

1 **Supplemental Methods**

2 Table of Contents

3 <u>Section</u>	Page
4 1. Strains.....	2
5 2. Mutation accumulation (MA) experiments	2
6 3. DNA Extraction and library preparation	3
7 4. Variant calling	5
8 5. Data Analysis: General Linear Models (GLM)	6
9 6. mtDNA mutation rate	8
10 7. Parametric bootstrap simulations of wild isolate mutation spectra	8
11 8. Mononucleotide repeats	9
12 9. Local sequence context	9
13 10. False positives (FP) and false negatives (FN)	10
14 11. Indel filters	11
15 12. Recombinant Inbred Advanced Intercross Lines (RIAILs)	12
16 13. Note S1. Comparison of variant-calling pipelines on Comparison Subset.....	14
17 <u>References cited</u>	

18 **1. Strains. (i) MA lines.** The *mev-1* gene encodes a subunit of succinate dehydrogenase
19 cytochrome b, a component of complex II of the mitochondrial electron transport chain. The
20 *mev-1(kn1)* mutation is a G→A transition that replaces a glycine with a glutamate, resulting in
21 decreased enzyme activity and increased electron leak. The resultant phenotype has been
22 explored in several species (Ishii et al. 1990; Ishii et al. 2011; Ishii et al. 2013; Ishii et al. 2016)
23 and includes elevated 8-oxodG and mutation (Hartman et al. 2004; Ishii et al. 2005). The *mev-*
24 *1(kn1)* allele was backcrossed into the canonical Baer lab N2 strain genomic background for 12
25 generations, followed by six generations of selfing by single-worm transfer to render the
26 introgressed strain homozygous and to allow it to reach mutation-drift equilibrium. Consistent
27 with previous reports (Ishii et al. 1990), the introgressed *mev-1* ancestor had lower total
28 reproductive output and shorter lifespan relative to N2 (Joyner-Matos et al. 2011; Dossey 2014).
29 Importantly, our *mev-1* ancestor exhibited extreme sensitivity to methyl viologen (paraquat); in
30 fact, the name "*mev-1*" is an abbreviation for "abnormal MEthyl Viologen sensitivity" (Ishii et al.
31 1990). In preliminary assays with 0.25 mM paraquat at 20°C, all (> 50) N2 worms survived and
32 reproduced; none of the > 50 *mev-1* worms reached reproductive maturity, regardless of
33 whether they were transferred to paraquat-containing plates as eggs or as L1 larvae (M. Dossey
34 and JJ-M, unpublished results).

35 The sequence of the *mev-1* locus was inspected by eye in all *mev-1* MA lines. One line
36 (735) did not have the *mev-1(kn1)* allele, presumably due to a cross-contamination event with
37 an N2 strain, and was omitted from the analysis. All other *mev-1* lines were confirmed as
38 homozygous for the *mev-1(kn1)* allele.

39

40 **2. Mutation accumulation (MA) experiments.**

41 Details of the N2 and PB306 mutation accumulation experiment are given in Baer et al. (2005),
42 those of the *mev-1* MA experiment are given in Joyner-Matos et al. (2011). The basic protocol
43 in both experiments follows that of Vassilieva and Lynch (1999) and is depicted in **Figure 1** in

44 the main text. Briefly, replicate populations (MA lines) were initiated from a cryopreserved stock
45 of a highly-inbred ancestor at mutation-drift equilibrium and maintained over the course of the
46 experiment by transferring a single immature hermaphrodite at four-day intervals. Worms were
47 maintained on 60mm NGM agar plates, spotted with 100 μ l of an overnight culture of the OP50
48 strain of *E. coli* B, at a constant 20°C.

49 At every generation, the prior two generations of each MA line were kept at 20° C as
50 backups; if the leading generation worm did not reproduce, the plate was reinitiated with an
51 immature individual from the previous generation; this is referred to as "going to backup". If the
52 parental worm had reproduced but no offspring had reached the L2 stage, we kept the offspring
53 in the experiment to reproduce in the next generation; we refer to this delay in reproduction as
54 "holding over". Holding over reduces the actual number of generations of evolution of an MA
55 line below the maximum (Gmax). Ideally, going to backup should not affect the total number of
56 generations of MA, because the backup worm should be a (double) first cousin of the worm that
57 would have been transferred. However, there is some opportunity for overlapping generations
58 on backup plates (e.g., if we had to go to backup twice or more in a row), so there is some
59 ambiguity with respect to the true number of generations experienced by a line. The upper
60 bound on the number of generations is the total number of possible transfers in the experiment
61 (Gmax); the lower bound is the number of successful transfers (Gmin). Data on transfers and
62 additional context is presented in **Supplemental Table S1**.

63

64 3. DNA Extraction and library preparation. (i) MA lines. Cryopreserved tubes of worms were
65 thawed and grown for several days on 60 mm NGMA agar plates containing Streptomycin and
66 Nystatin and seeded with 110 μ l of overnight culture of the HB101 strain of *E. coli*. When food
67 was nearly exhausted, a small piece (~50 mm²) of the agar plate was transferred onto a 100
68 mm NGMA plate and worms were allowed to grow for another 2-3 days. When food was nearly
69 exhausted, worms were collected into 15 ml centrifuge tubes on ice and allowed to settle.

70 Approximately 100 μ l of settled worms were transferred into a 1.5 ml microcentrifuge tube and
71 stored at -80°C until all samples were ready for DNA extraction, at which time samples were
72 thawed and genomic DNA was extracted with the DNeasy Kit (Qiagen) following the
73 manufacturer's protocol. Extracted DNA was stored at -20°C prior to library preparation.

74 Frozen DNA samples were thawed and diluted with diH₂O to a concentration of 0.2
75 ng/ μ l. Tagmentation was performed per manufacturer's instructions (Illumina, Nextera DNA
76 Sample preparation kit, FC-121-1030). Following tagmentation, amplification was performed
77 using custom barcoded IDT primers. Following amplification, a 96-pooled well sample was
78 generated. Once pooled, 170 μ L of sample was combined with 30 μ L of 6 \times loading dye and run
79 on a 2% agarose gel. DNA segments of 300-500bp were excised from gel. The QIAquick Gel
80 Extraction Kit (QIAquick, 28704) was used to clean and elute DNA from the gel, following
81 manufacturer's instructions. Pooled library samples were quantified using the Qubit HS kit
82 (Qubit, Q33230) and sequenced on a NovaSeq 6000 by Novogene, Inc.

83 (ii) Wild isolates. Details of the DNA extraction and library preparation are reported on the
84 CeNDR website (<https://www.elegansvariation.org/>) and in Lee et al. (2021). Briefly, worms
85 were cultured on two 10-cm NGMA plates spotted with OP50, washed into a 15-ml conical tube
86 in M9 buffer and allowed to settle. Worms were rinsed 3 \times in 10 ml of M9 over 1 h to allow
87 worms to purge ingested *E. coli*. Genomic DNA was isolated from 100–300 μ l pellets using the
88 Blood & Tissue DNA isolation kit (69506; Qiagen) following established protocols. DNA
89 concentration of each sample was quantified using the Qubit dsDNA Broad Range Assay Kit
90 (Q32850; Invitrogen). DNA samples were then submitted to the Duke Sequencing and Genomic
91 Technologies Shared Resource per their requirements. The Illumina library construction and
92 sequencing were performed at Duke University using KAPA HyperPrep kits (Kapa Biosystems)
93 and sequenced on the Illumina NovaSeq 6000 platform (150 bp paired-end reads).

94

95 4. Variant calling. (i) MA lines. Adapter sequence was trimmed from raw sequencing reads
96 using fastp (Chen et al. 2018). Following trimming, we used bowtie2 (Langmead et al. 2009) to
97 align trimmed sequence data to the N2 reference genome (WS263). Reads with the MQ<3 were
98 removed from further analyses. Duplicate reads were identified and removed using
99 MarkDuplicates tool in Genome Analysis Toolkit (GATK)/picard. Variants (SNPs and indels)
100 were called using HaplotypeCaller (in BP_RESOLUTION mode) in GATK4 (v4.1.4.0) (McKenna
101 et al. 2010). Next, the resulting files from all samples (23 *mev-1*, 68 N2, and 67 PB306 samples
102 plus their ancestors) were consolidated using GenomicsDBImport, and variants called jointly
103 using GenotypeGVCFs in GATK.

104 Variants that met the following three criteria were considered as putative mutations: (1)
105 they were called homozygous; (2) they were present in one and only one MA line for each
106 datastore, and (3) the ancestor genotype is homozygous wild-type (Saxena al., 2019). We
107 initially applied a 3x coverage threshold for filtering the sites with <3x coverage and include only
108 sites that are covered >3x in > 90% of the MA lines in each strain (for example 62 out of 68 in
109 N2 MA lines). Putative indels \geq 20 bp and all indels within 50 bp of another putative indel were
110 visually inspected using the Integrative Genomics Viewer (IGV) software.

111 Potential functional effects of mutations were assessed using snpEFF 4.3 (Cingolani et
112 al. 2012), and the annotation database WBcel235.82. Each variant potentially has multiple
113 effects; snpEFF sorts them by potential impact (i.e., the highest putative impact is listed first).
114 We include only the largest potential effect of each variant (**Supplemental Table S3**).

115 (ii) Wild isolates. The details of the CeNDR variant calling pipeline are given on the CeNDR
116 website (<https://www.elegansvariation.org/>) and in Lee et al. (2021). In brief, adapters and low
117 quality sequences were trimmed from raw reads using fastp and default parameters
118 (<https://github.com/andersenlab/trim-fq-nf>). Trimmed reads were aligned to the *C. elegans*
119 reference genome (WS276) using bwa mem BWA (0.7.17) (Li and Durbin 2010). Libraries of the
120 same strain were merged together and indexed by sambamba (0.7.0). Duplicates were flagged

121 with Picard (2.21.3) (<https://github.com/andersenlab/alignment-nf>). Variants for each strain were
122 called using gatk HaplotypeCaller. After the initial variant calling, variants were combined and
123 then recalled jointly using gatk GenomicsDBImport and gatk GenotypeGVCFs GATK (4.1.4.0)
124 (<https://github.com/andersenlab/wi-gatk>). We applied a $\geq 3x$ coverage threshold, and include only
125 sites that are covered $>3x$ in $> 90\%$ of the wild isolates.

126 The only difference between the CeNDR variant-calling pipeline and our MA mutation-calling
127 pipeline is that the CeNDR pipeline uses BWA as the mapping tool whereas our mutation-calling
128 pipeline uses Bowtie2. To address the possibility that the discrepancy in the mutation spectra
129 between MA lines and wild isolates can be explained by the use of different mapping software,
130 we re-analyzed the three sets of MA lines, *mev-1*, N2 and PB306 using the CeNDR pipeline
131 (i.e., using BWA rather than Bowtie2 as the aligner). The resulting mutation spectra are nearly
132 identical, both for base-substitutions and indels (**Supplemental Figures S6, S7**). Thus, we
133 conclude that the discrepancy between the MA spectra and the wild isolate spectra cannot be
134 explained by the use of different mapping software.

135

136 **5. Data Analysis: General Linear Models (GLM).** Line-specific mutation rates were used as the
137 dependent variable in analyses of mutation rate. The model can be formally written as $y_{ijk} = \mu +$
138 $a_j + b_k + ab_{jk} + e_{ijk}$, where y_{ijk} is the rate of mutation type j in line i of strain k , μ is the overall
139 mean, a_j is the fixed effect of mutation type j , b_k is the fixed effect of strain k , ab_{jk} is the fixed
140 effect of the interaction between mutation type j and strain k , and e_{ijk} is the residual effect
141 associated with MA line i and where it is assumed that $e \sim N(0, \mathbf{R})$, with covariance structure \mathbf{R}
142 (see below). Covariances were estimated by restricted maximum likelihood (REML); fixed
143 effects were tested by F-tests with Type III sums of squares. Analyses were implemented using
144 the MIXED procedure in SAS v. 9.4.

145 We compared models with different covariance structures (\mathbf{R}) by finding the model that
146 minimizes the corrected Akaike Information Criterion (AICc). If the best model by AICc includes

147 more parameters than the next-best model, we compared the two by Likelihood Ratio Test
148 (LRT). The models are nested, so twice the difference in the log-likelihoods is asymptotically
149 chi-square distributed with degrees of freedom equal to the difference in the number of
150 parameters estimated. We initially pooled the data across strains to find the best model, then
151 compared that model to a model with the covariance structure estimated separately for each
152 strain and tested by the same criteria. The covariance structures tested, in increasing order of
153 complexity, are: variance components (a single, common variance and all covariances
154 constrained to equal zero), compound symmetry (common variance, common covariance);
155 banded main diagonal (a separate variance estimated for each variable, all covariances
156 constrained to zero), and unstructured (all elements of the covariance matrix estimated
157 individually).

158 Preliminary analyses revealed qualitatively different mutation rates and spectra for
159 mononucleotide repeats (defined as five or more consecutive bases of the same type)
160 compared to all other sequence motifs; see section 8 below for details of the bioinformatics by
161 which mononucleotide repeats were identified. Rather than extend the above GLM to include
162 sequence type (mononucleotide and non-mononucleotide), which would have included three
163 two-way interactions as well as the three-way interaction, we broke the analysis down into two
164 different two-factor models. First, we analyzed each of the six base-substitution rates
165 individually, including strain and sequence type as predictor variables. Comparisons among
166 strains were restricted to the comparison between *mev-1* and N2 (the foundational motivation
167 for the study) and the comparison between N2 and PB306. Next, since in only one case did the
168 strain-by-sequence type interaction approach statistical significance (see Results), we pooled
169 the data over strains (N2 and PB306, omitting *mev-1*) and analyzed the model with sequence
170 type and mutation type as the predictor variables.

171

172 6. mtDNA mutation rate. Estimation of the mtDNA mutation rate is more complicated than for
173 nuclear loci because a non-trivial fraction of mutations will not have reached fixation and remain
174 heteroplasmic. The probability of a mutation ultimately reaching fixation is its current frequency
175 in the population (Wright 1931), so the mtDNA mutation rate of MA line i can be estimated as

176
$$\mu_i = \frac{\sum p_j}{n_i t_i}$$
, where p_j is the frequency of the j 'th mutation in line i , n_i is the number of callable

177 sites in line i , and t_i is the number of generations of MA of line i (Konrad et al. 2017).

178 Because many lines have no mtDNA mutations, the residuals of mtDNA mutation rate
179 are far from normally distributed, so GLM is not an appropriate method by which to test the
180 hypothesis that mtDNA mutation rates differ among strains. Instead, we used a randomization
181 test, in which (1) the number of lines/strain is held constant and the data (line-specific mutation
182 rates) randomly shuffled among strains, (2) the average mutation rate calculated for each strain,
183 and (3) the difference in average mutation rate between the three pairs of strains calculated.
184 This procedure was repeated 1000 times, to generate a null distribution of pairwise differences
185 in mutation rate. If the observed value of the pairwise difference is greater than 95% of the
186 randomized values, we take it to be statistically significant at $P<0.05$.

187

188 7. Parametric bootstrap simulations of wild isolate mutation spectra. To test the hypothesis that
189 the variance in the private allele frequency spectrum among wild isolates can be explained by
190 sampling variance around a single uniform base-substitution spectrum with expectation equal to
191 the observed frequencies, we employed parametric bootstrap simulations, as follows. First,
192 each wild isolate was assigned its observed number of private alleles, sampled with
193 replacement with probability equal to the observed frequency (e.g., if the frequency of A:T→T:A
194 base substitutions is 20%, the probability that any simulated private allele is the result of a
195 A:T→T:A mutation is 20%). Next, the Kullback-Leibler divergence (Kullback and Leibler 1951),
196 $D_{KL} = \sum_{i=1}^n p_i \log \frac{p_i}{q_i}$, was calculated for each wild isolate, where p_i and q_i are the observed and

197 expected base-substitution frequencies, and the mean divergence \bar{D}_{KL} of the set of wild isolates
198 calculated, as well as the variance in D_{KL} among wild isolates. This procedure was repeated
199 1000 times to generate a simulated frequency distribution of the mean D_{KL} and its variance
200 under the null hypothesis, and the observed values compared to the null distribution. If the
201 observed value is greater than 95% of simulated values, we reject the null hypothesis at the
202 p<0.05 level.

203

204 8. Mononucleotide repeats. We used Phobos 3.3.12 software
205 (http://www.rub.de/ecoeko/cm/cm_phobos.htm) to identify all mononucleotide repeats of ≥ 5 bp
206 in the WS263 build of the *C. elegans* genome. To identify imperfect repeats, we applied the
207 default mismatch penalties (mismatch score -5, gap score -5, recursion depth 5, Minimum score
208 = 0). The minimum repeat unit criterion was 5bp and we kept all the sites with 100% repeat
209 perfection. We increased the range of all mononucleotide repeat by two bases on either end of
210 the repeat, following Saxena et al. (2019). The average coverage of mononucleotide repeats
211 and non-mononucleotide repeat in the MA lines of the three strains was estimated using
212 mosdepth 0.3.1 (Pedersen and Quinlan 2018); the same coverage threshold was applied for
213 mononucleotide and non-mononucleotide regions. Including the 2 bp flanking regions,
214 mononucleotide repeats include 14,470,735 nucleotides and non-mononucleotide regions
215 include 85,815,671 nucleotides. Excluding the flanking regions, mononucleotide repeats *per se*
216 include 8,578,075 nucleotides. The GC-content of mononucleotide and non-mononucleotide
217 sequence is 20.12% and 38.02%, respectively.

218

219 9. Local sequence context. We counted the total number of each of the 64 3-base motifs in the
220 reference genome using Jellyfish v. 2.3.0 software (Marcais and Kingsford 2011). For example,
221 in the sequence -5'-AAAA-3', there are two possible 5'-aAa-3' motifs. We then applied a custom

222 Bash script to count the number of each motif in the MA lines. We used bcftools to extract the
223 position of each variant, and bedtools to extract the sequence context of each variant.
224 We counted the total number of mutations occurring at the middle position in each of the 3-bp
225 motifs and estimated the base-substitution mutation rate of each 3-base motif i in an MA line as
226 $\mu_i = \frac{X_i}{n_i t}$, where X is the total number of mutations in each 3-bp motif in the MA line, n is the
227 detectable number of each 3-base motif in that line, and t is the number of generations of MA.
228 The reported values of μ_i are unweighted means over all lines in the strain. Scripts are deposited
229 in github at <https://github.com/moeinrajaei/mev-1-project>.

230

231 10. False positives (FP) and false negatives (FN).

232 (i) *False Positives.* False positives were assessed in two ways. First, we counted sites that
233 differ between our MA ancestor and the reference (N2) genome (i.e., sites that are scored 1/1 in
234 the MA ancestor and 0/0 in the reference genome). These are presumed to be new mutations
235 fixed subsequent to the divergence of the MA ancestor and the reference strain from their
236 common ancestor. These sites were scored in each MA line in the set. If a site is scored 1/1 in
237 the MA ancestor but scored 0/0 in all MA lines, we inferred a false positive in the MA ancestor.
238 The power of this method is obviously sensitive to the number of MA lines sequenced; the more
239 MA lines sequenced, the greater the chance of identifying a false positive. Since the number of
240 N2 lines (68) and PB306 lines (67) are nearly equal, any difference in the frequency of false
241 positives cannot be attributed to differences in power.

242 Second, we employed an independent set of low-coverage sequence data from a set of
243 192 recombinant inbred advanced intercross lines (RIAILs) generated from a cross between two
244 N2 strain MA lines, 530 and 563. The details of the construction and sequencing of the RIAILs
245 and data analysis are presented in section 12 below. .

246 (ii) *False negatives*. To identify false negatives, we first introduced simulated variants ("dummy
247 mutations") into the reference genome, and then re-analyzed the MA data using the simulated
248 reference genome. For example, suppose position x in the reference genome is A. We
249 randomly change the A to a C, i.e. an A → C "dummy" transversion. In this case, the MA
250 ancestor and all MA lines should have a C at site x. If the genotype at site x in any MA line is
251 not called a C/C homozygote, for any reason, it is classified as a failure to recall. If the
252 genotype at site x in an MA line was called "not C/C" (i.e., it was scored A/A or A/C), it is a false
253 negative. We introduced 983 dummy base substitutions into the reference genome; failure to
254 recall rates are given in the main text.

255 Indels present a more complex problem, because inserting or deleting sequence
256 changes the physical map of the reference genome relative to the focal genome. To address
257 the question of indel false negatives, we first introduced 9,990 dummy indels into the reference
258 genome (**Supplemental Table S12** below). Next, we defined five size bins of 1-5 bp, 6-10 bp,
259 11-20bp, 21-50bp, and >50 bp, and analyzed the data as described above for base-
260 substitutions. For each MA line, we counted the total number of indels in each bin using the
261 simulated reference genome and the true reference genome and compared the number of
262 indels in each bin. We then repeated the simulation and analyses with a second set of dummy
263 mutations; the correlation between the line-specific failure to recall rates in the two simulations
264 provides an estimate of the reliability of the method (**Supplemental Figure S12** below).

265

266 11. Indel filters

267 To compare the indel spectra of MA lines and segregating private alleles, we applied the
268 following filtering criteria using VariantFiltration in GATK (4.1.4.0). Variants with quality (QUAL)
269 < 30, quality by depth (QD) < 20, read depth (DP) < 5, strand odds ratio (SOR) > 5, Fisherstrand
270 (FS) > 100, ReadPosRankSum value < -20. Sites with > 10% missing genotypes and or any
271 heterozygous genotypes were removed.

272

273 12. Recombinant Inbred Advanced Intercross Lines (RIAILs)

274 12.1. Line Construction. Two N2-strain MA lines, line 530 (243 MA generations) and line 563
275 (237 MA generations) were chosen as parents to generate a panel of 200 recombinant inbred
276 advanced intercross lines (RIAILs) (Rockman and Kruglyak 2008). In brief, we used a random
277 pair mating design with equal contributions of each parent to the next generation over ten
278 generations of intercrossing, followed by ten generations of selfing. We first thawed the
279 cryopreserved parental strains, lines 530 and 563, on 100mm plates seeded with OP50 *E. coli*.
280 Both strains contained males when thawed, and we allowed them to propagate until many
281 gravid hermaphrodites were present. We then bleached the strains and incubated the recovered
282 embryos in M9 buffer overnight to make synchronized cultures of arrested L1 stage larvae. We
283 plated these L1s on multiple 100 mm plates to avoid overcrowding and grew them for 48 hours.
284 We then set up 30 independent outcrosses on mating plates (30mm plates seeded with 10uL of
285 OP50 *E. coli*) with the sex of the parental strains reversed for half the outcrosses. We set up
286 these and all subsequent crosses with two young males and one virgin hermaphrodite each,
287 and always transferred the parents to a new mating plate two days after setting up the cross to
288 avoid accidentally selecting self progeny. We made 280 independent crosses among F1
289 progeny, being careful to select animals that would provide equal proportions of the founders'
290 cytoplasmic and X chromosomes to the F2 progeny. Of these crosses, only 200 showed the
291 roughly equal sex ratios in the progeny indicative of successful mating, therefore all subsequent
292 crosses were made in duplicate to avoid failed matings in subsequent generations. We
293 randomly paired F2 progeny from the 200 successful F1 crosses to generate the F3 generation
294 and performed each cross reciprocally to maintain a constant population size of 200. We
295 repeated this process over ten generations of intercrossing. In some cases, both duplicate
296 crosses failed, in which case we randomly selected another line of the same generation to take
297 its place, leading to the occasional overrepresentation of some parents within a generation of

298 intercrossing. At the F10 generation we chose a single hermaphrodite from each of the 200
299 recombinant lines and allowed them to self fertilize for 10 generations. Of the 200 RIAILs, 196
300 survived cryopreservation and were used in this study.

301 12.2. Illumina library construction and whole-genome sequencing. To isolate genomic DNA
302 from the recombinants, we transferred nematodes from two freshly starved 10 cm NGM plates
303 into a 15 ml conical tube by washing with 10 mL of M9 buffer. We allowed the worms to settle
304 by gravity the bottom of the conical tube, removed the supernatant, and added 10 mL of fresh
305 M9. We repeated this wash method three times over the course of one hour to serially dilute any
306 remaining *E. coli* in the M9 and allow the nematodes time to purge ingested bacteria. We then
307 isolated genomic DNA from 100 to 300 μ l nematode pellets using the Blood and Tissue DNA
308 isolation kit cat# 69506 (QIAGEN, Valencia, CA) following established protocols (Cook et al.
309 2016). We quantified the concentration of DNA in each sample with the Qubit dsDNA Broad
310 Range Assay Kit cat# Q32850 (Invitrogen, Carlsbad, CA) and diluted all samples to 0.2 ng/ μ L.
311 We then incubated each sample with diluted Illumina transposome cat# FC-121-1031 (Illumina,
312 San Diego, CA) and amplified the tagmented fragments with barcoded primers. We combined
313 the uniquely indexed samples into 96-sample pooled libraries and size-selected them by
314 separating the material on a 2% agarose gel, extracting the fragments ranging from 400-600 bp,
315 and purifying the extraction with the QIAquick Gel Extraction Kit cat# 28706 (QIAGEN, Valencia,
316 CA). We determined the concentration and size distribution of the purified, size-selected
317 libraries with the 2100 Bioanalyzer (Agilent, Santa Clara, CA) before submitting them to the
318 NUSeq Core Facility of Northwestern University where they were sequenced on the Illumina
319 HiSeq4000 platform (paired-end 150 bp reads).

320 12.3. Variant calling and analysis. Variants were called using the same analysis pipeline as for
321 the MA lines, described in section 4 above. We identified 699 SNPs and 1054 indels in the two
322 parental lines (Note: these variants include new mutations in the MA phase and fixed mutations
323 that occurred on the lineage leading to the MA ancestor subsequent to its divergence from its

324 common ancestor with the reference genome). The variants were recalled jointly in 192 RIAILs
325 and 636 SNPs and 961 indels were kept. The expected frequency of a variant in the set of
326 RIAILs is 50% (i.e., we expect Mendelian segregation). If a variant is not present in at least ten
327 (out of 192) RIAILs and there are fewer than 50 RIAILs with missing data at the site, it is
328 considered a false positive.

329

330 13. Note S1. Comparison of variant-calling pipelines on a Comparison Subset of lines.
331 The discrepancy in the mutation spectra between MA lines and wild isolates, especially in
332 mononucleotide repeats, could potentially have technical as well as biological causes. One
333 potential source of technical discrepancy is that, both within and between data sets, Illumina
334 libraries were prepared at different times, using different protocols. Samples were sequenced
335 on different sequencing platforms, with different paired-end read lengths, and with different
336 average read depths. For one example, some samples were sequenced with 100 bp paired-
337 end reads and others with 150 bp paired-end reads. Longer mononucleotide runs will be more
338 difficult to identify in shorter reads, and will potentially be underrepresented in samples with 100
339 bp PEs relative to samples sequenced with 150 bp PEs.

340 We reasoned that, if the discrepancy between the MA spectra and the wild isolate
341 spectra are biological rather than technical, comparison of MA and wild isolate samples that
342 were prepared and sequenced in the same way would still differ. To that end, we chose a
343 sample of 76 MA lines (38 N2 and 38 PB306) and a sample of 38 wild isolates for which the
344 libraries were prepared at approximately the same time, in the same lab, using the same
345 reagents and protocols, and were sequenced using 150 bp paired-end reads at approximately
346 the same time on the same sequencing platform (NovaSeq 6000) by the same contractor
347 (Novogene, Inc), to approximately the same depth of coverage. The libraries were prepared in
348 the Andersen lab in 2019; the DNA extraction and library construction protocols are described in
349 section 3 of the Supplemental Methods. Thus, to the best of our ability, we are comparing

350 apples to apples. We refer to this subset of lines as the "Comparison Subset". The list of lines
351 and the details of sequencing are given in **Supplemental Table S11**.

352 We did not have access to the raw, unfiltered sequencing reads of the wild isolates; we
353 began the analysis with the BAM files available on the CeNDR website
354 (<https://www.elegansvariation.org/>) and we applied the same pipeline for variant calling for all
355 three datasets – N2 and PB306 MA lines and the wild isolates. The resulting mutation spectra
356 were very similar to the spectra reported in the main text (Figures 4 and 5), as depicted in
357 **Supplemental Figures S4** (base-substitutions) and **S5** (indels).

358 Next, we applied a partial "reciprocal transplant" strategy, as outlined in section 4 of the
359 Supplemental Methods. We analyzed the subset of MA lines described above using both our
360 MA analysis pipeline, as described in section 4(i) of the Supplemental Methods, and the CeNDR
361 bioinformatics pipeline outlined in section 4(ii) of the Supplemental Methods. The resulting
362 mutation spectra are very similar in the two analyses, as depicted in **Supplemental Figure S6**
363 (base-substitutions) and **S7** (indels).

364 Another possible source of the discrepancy in the mutation spectra, again particularly for
365 mononucleotide repeats, is that our minimum coverage threshold for inclusion is $\geq 3\times$, which is
366 low. We chose that low threshold because the number of false negatives (and thus the failure
367 to recall rate) declines faster with increasing coverage than does the rate of false positives, so
368 beyond a very low threshold, for the purposes of estimation of mutation rate, it is better to
369 include more sites at low coverage than fewer sites at higher coverage. As an empirical test of
370 the hypothesis that the discrepancy could be due to a high rate of false positives at low
371 coverage, we repeated the analysis of the MA lines with a more stringent criterion of $\geq 10\times$
372 coverage. Again, the spectra are very similar, both for the MA lines and the wild isolates
373 (**Supplemental Figure S8 and S9** (base-subs) and **S10 and S11** (indels)).

374 The conclusion from these additional analyses is simple: the two different methods of
375 analysis (ours and the CeNDR pipeline) give concordant results on the same data, chosen for

376 methodological concordance. Moreover, increasing the stringency of the coverage threshold

377 from 3 \times to 10 \times does not change the results.

378

379 **Literature Cited**

380 Baer CF, Shaw F, Steding C, Baumgartner M, Hawkins A, Houppert A, Mason N, Reed M, Simonelic K,
381 Woodard W et al. 2005. Comparative evolutionary genetics of spontaneous mutations affecting
382 fitness in rhabditid nematodes. *Proceedings of the National Academy of Sciences of the United
383 States of America* **102**(16): 5785-5790.

384 Chen SF, Zhou YQ, Chen YR, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*
385 **34**(17): 884-890.

386 Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM. 2012. A program
387 for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in
388 the genome of *Drosophila melanogaster* strain w(1118); iso-2; iso-3. *Fly* **6**(2): 80-92.

389 Cook DE, Zdraljevic S, Tanny RE, Seo B, Riccardi DD, Noble LM, Rockman MV, Alkema MJ, Braendle C,
390 Kammenga JE et al. 2016. The genetic basis of natural variation in *Caenorhabditis elegans*
391 telomere length. *Genetics* **204**(1): 371-383.

392 Dossey MM. 2014. An exploration of mutation effect sizes in the nematode *Caenorhabditis elegans*. In
393 *Department of Biology*, Vol M.S., p. 80. Eastern Washington University, Cheney, WA USA.

394 Hartman P, Ponder R, Lo HH, Ishii N. 2004. Mitochondrial oxidative stress can lead to nuclear
395 hypermutability. *Mechanisms of Ageing and Development* **125**(6): 417-420.

396 Ishii N, Takahashi K, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K. 1990. A methyl viologen sensitive
397 mutant of the nematode *Caenorhabditis elegans*. *Mutation Research* **237**(3-4): 165-171.

398 Ishii T, Miyazawa M, Hartman PS, Ishii N. 2011. Mitochondrial superoxide anion (O₂⁻) inducible "mev-1"
399 animal models for aging research. *BMB Reports* **44**(5): 298-305.

400 Ishii T, Miyazawa M, Onouchi H, Yasuda K, Hartman PS, Ishii N. 2013. Model animals for the study of
401 oxidative stress from complex II. *Biochim Biophys Acta* **1827**: 588-597.

402 Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N. 2005. A mutation in the *SDHC* gene of Complex
403 II increases oxidative stress, resulting in apoptosis and tumorigenesis. *Cancer Res* **65**: 203-209.

404 Ishii T, Yasuda K, Miyazawa M, Mitsushita J, Johnson TE, Hartman PS, Ishii N. 2016. Infertility and
405 recurrent miscarriage with complex II deficiency-dependent mitochondrial oxidative stress in
406 animal models. *Mech Ageing Dev* **155**: 22-35.

407 Joyner-Matos J, Bean LC, Richardson HL, Sammeli T, Baer CF. 2011. No evidence of elevated germline
408 mutation accumulation under oxidative stress in *Caenorhabditis elegans*. *Genetics* **189**(4):
409 1439-1447.

410 Konrad A, Thompson O, Waterston RH, Moerman DG, Keightley PD, Bergthorsson U, Katju V. 2017.
411 Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in *Caenorhabditis elegans*
412 Spontaneous Mutation Accumulation Lines of Differing Population Size. *Molecular Biology and*
413 *Evolution* **34**(6): 1319-1334.

414 Kullback S, Leibler RA. 1951. On information and sufficiency. *Ann Math Statist* **22**(1): 79-86.

415 Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short
416 DNA sequences to the human genome. *Genome Biology* **10**(3).

417 Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, Cook DE, Webster AK, Chirakar R, Baugh
418 LR et al. 2021. Balancing selection maintains hyper-divergent haplotypes in *Caenorhabditis*
419 *elegans*. *Nature Ecology & Evolution*.

420 Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform.
421 *Bioinformatics* **26**(5): 589-595.

422 Marcais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of
423 k-mers. *Bioinformatics* **27**(6): 764-770.

424 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel
425 S, Daly M et al. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-
426 generation DNA sequencing data. *Genome Research* **20**(9): 1297-1303.

427 Pedersen BS, Quinlan AR. 2018. Mosdepth: quick coverage calculation for genomes and exomes.
428 *Bioinformatics* **34**(5): 867-868.

429 Rockman MV, Kruglyak L. 2008. Breeding designs for recombinant inbred advanced intercross lines.
430 *Genetics* **179**(2): 1069-1078.

431 Saxena AS, Salomon MP, Matsuba C, Yeh SD, Baer CF. 2019. Evolution of the mutational process under
432 relaxed selection in *Caenorhabditis elegans*. *Molecular Biology and Evolution* **36**(2): 239-251.

433 Vassilieva LL, Lynch M. 1999. The rate of spontaneous mutation for life-history traits in *Caenorhabditis*
434 *elegans*. *Genetics* **151**(1): 119-129.

435 Wright S. 1931. Evolution in Mendelian populations. *Genetics* **16**(2): 0097-0159.

436

437