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Supplemental Methods 

 
 
Validation of Notch deletions 

For validation of Notch deletions, we used the following primers: 

Sample P9: TGCACCGACGCGGTCACACTGCCGATTT and 

AGGAGATGTCGGCGGAGAAGTAGGAAGAGACG 

Sample P17: GCCAAAAGCGATTCCACG and GAATCGCTCTCGTTGTTGGC 

Sample P65: CAACTGTTTGCTGTTCTGAAATCC and GGCAGCTATAGTCACCGATCC 

Sample D1: TTTAGATTAAGTGCTGTGCTGCATCTGTGAC and 

ACTCGAGCTCAGGAAATGCC 

Sample D7: AGAGGCCCTTGGGCTATTGGCCTGCTGA and 

GCCATCGATGCAGGTTCCTCCGTTCTGGCA 

Sample P29: GCCTGCTTTCATCGTTGATTGT and CAAACCGATTTGCCAGGAATGT 

Sample P41: CCACCATTCTCCTTGCCAATTC and CCTCTACTCGCTTCTCGGTTTC 

Sample P61:  CTGCCACGCCTCTTGTTGAC and TGCAGTCAAAAACTGATGAATGAT 

PCR reactions were performed using tumour DNA as well as control DNA isolated from the 

adjacent gut, the head and the thorax of the same fly, using 0.5 – 1 ng of genomic DNA. 

Thorax controls were not available for samples P9, P17 and P65. For amplicons above 2 kb 

we used the LongAmp Taq DNA Polymerase (New England Biolabs) in a standard PCR 

reaction mix. Amplicons below 2 kb were amplified with the Phusion High Fidelity DNA 

polymerase (Thermo Scientific) using standard conditions. For Sanger sequencing, we gel-

purified DNA bands of interest and sequencing was performed by Eurofins Genomics with the 

same primers as used for the PCR amplification.   

 

Read tagging 

We have recently developed a bioinformatic tool named readtagger to tag reads that map to 

multiple genomes (Siudeja et al. 2021). In cases where reads map to a primary genome with 
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less affinity than to a secondary genome, reads are tagged as originating from the secondary 

source, and can then be filtered or extracted from the alignment to the primary genome. Using 

this approach, we first mapped reads to Drosophila reference TE sequences using BWA-MEM 

v0.7.15 to annotate non-reference TE sequences in the genomes of our fly stocks. This step 

enables the easy extraction and annotation of clusters of transposable element-mapped reads 

in downstream analysis. Next, in order to filter out reads that likely originated from 

contaminating species of the Drosophila microbiome, we mapped reads to several known 

species found in the Drosophila gut (Acetobacter pasteurianus (NC_013209.1), Escherichia 

coli (NC_000913.3), Innubila nudivirus (NC_040699.1), Komagataeibacter nataicola 

(NZ_CP019875.1), Lactobacillus brevis (NC_008497.1), Lactobacillus plantarum 

(NC_004567.2), Plasmodium yoelii (LR129838.1), Saccharomyces (NC_001133), Tomelloso 

virus (KY457233.1), Wolbachia pipientis (NC_002978.6)). Finally reads were mapped to 

Drosophila melanogaster genome release 6.12, and readtagger v0.4.11 was used to tag 

reads. Duplicate reads were marked using Picard MarkDuplicates (v2.7.1; 

http://broadinstitute.github.io/picard/). 

 

Creating a panel of normals (PON) with Mutect2 (v4.1.2) 

For each normal sample we ran Mutect2 with the `--disable-read-filter  

MateOnSameContigOrNoMappedMateReadFilter` option. We then combined these calls into 

a PON using CreateSomaticPanelOfNormals from the GATK suite of tools (v4.1.2; (McKenna 

et al. 2010). 

 

Mutect2 (v4.1.2) 

For each tumour normal pair, we ran Mutect2 specifying the unmappable regions of the 

genome as `--exclude-intervals`, and we used the `--dont-use-soft-clipped-bases` option to 

remove SNV calling in noisy reads. We specified the PON with `--panel-of-normals`. We then 

further filtered calls using the `FilterMutectCalls` function.  
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Varscan2 (v2.4) 

For each tumour normal pair, we ran Varscan2 in somatic mode from combined pileups 

generated from both bam files using `--mpileup 1`. We specified minimum coverage of 20 for 

both the tumour and normal sample using `--min-coverage-normal 20 --min-coverage-tumor 

20` and provided the tumour purity value estimated from Control-FREEC using `--tumor-

purity`. We applied a strand filter using `--strand-filter 1`. We then ran `processSomatic` to 

separate high-confidence somatic SNV and indel calls. Next, we excluded high-quality somatic 

calls within the unmappable genome and removed sites that were also found in the PON.  

 

Strelka (v2.9.10) 

For each tumour normal pair, we ran `configureStrelkaSomaticWorkflow.py` followed by 

`runWorkflow.py -m local -j 4 -g 5`.  

 

SomaticSniper (v1.0.5.0) 

For each tumour normal pair, we ran `bam-somaticsniper -Q 40 -L`. 

 

SomaticSeq (v3.3.0) 

To combine calls made by multiple callers, for each tumour normal pair we ran 

`somaticseq_parallel.py --algorithm ada` specifying the mappable genome as ` --inclusion-

region`. 

 

FreeBayes (v1.2.0-dirty) 

For each tumour normal pair, we ran `freebayes -0 --pooled-discrete --genotype-qualities`, 

specifying a minimum coverage of 20 with `--min-coverage 20`. Next, we excluded calls within 

the unmappable genome, and processed calls using the vcflib function `vcfallelicprimitives` 

(https://github.com/vcflib/vcflib) and vt (https://github.com/atks/vt) using `vt 



4 
 

 

decompose_blocksub` to decompose biallelic block substitutions into their constituent SNVs. 

We then normalised calls using `vt normalize -q`, and selected somatic calls using the vcflib 

function `vcfsamplediff`. We then filtered somatic calls using the vcflib function `vcffilter` to 

select for those with a depth greater than 20 using `vcffilter -f "DP > 20"`, for high-quality calls 

`vcffilter -f "QUAL > 1 & QUAL / AO > 10"` and for those supported by reads on both DNA 

strands `vcffilter -f "SAF > 0 & SAR > 0"` and for those with both right- and left-facing read 

support  `vcffilter -f "RPR > 0 & RPL > 0"`.  

 

Combining and filtering point mutations 

We then merged the somatic calls from FreeBayes with the output of SomaticSeq and re-

filtered the merged per-sample calls against the PON using https://github.com/bardin-

lab/mutationProfiles. Combined calls were then filtered against the PON to remove germline 

variants and select for variants called at regions with read-depth >= 20 in both the tumour and 

normal sample. 

 

Point mutation annotation 

Initially, we annotated point mutations with gene information using SnpEff v4.3 (Cingolani et 

al. 2012), and used ISC-specific RNA-seq data (Dutta et al. 2015) to add expression levels to 

point mutations in genes. We then used the R package dNdScv (Martincorena et al. 2017) to 

annotate protein-coding mutations for their functional impact. 

 

Downstream analysis  

Downstream analyses were performed using functions developed within the mutationProfiles 

suite of tools (https://github.com/bardin-lab/mutationProfiles) and are detailed in our pipeline 

(https://github.com/bardin-lab/Riddiford_et_al_2020). 
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CNV-Seq  

We first created a file containing read counts for each bam file using `samtools view 

${bam_file} | perl -lane 'print "$F[2]\t$F[3]"' > ${out}.hits`. We then ran CNV-Seq on tumour 

normal pairs using window sizes of 500 bps and 50 kb with `cnv-seq.pl --window-size $window 

--genome-size 137547960 --global-normalization`. For small window sizes we then filtered 

windows with fewer than 50 reads in the normal sample.  

 

Control-FREEC (v11.0) 

For each tumour normal pair we ran Control-FREEC as described in the documentation, and 

annotated significant CNVs using `assess_significance.R`. We then filtered for significant 

CNVs, and generated .gff3 files for inspection in IGV. We further filtered CNV calls to exclude 

those that overlapped more than 25% with unmappable regions of the genome using bedtools 

subtract v2.28.0 (Quinlan and Hall 2010). 

  

novoBreak (v1.1) 

We ran novoBreak for each tumour normal pair using the recommended filtering steps.  

 

LUMPY (v0.2.13) 

For each tumour normal pair, we first extracted discordant and split reads and estimated the 

insert size distribution as described (https://github.com/arq5x/lumpy-sv). We then ran LUMPY 

using paired-end and split-reads and excluding the unmappable genome using `-x`. 

 

svTyper (svtools 0.3.0) 

A panel of normals (PON) was created using svTyper run on all normal samples and used this 

to genotype calls made for each tumour normal pair.  
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DELLY (v0.7.8) 

For each tumour normal pair, we ran `delly call`, excluding unmappable regions using the `-x` 

option. We then ran `delly filter -f somatic` to select for somatic calls and then genotyped calls 

against the PON generated by svTools by running `delly call` on the output generated in the 

above step. We then post-filtered for somatic calls after genotyping. 

 

Structural variant filtering and annotation 

In order to filter, annotate and combine calls made from the different approaches described 

above, we developed a suite of tools, svParser (https://github.com/bardin-lab/svParser). By 

inspecting the evidence behind individual calls using `perl script/svParse.pl -i`, and viewing 

evidence in IGV, we optimised a set of filters that appeared to be false positives while retaining 

calls that were well supported. We developed a wrapper script to run our pipeline `runParser 

-fmas`, that runs `svParse` on per-sample variant calls made by LUMPY, novoBreak and 

DELLY with the filters `-f chr=1 -f su=3 -f dp=10 -f sq=0.1 -f rdr=0.05 -s`. We use the `-c` option 

to specify a directory containing CNV-Seq count files for each tumour normal pair, which we 

use to annotate average Log2(FC) values over CNV regions. After annotating breakpoints in 

genes for the gene name and gene feature we inspected variants in IGV, and excluded several 

events that appeared to be false positive duplications called due to inconsistent coverage 

between the tumour and normal samples that was not consistent with a duplication in the 

tumour sample (Supplemental Table S2). We then combined all calls per sample, clustering 

variants called by multiple approaches into the same mutational event. We then annotated 

breakpoints in genes for expression levels using ISC-specific RNA-seq data (Dutta et al. 

2015). In order to assign a putative underlying mechanism to each structural variant, 

breakpoints that were supported by multiple split-reads were annotated with potential 

microhomology sequences using SplitVision (Nazaryan-Petersen et al. 2018). Next, we 

attempted to re-align any sequences inserted at breakpoint junctions to the sequence flanking 

each breakpoint to determine whether they were locally templated, and categorised variants 
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according to putative underlying mechanism using criteria largely adapted from previous 

studies (Yang et al. 2013; Kidd et al. 2010) (Supplemental Fig. S1B). 

 

Re-calibrating structural variant breakpoints 

In order to standardise calls made between different approaches, and refine breakpoint calls, 

we developed svSupport (https://github.com/bardin-lab/svSupport). First, for each variant with 

split-read support, we extracted a breakpoint signature to classify events as deletions, tandem 

duplications, inversions or translocations. For each breakpoint, we searched for reads that are 

tagged as mapping to a non-Drosophila Chromosome, and filtered variants with inconsistent 

support between breakpoints, or where we couldn’t find any split-read support after duplicate 

removal. We also annotated breakpoints associated with TE-tagged reads with the number of 

supporting reads and the TE class. Variants with low read support (< 3 split-reads) were 

recorded and later removed. We then incorporated tumour purity values estimated by Control-

FREEC to adjust the allele frequency of each variant. Here, we first extracted the number of 

reads directly supporting or opposing a given breakpoint and then calculated an adjusted 

opposing read count given the purity of the sample as follows: `expected_oppose = (1 - 

tumour_purity) * total_reads`. We then used this adjusted opposing read count to calculate a 

tumour purity adjusted allele frequency. For example, a variant supported by 75 reads, and 

opposed by 25 reads with a sample tumour purity value of 0.75 would have an initial VAF of 

0.75 (75/(75 + 25)), and an adjusted VAF of 1 (supporting/(supporting + (opposing - (1 - purity) 

* total reads)); 75/(75 + (25 - (1 - 0.75) * (75 + 25))). This step enabled us to better estimate 

the timing of mutations. For variants with imprecise breakpoints (CN events called by read-

depth-based approaches) we first counted the number of reads mapped in the CNV region in 

both the tumour and normal sample. Next, we normalised read counts for sequencing depth 

by counting the number of reads mapped across all full Chromosomes (2L, 2R, 3L, 3R, 4, X 

and Y). We then performed a similar adjustment as described above for split-read-supported 

variants to adjust allele frequency. Here, the supporting reads were derived by subtracting the 
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read count in the tumour sample from the read count in the normal sample. The opposing 

reads were then calculated by subtracting the supporting read count from the normal read 

count, and a tumour purity-adjusted allele frequency calculated as above.  

    

Clustering breakpoints 

In order to identify complex events from clusters of linked breakpoints, we used a tool ‘svStitch’ 

developed in the svParser suite (https://github.com/bardin-lab/svParser). For each sample we 

search for variants whose breakpoints were within a 5 kb window. In cases where clustered 

variants all belonged to the same class of CN event (deletion or duplication) individual variants 

were collapsed into a single event and the variant type was not modified. In cases where 

multiple classes of structural variant class were clustered, or all classes belonged to the same 

class but were not CN events, we re-annotated each variant type in the cluster as “complex”, 

and collapsed variants into a single mutational event.  

  

Annotating CNVs with SNP frequencies 

As a final filtering step, we used germline SNP calls made by FreeBayes to remove spurious 

CNV calls. First, allele frequencies of heterozygous germline SNPs called at sites with a depth 

> 20 in both the tumour and normal sample were extracted over a CN region. For each SNP, 

we calculated the difference in frequency between the tumour and normal sample, and 

recorded the difference as CNV-supporting if it was > 10%. We recorded the number of 

informative SNPs over CNVs, and in cases where we had sufficient evidence to reject a CN 

call (> 5 informative SNPs and supporting SNPs / opposing SNPs < 2) we marked variants as 

false positives. Importantly, considering small CN events are less likely to harbour enough 

informative SNPs for this filter to be applied, our pipeline is unable to exclude such events on 

this basis. 
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Downstream analysis  

Downstream analyses were performed using functions developed within the svBreaks suite of 

tools (https://github.com/bardin-lab/svBreaks), and are detailed in our pipeline 

(https://github.com/bardin-lab/Riddiford_et_al_2020). 

 

Identification of Tomelloso virus at breakpoint junctions and in sequencing data 

In one sample (P31) we detected reads at a breakpoint junction in Notch whose mates were 

not mapped to the Drosophila genome. In order to detect the source of these unmapped reads, 

we extracted unmapped reads, and assembled them into contigs using CAP3 (Huang and 

Madan 1999). We then used the assembled contigs to query the nr database using BLASTn 

(Altschul et al. 1990), and identified dsDNA nudivirus Tomelloso (Palmer et al. 2018) as the 

source. We then extended this search genome-wide, by identifying somatic clusters of reads 

with unmapped mates and assembling their mates as described above, but found no other 

instances of viral integration in other samples. In order to assess the extent to which Tomelloso 

was present in our sequencing data, we combined the Drosophila and Tomelloso genomes 

tagged reads that likely originated from Tomelloso using readtagger v0.4.11. We then 

analysed the percentage of paired-end reads that mapped with high confidence to the 

Tomelloso genome in all samples, and performed a Pearson correlation to determine the 

relationship between mutation per-sample mutation count and viral load. These analyses 

excluded a relationship between viral load and mutation frequency.  

 

Genotyping sequenced samples 

To estimate the genotype similarity between sequenced samples, we used FreeBayes v1.2.0-

dirty to call SNPs in all tumour and normal samples. We then intersected SNPs found in all 

samples and recorded the number of samples that shared any given SNP, and genotyped 

each SNP as follows: “germline recurrent” - SNPs found in the tumour and its paired head as 
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well as N other samples; “germline private” - SNPs found only in the tumour and its paired 

head.  

 

Pipeline validation against simulated tumour genomes 

In order to validate the performance of our pipeline in identifying known structural variants we 

used VISOR v1.0 to simulate breakpoints across the Drosophila genome (simulated input in 

Supplemental Table S3). First, we generated bed files containing 90 structural variants 

belonging to different classes (deletion, tandem duplication and inversion) that were 

distributed throughout the genome. These were used to generate simulated tumour genomes 

using VISOR HACk. We also generated ‘normal’ genomes containing no structural variants 

for comparison. We then simulated sequencing data generated from these genomes at five 

different levels of normal-in-tumour contamination, representing tumour purity values of 100%, 

80%, 60%, 40% and 20%, and at two different sequencing depths representing a ‘low’ average 

coverage (tumour: 10x, normal 30x) and a ‘high’ average coverage (tumour: 30x, normal: 50x). 

Resulting .bam files were then processed as described for our tumour samples, and we 

categorised the variants we detected into true positives, false positives and false negatives 

according to the ground truth of SVs we simulated. Our pipeline recovered a high number of 

these simulated variants (93.7% in high purity, high coverage condition), and detected very 

few false positives (comprising 1.4% of call (Supplemental Fig. S2; Supplemental Table S4). 

 

 

Pipeline validation against (Chakraborty et al. 2019) data 

To validate our pipeline against a set of known calls, we took advantage of an existing de novo 

assembly of the non-reference Drosophila melanogaster strain and the annotation of its SVs 

previously described (strain “A4” in Chakraborty et al. 2019). We used wgsim 

(https://github.com/lh3/wgsim) to generate 40M 150 bps paired-end reads from this genome. 

In order to construct a “tumour” sample, we then combined these reads with 40M 150 bps 
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reads generated from the Drosophila melanogaster reference genome (6.12). We then 

generated 80M reads from the Drosophila reference genome as a “normal” sample. Samples 

were processed as a tumour normal pair using our pipeline. 

We then downloaded the raw, unfiltered structural variant calls for the A4 genome 

characterised in Chakraborty et al. 2019 (https://github.com/mahulchak/dspr-

asm/blob/master/variants-raw/sv.a4.txt.gz). To better compare SV calls between pipelines we 

filtered these calls to select for SVs >= 100 bps and removed calls that overlapped (> 10%) 

with unmappable genome. We then used the linux command shuff to randomly select 50 of 

this subset of unfiltered Chakraborty A4 genome SVs (Supplemental Table S5), as well as 50 

of the variants called by our pipeline (Supplemental Table S6), for manual characterisation in 

IGV. Our pipeline correctly identified 16/50 (32%; Supplemental Table S5) variants in the A4 

genome. Manual inspection validated that these were "true positives" in both Riddiford and 

Chakraborty. In one case (representing 2% of calls) we detected TE involvement, and scored 

this event as “NA”. In 32/50 calls (64%; Supplemental Table S5), our pipeline did not detect 

SVs at the genomic loci found in Chakraborty et al. Manual inspection of these calls revealed 

them to be likely false positive calls in pre-filtered calls from Chakraborty et al. 2019. Therefore, 

18 (50 – 32; 36%) of the Chakraborty were “true” calls, of which our pipeline identified 16. This 

true positive rate of 90% (16/18) is in agreement with the true positive rate we detected in our 

simulated analysis (93.7%). 

We also performed the same analysis using the SV calls present in the UCSC genome 

browser session referenced in Chakraborty et al. 2019 (http://goo.gl/LLpoNH; SV calls: 

http://wfitch.bio.uci.edu/~tdlong/SantaCruzTracks/DSPR_R6/dm6/variation/SV.0328.vcf.gz). 

Here, we note that 9/32 (28.1%) of the false positive calls in the A4 genome call set were not 

present in the group-wise calls (scored as “NA” in Supplemental Table S5). It is possible in 

these cases an extra filtering step that was not detailed in the manuscript was performed, 

which could artificially increase the false positive rate we detect in their calls. We also note 

that the remaining (non-“NA”) Chakraborty false positive calls were classed as “:COM” events; 

which the authors considered unreliable (J.J. Emerson, pers. comm.) Altogether, these 

analyses further validate the accuracy of our pipeline to detect known structural variants. 
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In order to assess the overlap between the SVs identified by our pipeline those of A4 

genome of Chakraborty et al, 2019, we randomly selected 50 SVs variants called by our 

pipeline. Overall, we found that 41/50 (82%; Supplemental Table S6) of the SVs called by our 

pipeline were also present in raw calls of the A4 genome of Chakraborty et al and upon visual 

inspection were deemed "true positives". In addition, in 8% of our calls, we found clear support 

for SVs that were not present in the raw calls from the A4 genome of Chakraborty et al, but 

upon visual inspection were clearly true positives. Therefore, under these conditions, we 

consider our true positive rate to be 90%. We note the similarity of this rate to the true positive 

rate (93.7%) that we detected for high-depth sequencing conditions at tumour purity values of 

1 in our simulated data approach (Supplemental Tables S3, S4).  

 

Pipeline validation against using whole-gut sequencing data 

As a second approach to validating our pipeline and to specifically address error rates 

associated with real sequencing data generated in our lab, we analysed the genomes of single 

whole-guts dissected from both young and aged male flies compared to the head of the same 

individual (http://www.ebi.ac.uk/ena/data/view/PRJEB44312). For sequencing of non-

neoplastic tissues, we isolated single guts or heads from 1-week or 6-7-weeks-old male 

Pros>2xGFP flies (4 individual flies for each time-point). Guts were visually inspected to 

exclude samples with any GFP accumulation suggesting a presence of neoplasia. Tissues 

were dissected in ice-cold, nuclease free PBS and DNA was isolated immediately with the 

QIAamp DNA micro kit (Qiagen) according to manufacturer instructions. gDNA was eluted 

with nuclease-free water and DNA quantity was measured with the Qubit dsDNA Broad Range 

Assay Kit (Thermo Fisher Scientific). We then used 0.6 ng of purified gDNA for library 

preparation with the Nextera XT protocol (Illumina) and whole-genome 2 x 150 bps paired-

end sequencing was performed on NovaSeq (Illumina).  

These whole guts should not contain tumours and therefore should not have large 

clonal expansions as the ones that we used for somatic mutation detection. If somatic 
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mutations were present in these samples, they are predicted to have a much lower allele 

frequency than those expanded by somatic mutation of Notch in vivo. In young individuals, 

where we would expect to detect very low levels of mutation, we detected significantly lower 

levels of each class of mutation than with our tumour samples, supporting the low false-

positive levels we found in our simulated data (Supplemental Fig. 8A). The low level of events 

could be true somatic events or could be false positives. However, this analysis puts an upper-

bound on the putative false positive rate detected in real sequencing data, and further 

validates the low false positive levels found in our simulated data approach. 

We then analysed the aged whole-guts as a developmentally closer comparison tissue 

to our tumour samples. In these samples, we detected substantially higher levels of mutations 

than in the young samples (Supplemental Fig. 8B). Interestingly, we found that duplications 

comprised the large majority of SVs detected in the aged whole-gut samples (81%; 

Supplemental Fig. 8C), and that these were mostly < 5kb (Supplemental Fig. 8D). Although it 

is possible that this tissue harboured developmental mutations that were detected in stem cell 

lineages, we believe that this probably constitutes a false positive signature that our pipeline 

fails to remove.  This is likely explained by a novel filtering step that we developed to annotate 

CN events with heterozygous SNP allele frequencies: We require a minimum number of 

informative SNPs (heterozygous; high quality; depth > 20) to mark a CN event as a false 

positive, and through the analysis in Supplemental Fig. 8C, we conclude that small CN events 

do not harbour enough SNPs to be removed by this filter. While we did not detect many SVs 

with such a signature in our tumour SV calls (Supplemental Fig. 8D), and therefore it is unlikely 

that this influenced our data set, we note that our pipeline is unable to exclude small SV events 

on this basis. 

Additionally, we detected a high number of indels called in the aged whole-gut samples 

(Supplemental Fig. 8B). These were largely very low allele frequency events (Supplemental 

Fig. 8E; cell fraction <= 0.1). Again, comparing with the indel calls we found in our tumour 
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samples (Supplemental Fig. 8E), we did not detect many indels with similar allele frequencies 

(<= 0.1), suggesting that it was not a major source of false positives in our analysis.  

 

Genome feature discovery 

To identify regions of the Drosophila genome release 6.12 susceptible to forming non-B-form 

DNA structures we first scanned the genome for inverted repeat sequences following the 

approach outlined in (Zou et al. 2017), as well as for G-quadruplexes using the R package 

G4Hunter (Bedrat et al. 2016). To identify short sequence motifs in Notch breakpoint regions, 

we used MEME (Bailey and Elkan 1994), using sequences extracted +/- 500 bps from each 

breakpoint in Notch as input. We then used FIMO (Grant et al. 2011) to search for and 

annotate recovered motifs genome-wide. 

 

Association of mutations with genomic regions 

To detect the enrichment or depletion of genomic regions for mutations we counted the 

number of mutations in a given region, and compared this to the expected number considering 

the region's size. The association was tested by performing a two-sided binomial test, 

adjusting for multiple comparisons using Benjamini-Hochberg adjustment. We require that the 

number of observed hits + expected hits is greater than 10 for plotting. To assess whether 

breakpoints in Notch were enriched for poly(dA:dT) sequences, the sequence +/- 500 bps 

around each breakpoint in Notch was extracted and permutation tests were performed using 

regioneR (Gel et al. 2016) on the overlap between repeats and these breakpoint-flanking 

regions. In order to compare observed counts between real and shuffled data, we restricted 

permutations to within the genomic locus X:2700000-3400000, and performed 10,000 

permutations. To test whether mutations were found closer to poly(dA:dT) tracts than expected 

by chance, all classes of mutation (structural variant breakpoints, SNV and indels) were 

combined. We then simulated 10 times as many mutations as we found in our combined calls 

across the mappable genome with distribution across chromosomes equal to that observed in 



15 
 

 

our combined mutation data to act as a comparison. Finally, we calculated the relative 

distances of both mutations and simulated data to the closest repeat sequence using bedtools 

reldist (Favorov et al. 2012), and performed a Kolmogorov–Smirnov test to compare 

distributions. 

 

Immunofluorescence 

Dissection of a tumour (Supplemental Fig. S7A) marked by accumulation of GFP+ cells (ISCs) 

in Dl-Gal4>UAS-GFP flies and immunofluorescence to mark GFP, enteroendocrine cells 

(Pros+) and DAPI, was done as previously published (Siudeja, Cell Stem Cell, 2015).  

 

Log 2 Fold Change Plots 

The log 2 Fold Change in coverage across the genome was plotted for Supplemental Figure 

S8B and C.  
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