesOfInterest))
 names(geneList) <- geneUniverse

 # Build GOdata object in topGO
 capture.output(GOdata <- new("topGOdata", description = "Grouped genes", ontology = ont,
 allGenes = geneList, annot = annFUN.gene2GO, gene2GO = geneID2GO),
 file="/dev/null")

 ## Access list of genes of interest
 #sg <- sigGenes(GOdata)
 #print(str(sg))
 #print(numSigGenes(GOdata))

 # Run Fisher's exact tests to determine GO term enrichment
 capture.output(resultClassic <- runTest(GOdata, algorithm = "classic", statistic = "fisher"),
 file="/dev/null")
 capture.output(resultElim <- runTest(GOdata, algorithm = "elim", statistic = "fisher"),
 file="/dev/null")
 capture.output(resultWeight <- runTest(GOdata, algorithm = "weight", statistic = "fisher"),
 file="/dev/null")
 capture.output(resultTopGO <- runTest(GOdata, algorithm = "weight01", statistic = "fisher"),
 file="/dev/null")

 # Count number of results where weight01 gives a P-value <= sigLevel
 mySummary <- summary(attributes(resultTopGO)$score <= as.numeric(sigLevel))
 if(length(mySummary) > 2) {
 numSignif <- as.integer(mySummary[[3]])
 } else {
 numSignif <- as.integer(0)
 }
 if(numSignif < 2) {
 numSignif <- as.integer(2)
 }

 # List significant results and write to file
 capture.output(enrichRes <- GenTable(GOdata,
 classicFisher = resultClassic,
 elimFisher = resultElim,
 weightFisher = resultWeight,
 topGOFisher = resultTopGO,
 orderBy = "topGOFisher",
 ranksOf = "weightFisher",
 topNodes = numSignif),
 file="/dev/null")

 # WARNING: ASSUMES INPUT FILE HAS A 3-LETTER EXTENSION
 basename <- basename(target)
 len <- nchar(basename)
 basename <- substr(basename, 1, len-4)

 out_name <- paste(basename, "GO", ont, "enrichment.tsv", sep="_")
 folder <- paste0(dirname(target), "/GO")
 system(paste0("[-d ", folder, "] || mkdir ", folder))
 folder2 <- paste0(folder, "/", basename, "_GO_", ont)
 system(paste0("[-d ", folder2, "] || mkdir ", folder2))

 capture.output(write.table(enrichRes, file = file.path(folder, out_name), sep = "\t",
 row.names = FALSE, col.names = TRUE, quote = FALSE),
 file="/dev/null")

 ## Visualise the positions of the top 5 statistically significant GO terms in the GO hierarchy
 #out_name2 <- paste(basename, "GO", ont, "enrichment", sep="_")
 #printGraph(GOdata, resultTopGO, firstSigNodes = 5,
 # fn.prefix = file.path(folder, out_name2), useInfo = "all", pdfSW = TRUE)

 # Extract gene IDs annotated with significantly enriched GO terms
 myTerms <- enrichRes$GO.ID
 myGenes <- genesInTerm(GOdata, myTerms)
 for(i in 1:length(myTerms)) {
 myTerm <- myTerms[i]
 myGenesForTerm <- myGenes[myTerm][[1]]
 myFactor <- myGenesForTerm %in% genesOfInterest
 myGenesForTermT <- myGenesForTerm[myFactor == TRUE]
 myGenesForTermT <- paste(myGenesForTermT, collapse = ",")
 myGenesForTermT <- paste(myTerm, myGenesForTermT, sep = "\t")
 out_name3 <- paste0(basename, "_GO_", ont, "_enrichment_", myTerm, ".txt")
 write(myGenesForTermT, file = file.path(folder2, out_name3))
 }
}

Apply genesetGO() function to each target group of genes
lapply(seq_along(targets), function(x) {
 genesetGO(target = targets[[x]])
})

Script: topGOslim_gene_quantiles.R:
#!/applications/R/R-3.5.0/bin/Rscript

For a given wheat subgenome or across all subgenomes,
analyse genes in each grouping (quantile) for over-representation of
high-level Gene Ontology (GO slim) terms relative to their representation among
all genes in the given subgenome(s).
Use the default algorithm implemented in topGO ("weight01") to identify
over-represented GO slim terms, with Fisher's exact test P-values <=sigLevel

This script is based on a post by Avril Coghlan:
http://avrilomics.blogspot.co.uk/2015/07/using-topgo-to-test-for-go-term.html

Usage:
/applications/R/R-3.5.0/bin/Rscript ./topGOslim_gene_quantiles.R BP 0.05 'DMC1_in_genes' 1 4 'genomewide' 'Agenome_Bgenome_Dgenome'

#ont <- "BP"
#sigLevel <- 0.05
#quantileBy <- "DMC1_in_genes"
#quantileFirst <- 1
#quantileLast <- 4
#region <- "genomewide"
#genomeName <- "Agenome_Bgenome_Dgenome"

args <- commandArgs(trailingOnly = TRUE)
ont <- args[1]
sigLevel <- args[2]
quantileBy <- args[3]
quantileFirst <- as.integer(args[4])
quantileLast <- as.integer(args[5])
region <- args[6]
genomeName <- args[7]

suppressMessages(library(topGO))

targets <- lapply(seq_along(quantileFirst:quantileLast), function(x) {
 paste0("quantiles_by_", quantileBy, "/",
 "featureIDs_quantile", as.character(x),
 "_of_", as.character(quantileLast),
 "_by_", quantileBy, "_of_genes_in_",
 genomeName, "_", region, ".txt")
})

Read in GO slim annotations for genes to define "gene universe".
GO and GO slim annotations were obtained from "OntologiesForGenes.rds"
(available at https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/TablesForExploration/),
after retaining only rows containing "IWGSC+Stress" or "slim_IWGSC+Stress",
respectively, in the "ontology" column of this table
geneID2GO <- readMappings(file = paste0("/home/ajt200/analysis/wheat/annotation/RamirezGonzalez_2018_Science_GO_anno/RamirezGonzalez_2018_iwgsc_refseqv1.0_OntologiesForGenes_FunctionalAnnotation_HCgenes_in_",
 genomeName, "_", region,
 "_GOslim_IDs_no_chrUn.tsv"))
geneUniverse <- names(geneID2GO)

genesetGO <- function(target) {
 # Define list of genes of interest; file should contain a single column of gene identifiers
 genesOfInterest <- as.character(read.table(target)$V1)

 # Specify where genes of interest appear in the gene universe vector
 geneList <- factor(as.integer(geneUniverse %in% genesOfInterest))
 names(geneList) <- geneUniverse

 # Build GOdata object in topGO
 capture.output(GOdata <- new("topGOdata", description = "Grouped genes", ontology = ont,
 allGenes = geneList, annot = annFUN.gene2GO, gene2GO = geneID2GO),
 file="/dev/null")

 ## Access list of genes of interest
 #sg <- sigGenes(GOdata)
 #print(str(sg))
 #print(numSigGenes(GOdata))

 # Run Fisher's exact tests to determine GOslim term enrichment
 capture.output(resultClassic <- runTest(GOdata, algorithm = "classic", statistic = "fisher"),
 file="/dev/null")
 capture.output(resultElim <- runTest(GOdata, algorithm = "elim", statistic = "fisher"),
 file="/dev/null")
 capture.output(resultWeight <- runTest(GOdata, algorithm = "weight", statistic = "fisher"),
 file="/dev/null")
 capture.output(resultTopGO <- runTest(GOdata, algorithm = "weight01", statistic = "fisher"),
 file="/dev/null")

 # Count number of results where weight01 gives a P-value <= sigLevel
 mySummary <- summary(attributes(resultTopGO)$score <= as.numeric(sigLevel))
 if(length(mySummary) > 2) {
 numSignif <- as.integer(mySummary[[3]])
 } else {
 numSignif <- as.integer(0)
 }
 if(numSignif < 2) {
 numSignif <- as.integer(2)
 }

 # List significant results and write to file
 capture.output(enrichRes <- GenTable(GOdata,
 classicFisher = resultClassic,
 elimFisher = resultElim,
 weightFisher = resultWeight,
 topGOFisher = resultTopGO,
 orderBy = "topGOFisher",
 ranksOf = "weightFisher",
 topNodes = numSignif),
 file="/dev/null")

 # WARNING: ASSUMES INPUT FILE HAS A 3-LETTER EXTENSION
 basename <- basename(target)
 len <- nchar(basename)
 basename <- substr(basename, 1, len-4)

 out_name <- paste(basename, "GOslim", ont, "enrichment.tsv", sep="_")
 folder <- paste0(dirname(target), "/GOslim")
 system(paste0("[-d ", folder, "] || mkdir ", folder))
 folder2 <- paste0(folder, "/", basename, "_GOslim_", ont)
 system(paste0("[-d ", folder2, "] || mkdir ", folder2))

 capture.output(write.table(enrichRes, file = file.path(folder, out_name), sep = "\t",
 row.names = FALSE, col.names = TRUE, quote = FALSE),
 file="/dev/null")

 ## Visualise the positions of the top 5 statistically significant GOslim terms in the GO hierarchy
 #out_name2 <- paste(basename, "GOslim", ont, "enrichment", sep="_")
 #printGraph(GOdata, resultTopGO, firstSigNodes = 5,
 # fn.prefix = file.path(folder, out_name2), useInfo = "all", pdfSW = TRUE)

 # Extract gene IDs annotated with significantly enriched GOslim terms
 myTerms <- enrichRes$GO.ID
 myGenes <- genesInTerm(GOdata, myTerms)
 for(i in 1:length(myTerms)) {
 myTerm <- myTerms[i]
 myGenesForTerm <- myGenes[myTerm][[1]]
 myFactor <- myGenesForTerm %in% genesOfInterest
 myGenesForTermT <- myGenesForTerm[myFactor == TRUE]
 myGenesForTermT <- paste(myGenesForTermT, collapse = ",")
 myGenesForTermT <- paste(myTerm, myGenesForTermT, sep = "\t")
 out_name3 <- paste0(basename, "_GOslim_", ont, "_enrichment_", myTerm, ".txt")
 write(myGenesForTermT, file = file.path(folder2, out_name3))
 }
}

Apply genesetGO() function to each target group of genes
lapply(seq_along(targets), function(x) {
 genesetGO(target = targets[[x]])
})

proportion_*_in_gene_quantiles_hypergeometricTest.R scripts evaluate different gene categories for over- and under-representation in each group of genes by applying hypergeometric tests. These scripts also sample from the hypergeometric distribution 100,000 times to obtain a probability distribution for plotting the log2(observed/expected) ratio and significance threshold.

Script: proportion_NLRs_in_gene_quantiles_hypergeometricTest.R:
#!/applications/R/R-3.5.0/bin/Rscript

Perform hypergeometric tests to determine whether each
gene quantile is over-represented or under-represented for
NLR-encoding genes
(i.e., is the proportion of NLR-encoding genes
contained within each gene quantile significantly greater or smaller than expected by chance
based on the hypergeometric distribution?)

P-value is the probability of drawing >= length(quantile_NLRs) [x] features
in a sample size of length(quantile_genes) [k] from a total feature set consisting of
length(genome_NLRs) [m] + (length(genome_genes) - length(genome_NLRs)) [n]

Usage
./proportion_NLRs_in_gene_quantiles_hypergeometricTest.R 'DMC1_Rep1_ChIP' 'genes' 1 4 'genomewide' 'Agenome_Bgenome_Dgenome' 100000

library(methods)
library(plotrix)
library(ggplot2)
library(ggbeeswarm)
library(ggthemes)
library(grid)
library(gridExtra)
library(extrafont)

#libName <- "DMC1_Rep1_ChIP"
#featRegion <- "genes"
#quantileFirst <- 1
#quantileLast <- 4
#region <- "genomewide"
#genomeName <- "Agenome_Bgenome_Dgenome"
#samplesNum <- 100000

args <- commandArgs(trailingOnly = TRUE)
libName <- args[1]
featRegion <- args[2]
quantileFirst <- as.integer(args[3])
quantileLast <- as.integer(args[4])
region <- args[5]
genomeName <- args[6]
samplesNum <- as.numeric(args[7])

if(libName %in% "cMMb") {
 outDir <- paste0("quantiles_by_", libName, "/hypergeometricTests/")
} else {
 outDir <- paste0("quantiles_by_", sub("_\\w+", "", libName),
 "_in_", featRegion, "/hypergeometricTests/")
}
plotDir <- paste0(outDir, "plots/")
system(paste0("[-d ", outDir, "] || mkdir ", outDir))
system(paste0("[-d ", plotDir, "] || mkdir ", plotDir))

Load feature quantiles
if(libName %in% "cMMb") {
 featuresDF <- read.table(paste0(sub("hypergeometricTests/", "", outDir),
 "/WesternEurope/features_", quantileLast, "quantiles_by_",
 sub("_\\w+$", "", libName), "_of_genes_in_",
 genomeName, "_", region, "_WesternEurope.txt"),
 header = T, sep = "\t", row.names = NULL, stringsAsFactors = F)
} else {
 featuresDF <- read.table(paste0(sub("hypergeometricTests/", "", outDir),
 "/WesternEurope/features_", quantileLast, "quantiles_by_",
 sub("_\\w+$", "", libName), "_in_", featRegion, "_of_genes_in_",
 genomeName, "_", region, "_WesternEurope.txt"),
 header = T, sep = "\t", row.names = NULL, stringsAsFactors = F)
}
featuresDF$featureID <- sub(pattern = "\\.\\d+", replacement = "",
 x = featuresDF$featureID)
genome_genes <- featuresDF$featureID
quantile_genes_list <- lapply(quantileFirst:quantileLast, function(x) {
 featuresDF[featuresDF$quantile == paste0("Quantile ", x),]$featureID
})
rm(featuresDF); gc()

Load NLR-encoding genes
NLRs <- read.table(paste0("/home/ajt200/analysis/wheat/annotation/221118_download/iwgsc_refseqv1.1_genes_2017July06/",
 "NLRs_Steuernagel_Wulff_2020_Plant_Physiol/NLR_genes_complete_representative_mRNA.gff3"),
 header = F, stringsAsFactors = F)
chrs <- paste0(rep("chr", 21), rep(1:7, 3),
 c(rep("A", 7), rep("B", 7), rep("D", 7)))
genomeLetter <- unlist(strsplit(gsub("genome", "", genomeName), split = "_"))
Subset NLRs to only those within a given subgenome
if(length(genomeLetter) == 1) {
 chrs <- chrs[grepl(genomeLetter, chrs)]
 NLRs <- NLRs[NLRs$V1 %in% chrs,]
}

Replace gene model ID decimal suffix (e.g., ".1")
NLRs$V9 <- sub(pattern = "\\.\\d+", replacement = "",
 x = NLRs$V9)
genome_NLRs <- as.character(NLRs$V9)

genome_NLRs <- intersect(genome_NLRs, genome_genes)

Set class for hypergeometric test results object
setClass("hypergeomTest",
 representation(alternative = "character",
 alpha0.05 = "numeric",
 pval = "numeric",
 observed = "numeric",
 expected = "numeric",
 log2obsexp = "numeric",
 log2alpha = "numeric",
 quantile_genes = "numeric",
 proportion_of_quantile = "numeric",
 random_proportions_of_quantile = "numeric",
 hypergeomDist = "numeric"))

P-value is the probability of drawing >= length(quantile_NLRs) [x] features
in a sample size of length(quantile_genes) [k] from a total feature set consisting of
length(genome_NLRs) [m] + (length(genome_genes) - length(genome_NLRs)) [n]

From Karl Broman's answer at
https://stats.stackexchange.com/questions/16247/calculating-the-probability-of-gene-list-overlap-between-an-rna-seq-and-a-chip-c:
dhyper(x, m, n, k) gives the probability of drawing exactly x.
So P-value is given by the sum of the probabilities of drawing
length(quantile_NLRs) to length(quantile_genes)

for(z in seq_along(quantile_genes_list)) {
 quantile_genes <- quantile_genes_list[[z]]
 # Get intersection of gene IDs in quantile z and gene IDs of NLRs
 quantile_NLRs <- intersect(quantile_genes, genome_NLRs)

 # Calculate the P-values for over-representation and under-representation
 # of NLRs among quantile z genes
 set.seed(2847502)
 # Over-representation:
 Pval_overrep <- sum(dhyper(x = length(quantile_NLRs):length(quantile_genes),
 m = length(genome_NLRs),
 n = length(genome_genes) - length(genome_NLRs),
 k = length(quantile_genes)))
 print(Pval_overrep)

 # Or by 1 minus the sum of the probabilities of drawing 0:(length(quantile_NLRs)-1)
 print(1 - sum(dhyper(x = 0:(length(quantile_NLRs)-1),
 m = length(genome_NLRs),
 n = length(genome_genes) - length(genome_NLRs),
 k = length(quantile_genes))))

 # Under-representation
 Pval_underrep <- phyper(q = length(quantile_NLRs),
 m = length(genome_NLRs),
 n = length(genome_genes) - length(genome_NLRs),
 k = length(quantile_genes))
 print(Pval_underrep)

 # Sample without replacement
 hgDist <- rhyper(nn = samplesNum,
 m = length(genome_NLRs),
 n = length(genome_genes) - length(genome_NLRs),
 k = length(quantile_genes))

 # Calculate P-values and significance levels
 if(length(quantile_NLRs) > mean(hgDist)) {
 Pval <- Pval_overrep
 MoreOrLessThanRandom <- "MoreThanRandom"
 alpha0.05 <- quantile(hgDist, probs = 0.95)[[1]]
 } else {
 Pval <- Pval_underrep
 MoreOrLessThanRandom <- "LessThanRandom"
 alpha0.05 <- quantile(hgDist, probs = 0.05)[[1]]
 }

 hgTestResults <- new("hypergeomTest",
 alternative = MoreOrLessThanRandom,
 alpha0.05 = alpha0.05,
 pval = Pval,
 observed = length(quantile_NLRs),
 expected = mean(hgDist),
 log2obsexp = log2(length(quantile_NLRs) / mean(hgDist)),
 log2alpha = log2(alpha0.05 / mean(hgDist)),
 quantile_genes = length(quantile_genes),
 proportion_of_quantile = length(quantile_NLRs) / length(quantile_genes),
 random_proportions_of_quantile = hgDist / length(quantile_genes),
 hypergeomDist = hgDist)
 if(libName %in% "cMMb") {
 save(hgTestResults,
 file = paste0(outDir,
 "NLR_gene_representation_among_quantile", z, "_of_", quantileLast,
 "_by_", libName, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes.RData"))
 } else {
 save(hgTestResults,
 file = paste0(outDir,
 "NLR_gene_representation_among_quantile", z, "_of_", quantileLast,
 "_by_log2_", libName, "_control_in_", featRegion, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes.RData"))
 }

 # Generate histogram
 if(libName %in% "cMMb") {
 pdf(paste0(plotDir,
 "NLR_gene_representation_among_quantile", z, "_of_", quantileLast,
 "_by_", libName, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes_hist.pdf"),
 height = 4.5, width = 5)
 } else {
 pdf(paste0(plotDir,
 "NLR_gene_representation_among_quantile", z, "_of_", quantileLast,
 "_by_log2_", libName, "_control_in_", featRegion, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes_hist.pdf"),
 height = 4.5, width = 5)
 }
 par(mar = c(3.1, 3.1, 4.1, 1.1),
 mgp = c(1.85, 0.75, 0))
 ## Disable scientific notation (e.g., 0.0001 rather than 1e-04)
 #options(scipen = 100)
 # Calculate max density
 maxDensityPlus <- max(density(hgTestResults@hypergeomDist)$y)*1.2
 if(hgTestResults@alternative == "MoreThanRandom") {
 xlim <- c(pmin(0, min(hgTestResults@hypergeomDist)/1.2),
 pmax(hgTestResults@observed*1.2, hgTestResults@alpha0.05*1.2))
 textX1 <- quantile(xlim, 0.25)[[1]]
 } else {
 xlim <- c(pmin(0, hgTestResults@observed/1.2),
 max(hgTestResults@hypergeomDist)*1.2)
 textX1 <- quantile(xlim, 0.75)[[1]]
 }
 hist(hgTestResults@hypergeomDist,
 breaks = 50,
 freq = FALSE,
 col = "dodgerblue",
 border = NA,
 lwd = 2,
 xlim = c(pretty(xlim)[1],
 pretty(xlim)[length(pretty(xlim))]),
 ylim = c(0,
 maxDensityPlus),
 xaxt = "n", yaxt = "n",
 xlab = "", ylab = "", main = "",
 axes = FALSE)
 axis(side = 2,
 at = pretty(density(hgTestResults@hypergeomDist)$y),
 lwd = 2)
 mtext(side = 2,
 text = "Density",
 line = 1.85)
 axis(side = 1,
 at = pretty(xlim),
 lwd = 2)
 mtext(side = 1,
 text = bquote("Genes"),
 line = 1.85)
 titleText <- list(bquote("NLR-encoding genes in" ~
 .(sub("_\\w+$", "", libName)) ~ "Quantile" ~ .(as.character(z)) ~
 "(" * .(featRegion) * ") in" ~
 .(gsub("_", " ", genomeName)) ~ .(region)),
 bquote(italic("P")*" = "*
 .(as.character(hgTestResults@pval))),
 bquote("Samples (hypergeometric distribution) = "*.(prettyNum(length(hgTestResults@hypergeomDist),
 big.mark = ",",
 trim = T))))
 mtext(do.call(expression, titleText), side = 3, line = 3:1, cex = c(0.7, 1, 1))
 lines(density(hgTestResults@hypergeomDist),
 col = "dodgerblue3",
 lwd = 1.5)
 ablineclip(v = hgTestResults@expected,
 y1 = 0, y2 = maxDensityPlus*.92, lwd = 2)
 ablineclip(v = hgTestResults@observed,
 y1 = 0, y2 = maxDensityPlus*.92, lwd = 2, col = "forestgreen")
 ablineclip(v = hgTestResults@alpha0.05,
 y1 = 0, y2 = maxDensityPlus*.92, lwd = 2, lty = 5, col = "red")
 text(x = c(textX1,
 hgTestResults@expected,
 hgTestResults@observed,
 hgTestResults@alpha0.05),
 y = c(maxDensityPlus*.95,
 maxDensityPlus,
 maxDensityPlus,
 maxDensityPlus*.95),
 labels = c("Simulated",
 "Expected",
 "Observed",
 expression(alpha*" = 0.05")),
 col = c("dodgerblue",
 "black",
 "forestgreen",
 "red"),
 cex = 0.8)
 dev.off()
}

options(scipen = 100)

Plot bar graph summarising permutation test results
pt_list <- list()
for(z in quantileFirst:quantileLast) {
 if(libName %in% "cMMb") {
 load(paste0(outDir,
 "NLR_gene_representation_among_quantile", z, "_of_", quantileLast,
 "_by_", libName, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes.RData"))
 } else {
 load(paste0(outDir,
 "NLR_gene_representation_among_quantile", z, "_of_", quantileLast,
 "_by_log2_", libName, "_control_in_", featRegion, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes.RData"))
 }
 pt_list <- c(pt_list, hgTestResults)
}
bargraph_df <- data.frame(Quantile = paste0("Quantile ", quantileFirst:quantileLast),
 log2ObsExp = sapply(seq_along(pt_list), function(x) { pt_list[[x]]@log2obsexp }),
 log2alpha0.05 = sapply(seq_along(pt_list), function(x) { pt_list[[x]]@log2alpha }))
bargraph_df$Quantile <- factor(bargraph_df$Quantile,
 levels = paste0("Quantile ", quantileFirst:quantileLast))
bp <- ggplot(data = bargraph_df,
 mapping = aes(x = Quantile,
 y = log2ObsExp,
 fill = " ")) +
 geom_bar(stat = "identity",
 position = position_dodge()) +
 scale_fill_manual(name = "",
 values = c("dodgerblue3"),
 labels = " ") +
 geom_point(mapping = aes(x = Quantile,
 y = log2alpha0.05),
 position = position_dodge(0.9),
 shape = "-", colour = "grey80", size = 20) +
 labs(y = bquote("Log"[2]*"(observed/expected) genes in quantile")) +
 scale_x_discrete(position = "top") +
 guides(fill = guide_legend(direction = "horizontal",
 label.position = "top",
 label.theme = element_text(size = 20, hjust = 0, vjust = 0.5, angle = 90),
 nrow = 1,
 byrow = TRUE)) +
 theme_bw() +
 theme(axis.line.y = element_line(size = 1, colour = "black"),
 axis.ticks.y = element_line(size = 1, colour = "black"),
 axis.text.y = element_text(size = 20, colour = "black", hjust = 0.5, vjust = 0.5, angle = 90),
 axis.title.y = element_text(size = 20, colour = "black"),
 axis.ticks.x = element_blank(),
 axis.text.x = element_text(size = 20, colour = "black", hjust = 0, vjust = 0.5, angle = 90),
 axis.title.x = element_blank(),
 panel.grid = element_blank(),
 panel.border = element_blank(),
 panel.background = element_blank(),
 legend.position = "none",
 legend.background = element_rect(fill = "transparent"),
 legend.key = element_rect(colour = "transparent",
 fill = "transparent"),
 plot.margin = unit(c(5.5, 5.5, 10.5, 5.5), "pt"),
 plot.title = element_text(size = 16, colour = "black", hjust = 0.5)) +
 ggtitle(bquote("NLR-encoding genes in" ~
 .(sub("_\\w+$", "", libName)) ~ "quantiles" ~
 "(" * .(featRegion) * ") in" ~
 .(gsub("_", " ", genomeName)) ~ .(region) ~
 "(" * .(prettyNum(samplesNum,
 big.mark = ",",
 trim = T)) ~ " samples)"))
if(libName %in% "cMMb") {
ggsave(paste0(plotDir,
 "bargraph_NLR_gene_representation_among_", quantileLast,
 "quantiles_by_", libName, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes.pdf"),
 plot = bp,
 height = 8, width = 12)
} else {
ggsave(paste0(plotDir,
 "bargraph_NLR_gene_representation_among_", quantileLast,
 "quantiles_by_log2_", libName, "_control_in_", featRegion, "_of_genes_in_",
 genomeName, "_", region, "_hypergeomTestRes.pdf"),
 plot = bp,
 height = 8, width = 12)
}

1

