

## Supplemental Material

### Temperature-dependence of spontaneous mutation rates

Ann-Marie Waldvogel<sup>1,2\*</sup> & Markus Pfenninger<sup>1,3,4</sup>

<sup>1</sup> Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany

<sup>2</sup> Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany

<sup>3</sup> LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany

<sup>4</sup> Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany

\*corresponding author: a.waldvogel(at)uni-koeln.de

---

#### Table of Contents:

##### Supplemental Results

|                        |        |
|------------------------|--------|
| Supplemental Table S1  | page 2 |
| Supplemental Table S2  | page 2 |
| Supplemental Table S3  | page 3 |
| Supplemental Figure S1 | page 2 |
| Supplemental Figure S2 | page 3 |

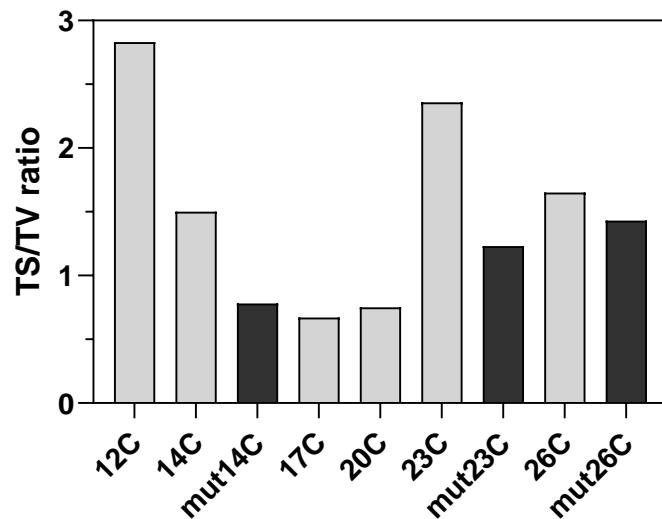
##### Supplemental Methods

|                        |        |
|------------------------|--------|
| Supplemental Figure S3 | page 4 |
|------------------------|--------|

---

## Supplemental Results

### Mutation rate estimates

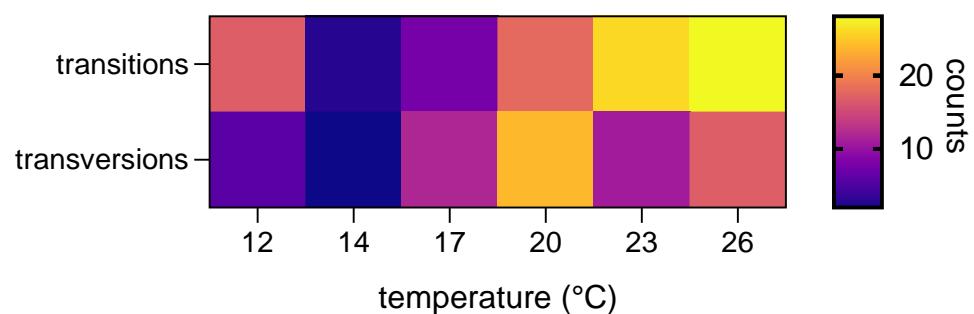

Supplemental Table S1: Outline of number of callable sites and mutation rates previously estimated for this species at 20°C on the basis of an older version of the draft genome (Oppold and Pfenninger 2017) in comparison to the rates reported at the same temperature in this study.

|                   | Oppold & Pfenninger 2017        | Present study (20°C)            |
|-------------------|---------------------------------|---------------------------------|
| n° callable sites | 1.23E08                         | 1.27E08                         |
| $\mu$ total       | 4.15E-09 (3.13E-09 to 0.54E-08) | 4.20E-09 (3.12E-09 to 5.45E-09) |
| $\mu$ SNM         | 2.12E-09 (1.39E-09 to 3.03E-09) | 3.36E-09 (2.43E-09 to 4.47E-09) |
| $\mu$ SNI         | 2.13E-09 (na)                   | 8.55E-10 (2.65E-10 to 1.39E-09) |

### Mutator lines

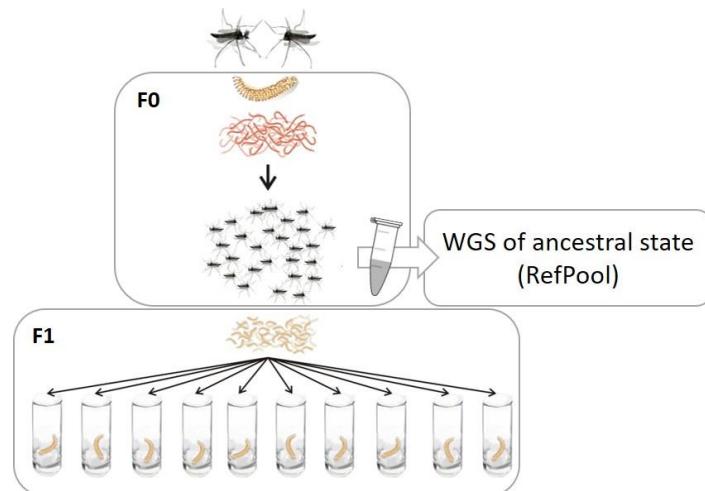
Supplemental Table S2: Details of the identified mutator lines with number of detected de novo mutations, resulting total mutation rates ( $\mu$ total) and the fold increase when compared to the mean mutation rates of the remaining MAL at the same temperature.

| temp | MA line ID      | mutations | $\mu$ total | fold increase to mean rate of temp |
|------|-----------------|-----------|-------------|------------------------------------|
| 14   | B1 (mutator)    | 49        | 9.32E-08    | 20                                 |
| 23   | D3 (mutator)    | 42258     | 1.29E-04    | 9769                               |
| 23   | D4 (mutator)    | 34319     | 9.71E-05    | 7358                               |
| 23   | D8 (mutator)    | 29304     | 7.73E-05    | 5856                               |
| 26   | E2-11 (mutator) | 18        | 1.04E-07    | 4                                  |




Supplemental Figure S1: Ratios between transition (TS) and transversions (TV) based on summed up numbers per temperature. Ratios of mutator lines ('mut') highlighted in dark.

### Temperature-dependence of mutation rates


Supplemental Table S3: Test statistics of linear regression vs second order polynomial regression model to explain the observed relation between mutation rates and temperature. Akaike information criterion (AIC) to compare model fit.

|                                  | $\mu_{\text{total}}$    | $\mu_{\text{SNM}}$      | $\mu_{\text{SNI}}$       |
|----------------------------------|-------------------------|-------------------------|--------------------------|
| linear                           | $r^2 = 0.28$<br>AIC = 8 | $r^2 = 0.30$<br>AIC = 8 | $r^2 = 0.002$<br>AIC = 8 |
| 2 <sup>nd</sup> order polynomial | $r^2 = 0.98$<br>AIC = 6 | $r^2 = 0.99$<br>AIC = 6 | $r^2 = 0.73$<br>AIC = 6  |



Supplemental Figure S2: Heatmap of detected transitions versus transversions per experimental temperature. Due to the low number of SNMs per MAL it is not possible to use replicate ratios for statistical testing of the transition-transversion ratios.

## Supplemental Methods



Supplementary Figure S3: Detailed overview of the onset of the mutation accumulation experiment using a single egg clutch. To represent the ancestral parents the offspring was whole genome sequenced (WGS) as pooled sample (RefPool).