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Supplemental Fig S1. Small RNA (sRNA) sequencing library structure. sSRNA sequencing library batch

(Batch 1 or Batch 2), sample relatedness (donor/ donor couples are indicated with # and number), and

developmental stage grouping information. Germinal vesicle oocyte, GV; Metaphase I oocyte, MI;

Metaphase II oocyte, MII; 4-cell embryo, 4-cell; 8-cell embryo, 8-cell. (B)
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Supplemental Fig S2. Mapping of sSRNA-seq libraries. Reads (RPM) mapped to different RNA classes
across all samples. The horizontal line in the boxplot indicates the expression median. sRNAbench
(Aparicio-Puerta et al. 2019; Rueda et al. 2015) was used with human miRBase (v22) (Kozomara et al.
2018), Ensembl ¢cDNA (hg38), Ensembl non-coding RNA (hg38), and RNAcentral version 14 (hg38)
databases, and os-piRNA sequence information (Yang et al. 2019) to map reads against previously identified
RNA molecules. Un-assigned reads included mainly reads mapping to mitochondrial transcripts. Naming of
the RNA classes follows the database formats with sense and antisense orientations indicated by sRNA

bench. Classes “mature” and “hairpin” refer to miRBase miRNAs and pre-miRNAs, respectively.
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Supplemental Fig S3. sSRNA class expression and base position preference.

(A4) sRNA class expression at different nucleotide (nt) lengths (17 -30 nt) in the oocyte maturation stages,
zygotes, and cleavage stage embryos. Stage-wise mean proportion of reads mapped to each sSRNA class are
shown individually. microRNA, miRNA; mitochondrial tRNA, mt-tRNA; oocyte short piRNA, os-piRNA;
Piwi-interacting RNA, conventional piRNA; ribosomal RNA, rRNA; transfer RNA, tRNA. (B) The relative
nucleotide compositions of the conventional piRNAs, and os-piRNAs detected in oocytes, zygotes, and
embryos. We used sSRNAbench (Aparicio-Puerta et al. 2019; Rueda et al. 2015) with RN Acentral version 14
(hg38) database, and os-piRNA sequence information (Yang et al. 2019) to map and annotate conventional
piRNAs and os-piRNAs. Base composition preference of the detected conventional piRNA and os-piRNA
molecules are shown according to their sequence information in the databases. A representative plot for a
single sample from each developmental stage is shown. The detected os-piRNAs and conventional piRNAs
had a 1U and 10A preference, as expected, and a moderate 4A and SA preference. Germinal vesicle oocyte,
GV (n=6); Metaphase I oocyte, MI (n=3); Metaphase II oocyte, MII (n=3); zygote (n=5); 4-cell embryo, 4-
cell (n=5); 8-cell embryo, 8-cell (n=5). The number behind the stage symbol indicates the stage-wise

replicate number.



Supplemental_Fig_S4

.
-
-

1
ol
-

(%) ¥NY!d [euonuaauog jo uoiodoid

stage

oocyte

M zygote
B embryo

')
N

o

oo soe

e e

<

80,

(%) ¥Nyl1d-so jo uoiodoid

ojuabliayul

uosul Buipoo-uou

uoxa Buipoo-uou

uosul Buipoo

d1n.€ Buipod

d.1n.s buipod

$ao buipod

ojuabiayul

uosul Buipoo-uou

uoxa Buipoo-uou

uoJjui Buipoo

d1n.€ Buipod

H1n.s Buipoo

$ao buipod

W

c -

L
L e, [

o o

yeadal-uou
g 14 18yio

M2 14 VNd
¢ 14 3NIS
Ae1d "1

2 14 3NN
A4 48yio
A4 VNG
ME4 3NIS
LIER-TN|

A4 3NM
Jayjo

VNd

3aNIsS

g1

3aNIM

©
(%) YNY!d [euonuanuod oluabiajul jo uonodoid

=

H

t

I

!

4

0

<

LA

<+

+

“f

+

<

f

£

!

y

o 2
eeW.

— w
§ g5 !
m o N @ !

[ ] ] .L
o o
©

m

(%) ¥NY!d-so oluabiaui jo uoipodoid

1eadal-uou
3g 14 18yio

3¢ 14 YNa
214 ANIS
Ng 14 "1

e 14 aNM
AL 14 J8yio
A4 VNG
N4 3ANIS
ANER-IN|

A4 3N
18y10

vNa

aNIS

d11

aNIn

stage

oocyte
M zygote

asuses-ljue
asuss

1eadal-uou
3g 14 18yio

¢ 14 YNa

X214 ANIS

(EER-IN|
: i RAAEELNN
3 RINERIC
° M4 VNG
i M4 3NIS
AN ER-IN
AL 14 3NN
Jayo

M embryo

. fvna
anis

- ST
ann

100

(%) ¥YNY!w o1uabiayul jo uorpodold

Supplemental Fig S4. miRNA, conventional piRNA, and os-piRNA genomic locations. (4) os-piRNA

78
79

(left panel) and conventional piRNA (right panel) locations in genome elements. Both classes were located

80

primarily in intergenic regions. (B) Intergenic os-piRNA (left panel) and conventional piRNA (right panel)

81

locations in repeat elements. Both classes were located mainly within non-repeat elements and in lesser

82
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numbers LINE or LTR associated regions. (C) The intergenic miRNAs were mainly associated with LINE
and other repeat class flanking elements. (4-C) DNA transposon, DNA; Long interspersed nuclear element,
LINE; Long terminal repeat, LTR; Other repeat class, Other; Short interspersed nuclear element, SINE. The
repeat element flanking regions of 0-1kb and 1-2kb are indicated with FL1k and FL2k, respectively. The
horizontal line in the boxplot indicates the median value. A blue bar indicates the sense and a red bar the
antisense orientations of the intersected genomic loci. Intersection was performed with BEDTools 2.29.0
(Quinlan and Hall 2010) with GENCODE hg38 annotations obtained from UCSC’s table browser

(Comprehensive gene annotation v23).
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Supplemental Fig S5. Principal component analysis (PCA) of miRNAs, os-piRNAs, and conventional
piRNAs. PCA was performed using R FactoMiner package (L€ et al. 2008) with log2 transformed sRNA
class library size normalised reads (left) as well as voom-normalised and limma batch-adjusted reads (Law et
al. 2014; Ritchie et al. 2015) (right). miRNAs, os-piRNAs, and conventional piRNAs with >0 observations
in at least 3 samples were included in the analyses. Prior to batch-adjustment the samples clustered according

to sequencing batch and mainly by developmental stage within the two batches. Samples were batch-
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adjusted using broad sample grouping (oocyte, zygote, and embryo) due to an unbalanced library design in
the case of the different oocyte maturation stages, and thus some of the developmental stage-wise clustering
may be lost upon correction. The batch-adjusted datasets clustered according to developmental stage, with
clearest stage-wise separation between oocytes and embryos, for miRNAs and conventional piRNAs, and
oocytes, zygotes, and embryos for os-piRNAs. There does not seem to be significant separation in the
clustering of 3-pronuclear and the 2-pronuclear zygotes, while there is some general dispersion of samples

belonging to the same developmental stage.
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Supplemental Fig S6. Correlation analysis of miRNA expression. Pairwise correlations of oocytes (top
left), zygotes (top right), and embryos (bottom) were assessed using normalized miRNA reads. R represent
the Pearson correlation coefficient. Only miRNAs detected in both samples to be compared were used for
calculation of R. Samples of the same stage had a R in the range of 0.38-0.69. The scatter plots show
normalized miRNA expression of all detected miRNAs (>0 observations in at least 3 samples) for all sample

pairs.
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and non-conserved miRNA families of the highly expressed miRNAs in oocytes, zygotes, and embryos.
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119  Normalised reads of the highly expressed miRNAs belonging to each miRNA family are aggregated and
120  presented as the stage-wise mean. (B) DE miRNA expression levels in different developmental stages.
121 Germinal vesicle oocyte, GV; Metaphase I oocyte, MI; Metaphase II oocyte, MII; 4-cell embryo, 4-cell; 8-

122 cell embryo, 8-cell.
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Supplemental Fig S8. isomiR expression in early human development. (4) Heatmap of miRNA
modification isoforms (isomiRs) with highest expression levels (top 20% according to median, detected in >
80% of samples) across samples. Euclidean distance and average linkage were used to organise isomiRs
according to expression. Germinal vesicle oocyte, GV; Metaphase I oocyte, MI; Metaphase 11 oocyte, MII;
4-cell embryo, 4-cell; 8-cell embryo, 8-cell. (B) Small RNA adenylation (TENT2, former PAPD4,; TENT4B,
former PAPDS5; MTPAP, former PAPDI) and uridylation (TUT1, TUT4, TUT7) factor mRNA levels in
human oocytes and pre-implantation embryos (Yan et al. 2013). Adenylation factors were expressed at
higher levels than uridylation factors throughout development (FDR <0.01, paired Wilcoxon signed rank
test, two-sided). The horizontal line in the boxplot indicates the expression median. (C) Sample-wise
canonical sequence and 3’ adenylated (A-tailed) miRNA read ratios in different developmental stages. We
found both the canonical sequence and A-tailing modification classes to be differentially expressed (DE;
FDR< 0.05) between oocytes (n=10) and embryos (n=12), using a linear model to account for batch. (D)
miRNA 3’ uridylation (U-tailing) modification length in different developmental stages. Modification
lengths of up to 5 nucleotides are shown. (£) Modification dynamics of miRNAs with highest 3’ uridylation
(U-tailing) ratios. A total of 6 miRNA species were analysed (mean normalised reads > 1000 and mean
modification ratio > 0.33 in at least one of the stages). The data points represent the developmental stage-
wise mean U-tailing ratio. The locally estimated scatterplot smoothing (loess) curve deviated from the
overall U-tailing modification trend (Fig. 4C) with the oocyte stages having higher modification ratios in the
6 analysed miRNA species. (F-G) miRNA 3’ adenylation () and uridylation (G) modification length for
miRNAs with highest modification levels. Size of the circle indicates stage-wise mean modification ratio.

(C-G) Mean stage-wise miRNA modification ratio and (D) the 95% confidence interval are shown.
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Supplemental Fig S9. miRNA 3’ adenylation and miRNA abundance. (4) Scatter plot of mean stage-
wise microRNA (miRNA) 3’ adenylation (A-tailing) ratio and miRNA abundance in human oocyte, zygote,
and embryo stages. All 260 mature miRNA species included in the analyses are shown. A-tailed miRNAs
(stage-wise mean of A-tailed reads > 0.05; blue) with the stage-wise mean abundance in the top or lower 5%

(separated by dotted grey lines) are named. There was no clear correlation between miRNA A-tailing ratio
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157
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159

160

161
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164

and miRNA abundance. Several highly A-tailed miRNAs were found in abundant levels across multiple
developmental stages indicating that A-tailing may selectively stabilize specific miRNAs. Germinal vesicle
oocyte, GV; Metaphase I oocyte, MI; Metaphase Il oocyte, MII; 4-cell embryo, 4-cell; 8-cell embryo, 8-cell.
(B) The differentially expressed miRNAs that were determined using MACAU 2.0 v1.10 (Sun et al. 2017)
were defined as adenylated if the mean sample-wide A-tailing percentage was over 5%. Approximately half
of the miRNAs that were up-regulated in embryos were also A-tailed while for the embryo down-regulated
miRNAs A-tailing was observed for a quarter of the miRNAs. The number of miRNAs belonging to each

category are indicated above the columns.
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Supplemental Fig S10. Novel human pre-miRNAs. (4) Putative novel pre-microRNA hairpin sequences
predicted by sRNAbench. RNAfold web server (Lorenz et al. 2011) with parameters corresponding to
RNAfold -d2 —-noLP in RNAfold 2.4.13 was used for putative pre-miRNA hairpin structure prediction. (B)
Expression of novel miRNA S5p and 3p sequences corresponding to the identified putative pre-miRNAs in
human oocytes, zygotes, and embryos. Log2 transformation of 5p and 3p sequence mapped reads for each
putative novel miRNA are shown. Sample-wise miRNA library sizes are given in Supplemental Table S1A.
Germinal vesicle oocyte, GV; Metaphase I oocyte, MI; Metaphase II oocyte, MII; 4-cell embryo, 4-cell; 8-

cell embryo, 8-cell.
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175  Supplemental Table S1A. Summary of small RNA sequencing data

Sample ID (Batch|Group|Group |Donor|Raw reads|High-quality |Library Percentage of miRNA os-piRNA |conventional
broad reads (17-30 [mapped library mapped |mapped mapped PiRNA mapped
nt) reads reads (%) reads reads reads
GVlI Setl [GV  |oocyte [indl |14390516 [6521775 5597577 85.8 34358 1710042 14556
GV2 Setl |GV  |oocyte [indl |17446476 |5439398 4567119 84.0 27687 1200777 11690
GV3 Set2 |GV |oocyte [ind5 1299576 |638516 541653 84.8 11619 170955 1799
GV4 Set2 |GV |oocyte [ind9 |4020883 |2462699 2215189 89.9 22234 723607 8181
GVS5 Set2 |GV |oocyte [ind10 |5248672 |2755762 2393791 86.9 23430 715814 9343
GV6 Set2 |GV |oocyte [indll |3336892 |2237355 2052009 91.7 14754 695480 7712
MIIl Set2 |MI oocyte |ind5 4302443 [1616543 1347384  |83.3 50587 311213 4504
MI2 Set2 |MI oocyte |ind9 |1569799 |795870 713464 89.6 6245 226257 2474
MI3 Set2 |MI oocyte |ind10 |3854054 |2123318 1903643 89.7 28508 561476 7742
MII1 Set2 [MII  |oocyte [indl1 |4994479 |3306109 2905818 87.9 34868 915120 9963
MII2 Set2 |MII |oocyte |indl2 (1600520 933011 813317 87.2 24678 238752 3441
MII3 Set2 |MII |oocyte |indl2 1895320 (1011003 881240 87.2 24906 245553 3176
Z1 Setl |zygote [zygote [ind2 |11980763 |4735847 3902966 82.4 25455 1002231 10722
72 Setl |zygote [zygote [ind2 |19855711 |7400529 6160517 83.2 35589 1518912 14660
Z3 Set2 |zygote |zygote |ind15 |2877658 [1759571 1537988 87.4 21856 503525 5024
Z4 Set2 |zygote |zygote |ind17 |2792556 |1672546 1456960  |87.1 18507 446720 4787
z5 Set2 |zygote [zygote [ind17 |3067169 |1790849 1550200  |86.6 26235 485618 4353
4C1 Setl (4 _cell [embryo |ind3 |19184546 6197366 4818929 77.8 77471 922877 12178
4C2 Setl (4 _cell [embryo [ind3 6822202 |1736592 1300611 74.9 30557 172738 2222
4C3 Set2 (4 _cell [embryo [ind13 |2358708 |923508 756504 81.9 12449 168000 2691
4C4 Set2 (4 _cell [embryo [ind13 |1787880 |659105 530300 80.5 12733 70490 1242
4CS Set2 (4 _cell [embryo [ind13 |5293336 |1785489 1298012 72.7 8194 141663 2097
8Cl Setl (8 _cell [embryo [ind4 |15100759 |2738667 1876748 68.5 99550 87496 2492
8C2 Setl (8 _cell [embryo [ind3 4572029 |738621 469565 63.6 26993 19649 507
8C3 Set2 (8 _cell [embryo [ind14 |742206 183249 119349 65.1 12117 11441 274
8C4 Set2 (8 _cell [embryo [ind16 |940055 347491 278466 80.1 14967 53410 794
8C5 Set2 (8 _cell [embryo [ind16 |906686 352863 263577 74.7 17537 43594 754

176  Small RNA sequencing library information with Sample ID, sequencing batch, sample grouping, and donor

177  information are shown for each sample. Sequencing library size metrics include number of raw reads,
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178

179

180

181

182

183

184

185
186
187
188

189

number of high-quality reads of length 17-30 nucleotides (nt) after adapter removal, percentage of library

mapped reads as well as number of reads mapped to miRNAs, os-piRNAs, and conventional piRNAs.

Supplemental Table S1B. Summary of detected miRNA, conventional piRNA, and os-piRNA species

Small RNA class Number of detected species

miRNA 260

os-piRNA 22851

conventional piRNA | 153

Number of detected (>0 reads in at least 3 samples) miRNA os-piRNAs, and conventional piRNA species in

human oocytes, zygotes, and embryos are shown.

Supplemental Table Sé6. Significantly differentially expressed miRNA modifications in oocytes (n=12)

and embryos (n=10).

miRNA modification | term estimate | std.error | statistic | p-value |FDR

ntaA Biol group broadembryo|0.1404 |0.0158 |8.8960 |3.34E-08|3.34E-07
ntaG Biol group broadembryo|0.0062 |0.0011 |5.4083 |3.22E-05|1.07E-04
ntaU Biol group broadembryo|-0.0189 |0.0027 |-6.8930|1.42E-06|7.10E-06
Iv3pT Biol group broadembryo|-0.0254 [0.0072 |-3.5531|2.12E-03 |5.31E-03
exact Biol group broadembryo|-0.0858 |0.0274 |-3.1274|5.55E-03|1.11E-02
Iv3pE Biol group broadembryo |-0.0234 |{0.0092 |-2.5397|2.00E-02|3.33E-02
Iv5pE Biol group broadembryo|-0.0025 |0.0010 |-2.4347|2.49E-02|3.56E-02

Significantly differentially expressed miRNA modifications (FDR < 0.05) between human oocytes (n=12)
and embryos (n=10) were determined using a linear model adjusting for batch. Biological group parameter
estimates, standard error (std. error), test statistic (statistic), p-value, and FDR are shown. Table is sorted by
FDR. Exact (canonical) mature sequence, exact. 3’ trimmed, Iv3pT; 3’ elongated, 1v3pE; 5’ elongated,

Iv5pE; Non-templated nucleotide addition (NTA) of A, ntaA; NTA of G, ntaG; NTA of U, ntaU.
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